Interactive Effects of Temperature, Water Regime, and [CO2] on Wheats with Different Heat Susceptibilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Treatments
2.2. Leaf Area and Carbon/Nitrogen (C/N)
2.3. Leaf Photosynthetic Pigments
2.4. Photosynthetic Temperature Response Curves
2.5. Leaf Water Use Efficiency
2.6. Data Analysis
3. Results
3.1. Leaf Area and C/N
3.2. Leaf Pigment Content
3.3. Photosynthetic Temperature Response
3.4. WUE and Integrated Carbon Gain
4. Discussions
4.1. Physiological Responses of Wheat to Changes on Growth Temperature, Water Regime, and [CO2]
4.2. Genotype-Dependent Interactive Effects on Wheats with Different Heat Susceptibilities
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, P.; Bellouin, N.; Coppola, E.; Jones, R.; Krinner, G.; Marotzke, J.; Joeri, R. IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 4 May 2021).
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef]
- Hou, P.; Liu, Y.; Liu, W.; Yang, H.; Xie, R.; Wang, K.; Ming, B.; Liu, G.; Xue, J.; Wang, Y.; et al. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. Resour. Conserv. Recycl. 2021, 174, 105811. [Google Scholar] [CrossRef]
- Xu, Z.; Shimizu, H.; Yagasaki, Y.; Ito, S.; Zheng, Y.; Zhou, G. Interactive effects of elevated CO2, drought, and warming on plants. J. Plant Growth Regul. 2013, 32, 692–707. [Google Scholar] [CrossRef]
- Berry, J.A.; Björkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Biol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Posch, B.C.; Kariyawasam, B.C.; Bramley, H.; Coast, O.; Richards, R.A.; Reynolds, M.P.; Trethowan, R.; Atkin, O.K. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. J. Exp. Bot. 2019, 70, 5051–5069. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Inanaga, S.; Sugimoto, Y.; An, P.; Eneji, A.E. Effect of drought on ear and flag leaf photosynthesis of two wheat cultivars differing in drought resistance. Photosynthetica 2004, 42, 559–565. [Google Scholar] [CrossRef]
- Kadam, N.N.; Xiao, G.; Melgar, R.J.; Bahuguna, R.N.; Quiñones, C.; Tamilselvan, A.; Prasad, P.V.V.; Jagadish, K.S.V. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. Adv. Agron. 2014, 127, 111–156. [Google Scholar]
- Cai, C.; Yin, X.; He, S.; Jiang, W.; Si, C.; Struik, P.C.; Luo, W.; Li, G.; Xie, Y.; Xiong, Y.; et al. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob. Change Biol. 2016, 22, 856–874. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Atkin, O.K. The impact of heat stress on the proteome of crop species. In Agricultural Proteomics Volume; Springer: Berlin/Heidelberg, Germany, 2016; pp. 155–175. [Google Scholar]
- Ritchie, J.T.; Basso, B. Water use efficiency is not constant when crop water supply is adequate or fixed: The role of agronomic management. Eur. J. Agron. 2008, 28, 273–281. [Google Scholar] [CrossRef]
- Morell, F.J.; Lampurlanes, J.; Alvaro-Fuentes, J.; Cantero-Martinez, C. Yield and water use efficiency of barley in a semiarid Mediterranean agroecosystem: Long-term effects of tillage and N fertilization. Soil. Tillage Res. 2011, 117, 76–84. [Google Scholar] [CrossRef]
- Rizza, F.; Ghashghaie, J.; Meyer, S.; Matteu, L.; Mastrangelo, A.M.; Badeck, F.-W. Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crops Res. 2012, 125, 49–60. [Google Scholar] [CrossRef]
- Zhang, S.; Sadras, V.; Chen, X.; Zhang, F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Res. 2013, 151, 9–18. [Google Scholar] [CrossRef]
- Varga, B.; Varga-Laszlo, E.; Bencze, S.; Balla, K.; Veisz, O. Water use of winter cereals under well-watered and drought-stressed conditions. Plant Soil. Environ. 2013, 59, 150–155. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, Y.; Zhou, G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Front. Plant Sci. 2015, 6, 159764. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Rogers, A. The response of photosynthesis and stomatal conductance to rising CO2: Mechanisms and environmental interactions. Plant Cell Environ. 2007, 30, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, M.E.; Simpson, R.J.; Lambers, H.; Dalling, M.J. Effects of drought on partitioning of nitrogen in two wheat varieties differing in drought-tolerance. Ann. Bot. 1985, 55, 743–754. [Google Scholar] [CrossRef]
