Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques
Abstract
:1. Introduction
2. Results
2.1. Statistics of Soil Samples
2.2. Characterization of Spectral Curves of Rice Leaves
2.3. Spectral Feature Bands Selected by GA
2.4. Comparison of GA-PLSR and PLSR Modeling Results
2.5. Best Estimate Model
3. Discussion
3.1. Effect of Spectral Pre-Processing and Feature Selection for Modeling Performance
3.2. Application and Perspectives of Spectral Techniques in Heavy Metal Inversion in Soil-Rice System
3.3. Limitations and Future Work
4. Materials and Methods
4.1. Study Area
4.2. Data Collection and Processing
4.2.1. Soil Sampling and Data Determination
4.2.2. Spectral Pre-Processing
4.3. Research Methods
4.3.1. Genetic Algorithm
4.3.2. Partial Least Squares Regression
4.3.3. Model Assessment
5. Conclusions
- (1)
- Spectral preprocessing technology enhances the modeling accuracy by revealing hidden information in the spectrum, leading to varying degrees of improvement compared to the original spectrum. When modeling rice leaf spectra, the most effective estimation models for soil Cd and As content are obtained through AFD spectral preprocessing. These results highlight the advantages of mathematical transformations, such as derivative transformation and absorbance, in extracting spectral sensitive information.
- (2)
- The GA-PLSR model demonstrates superior performance compared to the PLSR model in modeling of rice leaf spectra. Specifically, compared to the PLSR model, GA-PLSR used only approximately 10% of the bands and enhanced the R2cv values for estimating soil Cd and As content by 0.00% to 50.00% and 3.33% to 69.64%, respectively, for the different preprocessed spectra. These findings illustrate that incorporating a GA for spectral band selection before establishing a model for estimating soil heavy metal content can significantly enhance the accuracy and efficiency of the model.
- (3)
- In the modeling of soil Cd content using rice leaf spectra, the best estimation model is the combination of AFD and GA-PLSR, with R2ev, RMSEev, and RPD values of 0.77, 0.06 mg kg−1, and 2.09, respectively, which has the ability to approximate estimation. The best estimation model for soil As content is also the combination of AFD and GA-PLSR, with R2ev, RMSEev, and RPD values of 0.89, 0.30 mg kg−1, and 2.97, respectively, which has good estimation ability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, P.; Ahamed, S.; Carre, F.; Hartemink, A.; Hempel, J.; Huising, J.; Lagacherie, P.; McBratney, A.; McKenzie, N.; Mendonca-Santos, M.; et al. Digital Soil Map of the World. Science 2009, 325, 680–681. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, M.; Chen, X.; Wang, Z.; Xiao, L.; Xu, K.; Zhang, S.; Wang, M.; Xu, Z.; Shi, Z. Identification and risk prediction of potentially contaminated sites in the Yangtze River Delta. Sci. Total Environ. 2022, 815, 151982. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Z.; Niu, X.; Wang, Z. Integrated pollution analysis, pollution area identification and source apportionment of heavy metal contamination in agricultural soil. J. Hazard. Mater. 2024, 465, 133215. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, S.; Hu, B.; Zhou, Y.; Liang, Z.; Jia, X.; Huang, M.; Wei, J.; Shi, Z. A comprehensive framework for assessing the impact of potential agricultural pollution on grain security and human health in economically developed areas. Environ. Pollut. 2020, 263, 114653. [Google Scholar] [CrossRef]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- Chen, W.; Yang, Y.; Xie, T.; Wang, M.; Peng, C.; Wang, R. Challenges and countermeasures for heavy metal pollution control in farmlands of china. Acta Pedol. Sin. 2018, 55, 261–272. