Control of Urochloa decumbens Using Glyphosate Applied by Remotely Piloted Aircraft and Ground Sprayer with Different Spray Nozzles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Deposition
2.2. Droplet Spectrum
2.3. Effectiveness in Controlling Urochloa Decumbens
3. Materials and Methods
3.1. Experiment Location
3.2. Experimental Unit, Equipment, and Treatments
3.3. Evaluations
3.3.1. Deposition
3.3.2. Droplet Spectrum
3.3.3. Effectiveness in Controlling Urochloa decumbens
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Apollon, W.; Jean-Baptiste, Y.; Wagner, B.J.; Luna-Maldonado, A.I.; Silos-Espino, H.; Apollon, W.; Jean-Baptiste, Y.; Wagner, B.J.; Luna-Maldonado, A.I.; Silos-Espino, H. Efecto de la fertilización orgánica e inorgánica en la producción y calidad de Brachiaria brizantha. Rev. Mex. Cienc. Agríc 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Fialho, C.M.T.; Silva, A.A.; Melo, C.A.D.; Costa, M.D.; Souza, M.W.R.; Reis, L.A.C. Weed interference in soybean crop affects soil microbial activity and biomass. Planta Daninha 2020, 38, e020221853. [Google Scholar] [CrossRef]
- De Moraes, C.P.; Tropaldi, L.; de Brito, I.P.F.S.; Carbonari, C.A.; Velini, E.D. Determination of control dose of Urochloa decumbens by the glyphosate application. Rev. Bras. de Herbic. 2019, 18, 618. [Google Scholar] [CrossRef]
- Vasileiou, M.; Kyrgiakos, L.S.; Kleisiari, C.; Kleftodimos, G.; Vlontzos, G.; Belhouchette, H.; Pardalos, P.M. Transforming weed management in sustainable agriculture with artificial intelligence: A systematic literature review towards weed identification and deep learning. Crop Prot. 2024, 176, 106522. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Sun, J.; He, Y.; Xie, Y.; Liang, Q.; Jing, J.; Tao, Y.; Yu, P.; Jia, C.; et al. Herbigation combined with plastic film mulching to control weeds in maize (Zea mays L.) fields in the Hexi Corridor Region, Northwest China. Crop Prot. 2024, 176, 106485. [Google Scholar] [CrossRef]
- Castro Berman, M.; Marino, D.J.G.; Quiroga, M.V.; Zagarese, H. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian Regions of Argentina. Chemosphere 2018, 200, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Kimbi Yaah, V.B.; Ahmadi, S.; Quimbayo, M.J.; Morales-Torres, S.; Ojala, S. Recent technologies for glyphosate removal from aqueous environment: A critical review. Environ. Res. 2024, 240, 117477. [Google Scholar] [CrossRef]
- Badani, H.; Djadouni, F.; Haddad, F.Z. Effects of the herbicide glyphosate [n-(Phosphonomethyl) Glycine] on biodiversity and organisms in the soil—A review. Eur. J. Environ. Sci. 2023, 13, 5–14. [Google Scholar] [CrossRef]
- Wei, X.; Pan, Y.; Zhang, Z.; Cui, J.; Yin, R.; Li, H.; Qin, J.; Li, A.J.; Qiu, R. Biomonitoring of glyphosate and aminomethylphosphonic acid: Current insights and future perspectives. J. Hazard. Mater. 2024, 463, 132814. [Google Scholar] [CrossRef]
- Sazykin, I.; Naumova, E.; Azhogina, T.; Klimova, M.; Karchava, S.; Khmelevtsova, L.; Chernyshenko, E.; Litsevich, A.; Khammami, M.; Sazykina, M. Glyphosate effect on biofilms formation, mutagenesis and stress response of E. coli. J. Hazard. Mater. 2024, 461, 132574. [Google Scholar] [CrossRef]
- Wang, M.; Rivenbark, K.J.; Phillips, T.D. Kinetics of glyphosate and aminomethylphosphonic acid sorption onto montmorillonite clays in soil and their translocation to genetically modified corn. J. Environ. Sci. 2024, 135, 669–680. [Google Scholar] [CrossRef]