- Evans, R.G.; Sadler, E.J. Methods and technologies to improve efficiency of water use. Water Resour. Res. 2008, 44, 1–15. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2009, 11, 861–905. [Google Scholar] [CrossRef]
- Zinta, G.; AbdElgawad, H.; Domagalska, M.A.; Vergauwen, L.; Knapen, D.; Nijs, I.; Janssens, I.A.; Beemster, G.T.S.; Asard, H. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob. Change Biol. 2014, 20, 3670–3685. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Kristiansen, K.; Rosenqvist, E.; Liu, F. Elevated CO2 modulates the effects of drought and heat stress on plant water relations and grain yield in wheat. J. Agron. Crop Sci. 2019, 205, 362–371. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Schjoerring, J.K. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agric. Ecosyst. Environ. 2013, 178, 57–63. [Google Scholar] [CrossRef]
- Mendanha, T.; Rosenqvist, E.; Hyldgaard, B.; Ottosen, C.-O. Heat priming effects on anthesis heat stress in wheat cultivars (Triticum aestivum L.) with contrasting tolerance to heat stress. Plant Physiol. Biochem. 2018, 132, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Jacques, R.G. Vermicomposting manure: Ecology and horticultural use. Master’s Thesis, Aberystwyth University, Aberystwyth, UK, 2019. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Yamori, W.; Hikosaka, K.; Way, D.A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynth. Res. 2014, 119, 101–117. [Google Scholar] [CrossRef]
- Yamasaki, T.; Yamakawa, T.; Yamane, Y.; Koike, H.; Satoh, K.; Katoh, S. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol. 2002, 128, 1087–1097. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, J.; Xie, Z.; Liu, G.; Zeng, Q.; Han, Y. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant Soil. 2007, 294, 137–146. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef]
- Eller, F.; Hyldgaard, B.; Driever, S.M.; Ottosen, C.-O. Inherent trait differences explain wheat cultivar responses to climate factor interactions: New insights for more robust crop modelling. Glob. Change Biol. 2020, 26, 5965–5978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sonnewald, U. Differences and commonalities of plant responses to single and combined stresses. Plant J. 2017, 90, 839–855. [Google Scholar] [CrossRef] [PubMed]
- Zandalnas, S.I.; Fritschi, F.B.; Mittler, R. Signal transduction networks during stress combination. J. Exp. Bot. 2020, 71, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
Source of Variation | Pn15 | Pn18 | Pn25 | Pn28 | Pn35 | Pn40 | WUE15 | WUE18 | WUE25 | WUE28 | WUE35 | WUE40 | Topt | ∫ Pn | Leaf Area | C:N | Chl a | Chl b | Car | Chl a:b | Chl:Car |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
‘Paragon’ | |||||||||||||||||||||
CO2 × water × temp. | ns | ns | ns | ns | ns | ns | * | ns | ns | * | ns | ns | ns | ns | * | - | * | * | ns | * | * |
Water × temp. | * | * | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | *** | - | * | * | ns | ns | ns |
Temp. × CO2 | ns | ns | ns | ns | ns | * | ns | * | ns | * | * | ns | ns | ns | ns | - | ** | ** | ** | ns | ** |
Water × CO2 | * | * | * | ns | ns | ns | ** | ns | ns | ns | ns | ns | ** | ns | ns | - | *** | ns | ns | *** | ns |
Water | *** | *** | ** | * | ns | ns | * | ns | ns | ns | ns | ns | ** | * | *** | - | * | *** | * | *** | *** |
Temp. | ns | ns | ns | ns | ** | *** | * | *** | *** | *** | ** | ns | *** | * | ** | - | ns | ns | * | ** | * |