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, F.; Li, Q.; Sun, H.; Wang, H.; Yao, Z. Environment and food safety: A novel integrative review. Environ. Sci. Pollut. Res. 2021, 28, 54511–54530. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Li, J.; Luo, J.; Wang, X.; Ai, S.; Cheng, H.; Liu, Z. Bioavailability (BA)-based risk assessment of soil heavy metals in provinces of China through the predictive BA-models. J. Hazard. Mater. 2024, 465, 133327. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Ren, S.; Song, C.; Ye, S.; Cheng, C.; Gao, P. The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Sci. Total Environ. 2022, 806, 150322. [Google Scholar] [CrossRef]
- Sorrentino, M.; Giordano, S.; Spagnuolo, V. Phytomonitoring and Phytoremediation of Environmental Pollutants. Plants 2023, 13, 366. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Xu, Z.; Ding, M. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks. Geoderma 2021, 402, 115366. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of Soil Heavy Metal Content Using Hyperspectral Data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
- Shi, T.; Guo, L.; Chen, Y.; Wang, W.; Shi, Z.; Li, Q.; Wu, G. Proximal and remote sensing techniques for mapping of soil contamination with heavy metals. Appl. Spectrosc. Rev. 2018, 53, 783–805. [Google Scholar] [CrossRef]
- Zhong, L.; Chu, X.; Qian, J.; Li, J.L.; Sun, Z. Multi-Scale Stereoscopic Hyperspectral Remote Sensing Estimation of Heavy Metal Contamination in Wheat Soil over a Large Area of Farmland. Agronomy 2023, 13, 2396. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Hu, Y.; Shi, Z.; Pan, Y.; Wang, L.; Wang, G. Integrating a Hybrid Back Propagation Neural Network and Particle Swarm Optimization for Estimating Soil Heavy Metal Contents Using Hyperspectral Data. Sustainability 2018, 11, 419. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.; Kwon, Y.; Kim, M.; Cho, K. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef]
- Guo, F.; Xu, Z.; Ma, H.; Liu, X.; Tang, S.; Yang, Z.; Zhang, L.; Liu, F.; Peng, M.; Li, K. Estimating chromium concentration in arable soil based on the optimal principal components by hyperspectral data. Ecol. Indic. 2021, 133, 108400. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Lu, H.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Shi, T.; Fu, Z.; Miao, X.; Lin, F.; Ma, J.; Gu, S.; Li, L.; Wu, C.; Luo, Y. Would it be better for partition prediction of heavy metal concentration in soils based on the fusion of XRF and Vis-NIR data? Sci. Total Environ. 2024, 908, 168381. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, J.; Zou, M.; Liu, X.; Du, X.; Wang, Q.; Liu, Y.; Li, J. Feasibility of using rice leaves hyperspectral data to estimate CaCl2-extractable concentrations of heavy metals in agricultural soil. Sci. Rep. 2019, 9, 16084. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Song, Y.; Sui, J.; Hua, X. Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress. Plants 2023, 13, 313. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Yang, C.; De la Guardia, M.; Zhang, W.; Li, X.; He, Y. Proximal hyperspectral sensing of abiotic stresses in plants. Sci. Total Environ. 2023, 861, 160652. [Google Scholar] [CrossRef]