- Xun, L.; Campos, J.; Salas, B.; Fabregas, F.X.; Zhu, H.; Gil, E. Advanced spraying systems to improve pesticide saving and reduce spray drift for apple orchards. Precis. Agric. 2023, 24, 1526–1546. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Wang, C.; Teng, G. Droplet deposition distribution prediction method for a six-rotor plant protection UAV based on inverse distance weighting. Sensors 2022, 22, 7425. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, A.; Husain, M.A.; Singh, S.P.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S.K. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2023, 10, 192–203. [Google Scholar] [CrossRef]
- Xu, W.; Yu, X.; Xue, X. A Binary gridding path-planning method for plant-protecting UAVs on irregular fields. J. Integr. Agric. 2023, 22, 2796–2809. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; He, Y.; Liu, F.; Cen, H.; Fang, H. Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions. Comput. Electron. Agric. 2018, 148, 8–18. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Quan, Q.; Wang, B.; Xue, X.; Zhang, Y. An Autonomous task assignment and decision-making method for coverage path planning of multiple pesticide spraying UAVs. Comput. Electron. Agric. 2023, 212, 108128. [Google Scholar] [CrossRef]
- Zhan, Y.; Chen, P.; Xu, W.; Chen, S.; Han, Y.; Lan, Y.; Wang, G. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution. Biosyst. Eng. 2022, 216, 32–45. [Google Scholar] [CrossRef]
- Ismail, S.A.; Yahya, A.; Su, A.S.M.; Asib, N.; Mustafah, A.M. Drone payload and flying speed effects on rotor blades’ RPM and traveling pattern for agricultural chemical spraying. Basrah J. Agric. Sci. 2021, 34, 157–170. [Google Scholar] [CrossRef]
- Cavalaris, C.; Karamoutis, C.; Markinos, A. Efficacy of cotton harvest aids applications with unmanned aerial vehicles (UAV) and ground-based field sprayers—A case study comparison. Smart Agric. Technol. 2022, 2, 100047. [Google Scholar] [CrossRef]
- Griesang, F.; Spadoni, A.B.D.; Urah Ferreira, P.H.; da Costa Ferreira, M. Effect of working pressure and spacing of nozzles on the quality of spraying distribution. Crop Prot. 2022, 151, 105818. [Google Scholar] [CrossRef]
- Brankov, M.; Alves, G.S.; Vieira, B.C.; Zaric, M.; Vukoja, B.; Houston, T.; Kruger, G.R. Particle drift simulation from mesotrione and rimsulfuron plus thifensulfuron-methyl mixture through two nozzle types to field and vegetable crops. Environ. Sci. Pollut. Res. 2023, 30, 38226–38238. [Google Scholar] [CrossRef]
- Thornton, K.L.; Deveau, J.; Trueman, C.L. Deposition aids, nozzle selection and carrier volume on canopy deposition and management of cercospora leaf spot in sugarbeet (Beta vulgaris L.). Crop Prot. 2023, 167, 106198. [Google Scholar] [CrossRef]
- Wang, J.; Ma, C.; Chen, P.; Yao, W.; Yan, Y.; Zeng, T.; Chen, S.; Lan, Y. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Areca catechu protection. Front. Plant Sci. 2023, 14, 1093912. [Google Scholar] [CrossRef]
- Milanowski, M.; Subr, A.; Combrzyński, M.; Różańska-Boczula, M.; Parafiniuk, S. Effect of adjuvant, concentration and water type on the droplet size characteristics in agricultural nozzles. Appl. Sci. 2022, 12, 5821. [Google Scholar] [CrossRef]
- Vashahi, F.; Ra, S.; Choi, Y.; Lee, J. A preliminary investigation of the design parameters of an air induction nozzle. J. Mech. Sci. Technol. 2017, 31, 3297–3303. [Google Scholar] [CrossRef]
- Yu, S.H.; Kang, Y.; Lee, C.G. Comparison of the spray effects of air induction nozzles and flat fan nozzles installed on agricultural drones. Appl. Sci. 2023, 13, 11552. [Google Scholar] [CrossRef]