CO2 | * | ** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | ** | - | * | ns | ns | *** | ns |
‘Gladius’ | |||||||||||||||||||||
CO2 × water × temp. | - | * | ns | ns | - | ns | * | ns | ** | ** | ** | * | ns | - | ns | ns | ** | *** | *** | *** | *** |
Water × temp. | - | ns | ns | ns | - | ns | ns | ns | ns | ns | ns | ns | ns | - | *** | ** | *** | *** | *** | *** | *** |
Temp. × CO2 | - | ** | * | * | - | * | ns | ns | ns | ns | ns | * | ns | - | ** | ns | * | ns | ns | ns | ns |
Water × CO2 | - | ns | ns | ns | - | ns | ns | ns | ns | * | ns | *** | *** | - | ns | ns | *** | ** | ** | ns | * |
Water | - | ns | * | ns | - | *** | * | ns | * | * | ns | * | ns | - | *** | *** | *** | ** | *** | ns | ** |
Temp. | - | ns | ns | ns | - | ** | ** | *** | ** | ns | ns | ns | *** | - | *** | ns | ns | ns | * | *** | * |
CO2 | - | * | *** | *** | - | *** | * | *** | *** | *** | *** | *** | *** | - | ** | ns | ns | ns | ns | *** | ns |
Chl a (mg/g DW) | Chl b (mg/g DW) | Car (mg/g DW) | Chl a:b | Chl:Car | |
---|---|---|---|---|---|
‘Paragon’ | |||||
a[CO2] | |||||
18 °C + FW | 12.49 ± 0.63 a | 3.34 ± 0.20 ab | 2.64 ± 0.14 a | 3.74 ± 0.04 c | 6.00 ± 0.10 a |
18 °C + RW | 10.57 ± 0.51 abc | 2.23 ± 0.13 cd | 2.25 ± 0.12 ab | 4.76 ± 0.07 a | 5.69 ± 0.07 a |
28 °C + FW | 9.26 ± 0.83 bcd | 2.58 ± 0.28 bcd | 2.25 ± 0.15 ab | 3.64 ± 0.10 c | 5.19 ± 0.19 b |
28 °C + RW | 11.94 ± 0.84 ab | 2.79 ± 0.26 abc | 2.49 ± 0.19 a | 4.30 ± 0.08 b | 5.91 ± 0.04 a |
e[CO2] | |||||
18 °C + FW | 10.21 ± 0.58 abc | 2.78 ± 0.17 abc | 2.15 ± 0.13 ab | 3.67 ± 0.04 c | 6.05 ± 0.06 a |
18 °C + RW | 6.52 ± 0.78 d | 1.82 ± 0.24 d | 1.70 ± 0.19 b | 3.61 ± 0.07 cd | 4.84 ± 0.07 b |
28 °C + FW | 12.06 ± 0.41 ab | 3.59 ± 0.12 a | 2.75 ± 0.07 a | 3.35 ± 0.01 d | 5.68 ± 0.09 a |
28 °C + RW | 8.76 ± 0.62 cd | 2.60 ± 0.17 bcd | 2.27 ± 0.01 ab | 3.35 ± 0.02 d | 4.99 ± 0.04 b |
‘Gladius’ | |||||
a[CO2] | |||||
18 °C + FW | 10.75 ± 0.41 b | 2.32 ± 0.14 bc | 2.34 ± 0.07 bc | 4.63 ± 0.05 a | 5.57 ± 0.10 a |
18 °C + RW | 9.98 ± 0.73 ab | 2.65 ± 0.17 c | 2.35 ± 0.14 bc | 3.73 ± 0.07 b | 5.31 ± 0.11 bc |
28 °C + FW | 5.55 ± 0.55 c | 1.44 ± 0.17 d | 1.71 ± 0.09 d | 3.89 ± 0.07 b | 4.01 ± 0.20 d |
28 °C + RW | 13.29 ± 0.83 a | 3.94 ± 0.24 a | 3.27 ± 0.19 a | 3.37 ± 0.04 c | 5.26 ± 0.04 c |
e[CO2] | |||||
18 °C + FW | 9.63 ± 0.80 b | 2.57 ± 0.20 c | 2.25 ± 0.11 c | 3.73 ± 0.05 b | 5.37 ± 0.18 ab |
18 °C + RW | 9.52 ± 0.69 b | 2.58 ± 0.19 c | 2.33 ± 0.12 bc | 3.69 ± 0.04 b | 5.15 ± 0.12 c |
28 °C + FW | 10.06 ± 0.28 b | 2.94 ± 0.13 bc | 2.57 ± 0.04 bc | 3.43 ± 0.07 c | 5.05 ± 0.08 c |
28 °C + RW | 11.42 ± 0.54 ab | 3.37 ± 0.15 ab | 2.81 ± 0.12 ab | 3.28 ± 0.02 c | 5.25 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Hyldgaard, B.; Abdelhakim, L.; Mendanha, T.; Driever, S.; Cammarano, D.; Rosenqvist, E.; Ottosen, C.-O. Interactive Effects of Temperature, Water Regime, and [CO2] on Wheats with Different Heat Susceptibilities. Plants 2024, 13, 830. https://doi.org/10.3390/plants13060830
Zhou R, Hyldgaard B, Abdelhakim L, Mendanha T, Driever S, Cammarano D, Rosenqvist E, Ottosen C-O. Interactive Effects of Temperature, Water Regime, and [CO2] on Wheats with Different Heat Susceptibilities. Plants. 2024; 13(6):830. https://doi.org/10.3390/plants13060830
Chicago/Turabian StyleZhou, Rong, Benita Hyldgaard, Lamis Abdelhakim, Thayna Mendanha, Steven Driever, Davide Cammarano, Eva Rosenqvist, and Carl-Otto Ottosen. 2024. "Interactive Effects of Temperature, Water Regime, and [CO2] on Wheats with Different Heat Susceptibilities" Plants 13, no. 6: 830. https://doi.org/10.3390/plants13060830
APA StyleZhou, R., Hyldgaard, B., Abdelhakim, L., Mendanha, T., Driever, S., Cammarano, D., Rosenqvist, E., & Ottosen, C. -O. (2024). Interactive Effects of Temperature, Water Regime, and [CO2] on Wheats with Different Heat Susceptibilities. Plants, 13(6), 830. https://doi.org/10.3390/plants13060830