- Falcioni, R.; Gonçalves, J.; De Oliveira, K.; De Oliveira, C.; Reis, A.; Crusiol, L.; Furlanetto, R.; Antunes, W.; Cezar, E.; De Oliveira, R.; et al. Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy. Plants 2023, 12, 3424. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Chen, Y.; Wang, J.; Wu, G. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice. J. Hazard. Mater. 2016, 308, 243–252. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.; Chu, X.; Sun, Z.; Li, J. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Sci. Total Environ. 2024, 907, 168104. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Q.; Su, Z.; Zhang, J. Predicting copper contamination in wheat canopy during the full growth period using hyperspectral data. Environ. Sci. Pollut. Res. 2020, 27, 39029–39040. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Wang, Z.; Liu, Y.; Zhu, Z.; Zhao, Y.; Xie, W.; Cui, S.; Chen, G.; Yang, W.; et al. Monitoring of Nitrogen Concentration in Soybean Leaves at Multiple Spatial Vertical Scales Based on Spectral Parameters. Plants 2024, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Wang, H.; Zhang, Q.; Jia, X. An improved estimation model for soil heavy metal(loid) concentration retrieval in mining areas using reflectance spectroscopy. J. Soils Sediments 2018, 18, 2008–2022. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Ding, M.; Ye, Y.; Jiang, Y.; Zhu, Q.; Li, J. SHAP values accurately explain the difference in modeling accuracy of convolution neural network between soil full-spectrum and feature-spectrum. Comput. Electron. Agric. 2024, 217, 108627. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, J.; Zou, M.; Liu, X.; Du, X.; Wang, Q.; Liu, Y.; Liu, Y.; Li, J. Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing. Environ. Sci. Pollut. Res. 2019, 26, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Xu, M.; Liu, Y.; Niu, R.; Wu, X.; Song, Y. Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants. Ecol. Indic. 2024, 158, 111416. [Google Scholar] [CrossRef]
- Arif, M.; Qi, Y.; Dong, Z.; Wei, H. Rapid retrieval of cadmium and lead content from urban greenbelt zones using hyperspectral characteristic bands. J. Clean. Prod. 2022, 374, 133922. [Google Scholar] [CrossRef]
- Hasan, U.; Jia, K.; Wang, L.; Wang, C.; Shen, Z.; Yu, W.; Sun, Y.; Jiang, H.; Zhang, Z.; Guo, J.; et al. Retrieval of Leaf Chlorophyll Contents (LCCs) in Litchi Based on Fractional Order Derivatives and VCPA-GA-ML Algorithms. Plants 2023, 12, 501. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 126–133. [Google Scholar] [CrossRef]
- Sun, W.; Liu, S.; Zhang, X.; Zhu, H. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sci. Total Environ. 2022, 824, 153766. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Cen, Y.; Zhang, L.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar] [CrossRef]
- Wei, L.; Pu, H.; Wang, Z.; Yuan, Z.; Yan, X.; Cao, L. Estimation of Soil Arsenic Content with Hyperspectral Remote Sensing. Sensors 2020, 20, 4056. [Google Scholar] [CrossRef]
- Bian, Z.; Sun, L.; Tian, K.; Liu, B.; Huang, B.; Wu, L. Estimation of multi-media metal(loid)s around abandoned mineral processing plants using hyperspectral technology and extreme learning machine. Environ. Sci. Pollut. Res. 2023, 30, 19495–19512. [Google Scholar] [CrossRef] [PubMed]
- Elazab, D.; Lambardi, M.; Capuana, M. In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants. Plants 2023, 12, 3387. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wang, G.; Xu, L.; Zhang, J.; Liu, X. Effects of Cu stress on physiological, biochemical, and spectral properties of wheat at different growth stages. Int. J. Agric. Biol. Eng. 2019, 12, 147–153. [Google Scholar] [CrossRef]
- Székely, Á.; Szalóki, T.; Jancsó, M.; Pauk, J.; Lantos, C. Temporal Changes of Leaf Spectral Properties and Rapid Chlorophyll—A Fluorescence under Natural Cold Stress in Rice Seedlings. Plants 2023, 12, 2415. [Google Scholar] [CrossRef]