- Jeevan, N.; Pazhanivelan, S.; Kumaraperumal, R.; Ragunath, K.; Arthanari, P.M.; Sritharan, N.; Karthikkumar, A.; Manikandan, S. Effect of different spray volumes on deposition characteristics of a fuel-operated UAV Sprayer using herbicides in transplanted rice (Oryza sativa). Indian J. Agric. Sci. 2023, 93, 720–725. [Google Scholar] [CrossRef]
- Pachuta, A.; Berner, B.; Chojnacki, J.; Moitzi, G.; Dvořák, J.; Keutgen, A.; Najser, J.; Kielar, J.; Najser, T.; Mikeska, M. Propellers spin rate effect of a spraying drone on quality of liquid deposition in a crown of young spruce. Agriculture 2023, 13, 1584. [Google Scholar] [CrossRef]
- Ochieng’, V.; Rwomushana, I.; Ong’amo, G.; Ndegwa, P.; Kamau, S.; Makale, F.; Chacha, D.; Gadhia, K.; Akiri, M. Optimum flight height for the control of desert locusts using unmanned aerial vehicles (UAV). Drones 2023, 7, 233. [Google Scholar] [CrossRef]
- Zhao, R.; Yu, M.; Sun, Z.; Li, L.; Shang, H.-Y.; Xi, W.; Li, B.; Li, Y.; Xu, Y.; Wu, X.-M. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Pest Manag. Sci. 2022, 78, 2512–2522. [Google Scholar] [CrossRef]
- Sinha, R.; Johnson, J.; Power, K.; Moodie, A.; Warhurst, E.; Barbosa, R. Understanding spray attributes of commercial UAAS as impacted by operational and design parameters. Drones 2022, 6, 281. [Google Scholar] [CrossRef]
- Ali, S.; Shamim, R.; Shah, I.; Alrweili, H.; Marcon, G. Memory-type control charts for censored reliability data. Qual. Reliab. 2023, 39, 2365–2384. [Google Scholar] [CrossRef]
- Hadian, H.; Rahimifard, A. Multivariate statistical control chart and process capability indices for simultaneous monitoring of project duration and cost. Comput. Ind. Eng. 2019, 130, 788–797. [Google Scholar] [CrossRef]
- Langner, M.; Zhou, B.; Priese, F.; Wolf, B. Statistical investigation of rotary fluidized bed agglomeration process with tangential spray and in-line particle size measurement for PAT process control. Processes 2023, 11, 1066. [Google Scholar] [CrossRef]
- Jorani, R.M.; Haddar, M.; Chaari, F.; Haddar, M. Gear crack detection based on vibration analysis techniques and statistical process control charts (SPCC). Machines 2023, 11, 312. [Google Scholar] [CrossRef]
- Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a multi-rotor unmanned aerial vehicle for spray application in high slope terraced vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef]
- Subr, A.; Al-Ahmadi, A.; Abbas, M. Effect of nozzle type and some locally used surfactants on the spray quality. Iraqi J. Agric. Sci. 2020, 51, 856–864. [Google Scholar] [CrossRef]
- Abdelmotalib, H.M.; Dafsari, R.A.; Seung-Hwa, Y.; Lee, J. Computational study of internal flow characteristics of the air induction nozzle. Int. J. Mech. Sci. 2021, 204, 106578. [Google Scholar] [CrossRef]
- Chen, P.; Xu, W.; Zhan, Y.; Wang, G.; Yang, W.; Lan, Y. Determining application volume of unmanned aerial spraying systems for cotton defoliation using remote sensing images. Comput. Electron. Agric. 2022, 196, 106912. [Google Scholar] [CrossRef]
- Önler, E.; Özyurt, H.B.; Şener, M.; Arat, S.; Eker, B.; Çelen, İ.H. Spray characterization of an unmanned aerial vehicle for agricultural spraying. Philipp. Agric. Sci. 2023, 106, 39–46. [Google Scholar]