- NY/T 1377-2007; De-Termination of pH in Soil. Standards Press of China: Beijing, China, 2007.
- Le, S.; Duan, Y. Determination of Heavy Metal Elements in Soil by ICP-MS. Chin. J. Inorg. Anal. Chem. 2015, 5, 16–19. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Du, X.; Li, X.; Liu, Y.; Zhou, W.; Li, J. Genetic algorithm optimized non-destructive prediction on property of mechanically injured peaches during postharvest storage by portable visible/shortwave near-infrared spectroscopy. Sci. Hortic. 2019, 249, 240–249. [Google Scholar] [CrossRef]
- Nawar, S.; Mohamed, E.; Essam-Eldeen Sayed, S.; Mohamed, W.; Rebouh, N.; Hammam, A. Estimation of key potentially toxic elements in arid agricultural soils using vis-NIR spectroscopy with variable selection and PLSR algorithms. Front. Environ. Sci. 2023, 11, 1222871. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Williams, P.; Manley, M.; Antoniszyn, J. Near Infrared Technology: Getting the Best Out of Light; African Sun Media: Stellenbosch, South Africa, 2019. [Google Scholar]
Heavy Metal | Pre-Processing | Number of Bands | GA-PLSR | PLSR | ||||
---|---|---|---|---|---|---|---|---|
PC | R2cv | RMSEcv/(mg kg−1) | PC | R2cv | RMSEcv/(mg kg−1) | |||
Cd | R | 22 | 2 | 0.34 | 0.16 | 2 | 0.32 | 0.18 |
FD | 21 | 3 | 0.46 | 0.15 | 3 | 0.39 | 0.15 | |
SD | 25 | 1 | 0.42 | 0.15 | 2 | 0.35 | 0.17 | |
AT | 17 | 2 | 0.53 | 0.15 | 2 | 0.45 | 0.15 | |
AFD | 25 | 5 | 0.71 | 0.07 | 8 | 0.53 | 0.14 | |
ASD | 22 | 2 | 0.47 | 0.13 | 4 | 0.38 | 0.17 | |
MSC | 16 | 1 | 0.47 | 0.15 | 3 | 0.40 | 0.16 | |
SNV | 26 | 2 | 0.52 | 0.15 | 2 | 0.45 | 0.15 | |
As | R | 21 | 2 | 0.50 | 1.18 | 3 | 0.41 | 1.27 |
FD | 20 | 1 | 0.52 | 1.15 | 2 | 0.42 | 1.22 | |
SD | 21 | 2 | 0.55 | 1.16 | 3 | 0.44 | 1.25 | |
AT | 15 | 2 | 0.56 | 1.16 | 2 | 0.49 | 1.20 | |
AFD | 23 | 5 | 0.89 | 0.34 | 9 | 0.61 | 1.12 | |
ASD | 23 | 2 | 0.72 | 0.82 | 6 | 0.47 | 1.44 | |
MSC | 22 | 4 | 0.58 | 1.15 | 4 | 0.42 | 1.27 | |
SNV | 30 | 2 | 0.70 | 0.93 | 6 | 0.51 | 1.17 |
Heavy Metal | Pre-Processing | Cross-Validation | External Validation | |||
---|---|---|---|---|---|---|
R2cv | RMSEcv/(mg kg−1) | R2ev | RMSEev/(mg kg−1) | RPD | ||
Cd | R | 0.34 | 0.16 | 0.41 | 0.11 | 1.30 |
FD | 0.46 | 0.15 | 0.52 | 0.10 | 1.44 | |
SD | 0.42 | 0.15 | 0.47 | 0.10 | 1.37 | |
AT | 0.53 | 0.15 | 0.59 | 0.09 | 1.56 | |
AFD | 0.71 | 0.07 | 0.77 | 0.06 | 2.09 | |
ASD | 0.47 | 0.13 | 0.53 | 0.09 | 1.46 | |
MSC | 0.47 | 0.15 | 0.49 | 0.10 | 1.40 | |
SNV | 0.52 | 0.15 | 0.62 | 0.08 | 1.62 | |
As | R | 0.50 | 1.18 | 0.57 | 0.65 | 1.52 |
FD | 0.52 | 1.15 | 0.68 | 0.56 | 1.77 | |
SD | 0.55 | 1.16 | 0.66 | 0.58 | 1.71 | |
AT | 0.56 | 1.16 | 0.64 | 0.60 | 1.66 | |
AFD | 0.89 | 0.34 | 0.89 | 0.30 | 2.97 | |
ASD | 0.72 | 0.82 | 0.71 | 0.53 | 1.86 | |
MSC | 0.58 | 1.15 | 0.64 | 0.60 | 1.66 | |
SNV | 0.70 | 0.93 | 0.76 | 0.48 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Yang, S.; Rong, Y.; Qian, J.; Zhou, L.; Li, J.; Sun, Z. Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques. Plants 2024, 13, 831. https://doi.org/10.3390/plants13060831
Zhong L, Yang S, Rong Y, Qian J, Zhou L, Li J, Sun Z. Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques. Plants. 2024; 13(6):831. https://doi.org/10.3390/plants13060831
Chicago/Turabian StyleZhong, Liang, Shengjie Yang, Yicheng Rong, Jiawei Qian, Lei Zhou, Jianlong Li, and Zhengguo Sun. 2024. "Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques" Plants 13, no. 6: 831. https://doi.org/10.3390/plants13060831
APA StyleZhong, L., Yang, S., Rong, Y., Qian, J., Zhou, L., Li, J., & Sun, Z. (2024). Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques. Plants, 13(6), 831. https://doi.org/10.3390/plants13060831