- Mur, M.; Gadea, S.; Ponce, M.J.; Merani, V.H.; Guilino, F.D.; Balbuena, R.H.; Mur, M.; Gadea, S.; Ponce, M.J.; Merani, V.H.; et al. Spray nozzle performance on wheat. Agrocienc. Urug. 2020, 24. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Mathew, A.C.; Imran, S.; Pandian, R.T.P.; Manikantan, M.R. Design, Development and evaluation of a tractor mounted air blast sprayer for coconut and arecanut. Sci. Prog. 2023, 106, 00368504231199927. [Google Scholar] [CrossRef]
- Urach Ferreira, P.H.; Ferguson, J.C.; Reynolds, D.B.; Kruger, G.R.; Irby, J.T. Droplet size and physicochemical property effects on herbicide efficacy of pre-emergence herbicides in soybean (Glycine max (L.) Merr). Pest Manag. Sci. 2020, 76, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Baio, F.H.R.; Zanin, A.R.A.; Teodoro, L.P.R.; Fontoura, J.V.P.F.; Teodoro, P.E. Spray nozzle wear effects on droplet population. Eng. Agríc. 2022, 42, e20220070. [Google Scholar] [CrossRef]
- Xue, X.; Xu, X.; Lyu, S.; Song, S.; Ai, X.; Li, N.; Yang, Z.; Li, Z. Experimental investigation on spray characteristics of agricultural full-cone pressure swirl nozzle. Int. J. Agric. Biol. Eng. 2023, 16, 29–40. [Google Scholar] [CrossRef]
- Xue, S.; Xi, X.; Lan, Z.; Wen, R.; Ma, X. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets. Int. J. Heat Mass Transf. 2021, 177, 121516. [Google Scholar] [CrossRef]
- Avila Neto, R.; Melo, A.A.; Ulguim, A.D.R.; Pedroso, R.M.; Barbieri, G.F.; Luchese, E.F.; Leichtweiss, E.M. Mixtures of 2,4-D and dicamba with other pesticides and their influence on application parameters. Int. J. Pest Manag. 2021. [Google Scholar] [CrossRef]
- Campos, S.F.B.; da Cunha, J.P.A.R.; Assunção, H.H.T.; Alves, T.C.; Zandonadi, C.H.S.; Lemes, E.M. Efficacy of glyphosate applied using an electrostatic sprayer as affected by adjuvant and carrier volumes. Planta Daninha 2020, 38, e020228417. [Google Scholar] [CrossRef]
- Xue, S.; Han, J.; Xi, X.; Lan, Z.; Wen, R.; Ma, X. Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction. Chin. J. Chem. Eng. 2023, 66, 250–262. [Google Scholar] [CrossRef]
- Gibbs, J.L.; Peters, T.M.; Heck, L.P. Comparison of droplet size, coverage, and drift potential from UAV application methods and ground application methods on row crops. Trans. ASABE 2021, 64, 819–828. [Google Scholar] [CrossRef]
- Guler, H.; Zhu, H.; Ozkan, H.; Derksen, R.; Yu, Y.; Krause, C. Spray characteristics and drift reduction potential with air induction and conventional flat-fan nozzles. Trans. ASABE 2007, 50, 745–754. [Google Scholar] [CrossRef]
- Miller, P.C.H.; Butler Ellis, M.C. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot. 2000, 19, 609–615. [Google Scholar] [CrossRef]
- Richardson, B.; Rolando, C.; Hewitt, A.; Kimberley, M. Meeting droplet size specifications for aerial herbicide application to control wilding conifers. N. Z. Plant Prot. 2020, 73, 13–23. [Google Scholar] [CrossRef]
- Cryer, S.A.; Altieri, A.L.; Schmucker, A.L.; Day, K.M. Minimising atomisation drift potential by exploring the break-up of liquid sheets using multiphase methylated soybean and silicon oil emulsions. Biosyst. Eng. 2021, 202, 142–151. [Google Scholar] [CrossRef]
- Butts, T.R.; Samples, C.A.; Franca, L.X.; Dodds, D.M.; Reynolds, D.B.; Adams, J.W.; Zollinger, R.K.; Howatt, K.A.; Fritz, B.K.; Hoffmann, C.W.; et al. Droplet size impact on efficacy of a dicamba-plus-glyphosate mixture. Weed Technol. 2019, 33, 66–74. [Google Scholar] [CrossRef]
- Feng, H.; Xu, P.; Yang, S.; Zheng, Y.; Li, W.; Liu, W.; Zhao, H.; Jiang, S. Back pressure generated by downwash and crosswind on spatial atomization characteristics during UAV spraying: CFD analysis and verification. Pest Manag. Sci. 2023, 80, 1348–1360. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Zhang, Z.; Han, L.; Li, Y.; Zhang, H.; Wongsuk, S.; Li, Y.; Wu, X.; He, X. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Pest Manag. Sci. 2022, 78, 2449–2466. [Google Scholar] [CrossRef]
- E Moraes, H.M.F.; Ferreira, L.R.; de Souza, W.M.; Faria, R.M.; de Freitas, M.A.M.; Cecon, P.R. Volumen de pulverización, dosis y horario de aplicación de glifosato en el control de Urochloa brizantha. Bioagro 2021, 33, 151–161. [Google Scholar] [CrossRef]
- Ferguson, J.C.; Chechetto, R.G.; Adkins, S.W.; Hewitt, A.J.; Chauhan, B.S.; Kruger, G.R.; O’Donnell, C.C. Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Prot. 2018, 112, 118–124. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, F.; Cao, C.; Cao, L.; Li, F.; Zhao, P.; Huang, Q. Reducing pesticide spraying drift by folate/Zn2+ supramolecular hydrogels. Pest Manag. Sci. 2021, 77, 5278–5285. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Nuyttens, D.; Zhang, L.; Liu, Y.; Li, X. Evaluationof compact air-induction flat fan nozzles for herbicide applications: Spray drift and biological efficacy. Front. Plant Sci. 2023, 14, 1018626. [Google Scholar] [CrossRef]
- Brighenti, A.M.; de Souza Sobrinho, F.; da Rocha, W.S.D.; Martins, C.E.; Demartini, D.; Costa, T.R. Suscetibilidade diferencial de espécies de braquiária ao herbicida glifosato. Pesq. Agropec. Bras. 2011, 46, 1241–1246. [Google Scholar] [CrossRef]
- Silveira, R.R.; Santos, M.V.; Ferreira, E.A.; Braz, T.G.S.; Santos, J.B.; Andrade, J.C.A.; Costa, J.P.R.; Silva, A.M.S.; Silva, L.D. Control and susceptibility of signalgrass and ruzigrass to glyphosate and fluazifop-p-butil. Arch de Zootec 2019, 68, 403–410. [Google Scholar] [CrossRef]
- de Azevedo Silva Rodrigues, E.; do Carmo Lima, S. Associação entre a incidência do levantamento de índice rápido de Aedes aegypti (liraa) e as condições climáticas em Uberlândia, Minas Gerais, Brasil, entre 2014 a 2016. Caminhos de Geogr. 2019, 20, 251–263. [Google Scholar] [CrossRef]
- da Cunha, J.P.A.R.; da Silva, M.R.A. Spray deposition from a remotely piloted aircraft on the corn crop. Rev. Ciênc. Agron. 2023, 54, e20217862. [Google Scholar] [CrossRef]
- Biglia, A.; Grella, M.; Bloise, N.; Comba, L.; Mozzanini, E.; Sopegno, A.; Pittarello, M.; Dicembrini, E.; Alcatrão, L.E.; Guglieri, G.; et al. UAV-Spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Sci. Total Environ. 2022, 845, 157292. [Google Scholar] [CrossRef]
- DJI. AGRAS MG-1 User Manual. V. 1.2 2016; DJI: Shenzhen, China, 2016; Available online: https://dl.djicdn.com/downloads/mg1/en/MG-1_User_Manual_en_v1.2.pdf (accessed on 10 December 2023).
- Chen, G.; An, K.; Chen, Y.; Zhuang, X. Double-spraying with different routes significantly improved control efficacies of herbicides applied by unmanned aerial spraying system: A case study with rice herbicides. Crop Prot. 2023, 167, 106203. [Google Scholar] [CrossRef]
- de Morais, A.R. Estatística Experimental: Uma Introdução aos Delineamentos e Análise de Experimentos; UFLA: Lavras, Brazil, 2001; p. 197. [Google Scholar]
- Montgomery, D.C. Introdução ao Controle Estatístico Da Qualidade, 7th ed.; LTC: Rio de Janeiro, Brazil, 2017; p. 528. [Google Scholar]
- R Core Team. The R Foundation for Statistical Computing Platform 2020; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.r-project.org (accessed on 3 September 2023).
- MINITAB. Minitab 16, Statistical Software, Minitab, Inc.: State College, PA, USA, 2010.
Application | Deposition (μg cm−2) |
---|---|
AERIAL-RPA 1 | 3.466 a |
GROUND | 2.242 b |
Nozzle | |
XR 11001 | 2.919 a |
AIRMIX 11001 | 2.372 a |
Assumptions | W = 0.96; L= 9.41; DW = 2.00 |
Application | Coverage (%) | Density 1 (Droplets cm−2) | Relative Amplitude (RA) |
---|---|---|---|
AIR-RPA | 5.05 b | 55.43 b | 0.98 b |
GROUND | 18.14 a | 239.88 a | 1.32 a |
Nozzle | |||
XR 11001 | 10.65 a | 213.89 a | 1.08 a |
AIRMIX 11001 | 12.54 a | 81.41 b | 1.21 a |
Assumptions | W = 0.96; L = 2.06; DW = 2.03 | W = 0.99; L = 2.43; DW = 2.13 | W = 0.95; L = 0.82; DW = 1.80 |
VDM (μm) 1 | ||
---|---|---|
XR 11001 | AIRMIX 11001 | |
AERIAL APPLICATION-RPA | 259.81 aB | 393.38 bA |
ground APPLICATION | 230.97 aB | 435.99 aA |
Assumptions | W = 0.97; L = 1.09; DW = 2.42 | |
% < 100 μm 1,2 | ||
XR 11001 | AIRMIX 11001 | |
AERIAL APPLICATION-RPA | 2.44 bA | 0.81 aB |
ground APPLICATION | 4.08 aA | 0.54 aB |
Assumptions | W = 0.98; L = 2.11; DW = 1.74 |
Control (%) | |||
---|---|---|---|
Application | 14 DAA 1 | 21 DAA 2 | 28 DAA 2 |
AIR-RPA | 77.19 a | 93.00 a | 90.00 a |
GROUND | 75.50 a | 95.00 a | 88.00 a |
Nozzle | |||
XR 11001 | 78.06 a | 95.00 a | 90.00 a |
AIRMIX 11001 | 74.62 b | 90.00 b | 85.00 b |
Assumptions | W = 0.96; L = 0.35; DW = 2.07 | W = 0.91; L = 0.33; DW = 2.57 | W = 0.93; L = 0.20; DW = 1.68 |
Parameter | Description |
---|---|
Method of operation | Remote control |
Dimensions (mm) | 1471 × 1471 × 482 (frame arms unfolded) |
Work capacity (ha h−1) | 2.80–4.05 |
Spraying system | Atomized spraying |
Tank capacity (L) | 10 |
Number of nozzles | 4 |
Application range (m) | 4–6 (with application 1.5–3.0 m from the crop) |
Accuracy in altitude detection (m) | <0.1 |
Maximum operating speed (m s−1) | 8 |
Positioning mode | GPS 1 or manual |
Control (%) | Conceptual Description |
---|---|
100 | No surviving individuals of the observed target weed species |
95–99 | Very good control, with sporadic individuals of the target weed species |
85–94 | Acceptable control, with a definite decrease in the occurrence of target weeds |
70–84 | General but insufficient control of the target weeds |
60–69 | Some control of the target weeds, without commercial value |
<60 | Poor control of the target weeds, without commercial value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, L.d.L.; Cunha, J.P.A.R.d.; Nomelini, Q.S.S.; Alvarenga, C.B.d. Control of Urochloa decumbens Using Glyphosate Applied by Remotely Piloted Aircraft and Ground Sprayer with Different Spray Nozzles. Plants 2024, 13, 757. https://doi.org/10.3390/plants13060757
Lopes LdL, Cunha JPARd, Nomelini QSS, Alvarenga CBd. Control of Urochloa decumbens Using Glyphosate Applied by Remotely Piloted Aircraft and Ground Sprayer with Different Spray Nozzles. Plants. 2024; 13(6):757. https://doi.org/10.3390/plants13060757
Chicago/Turabian StyleLopes, Luana de Lima, João Paulo Arantes Rodrigues da Cunha, Quintiliano Siqueira Schroden Nomelini, and Cleyton Batista de Alvarenga. 2024. "Control of Urochloa decumbens Using Glyphosate Applied by Remotely Piloted Aircraft and Ground Sprayer with Different Spray Nozzles" Plants 13, no. 6: 757. https://doi.org/10.3390/plants13060757
APA StyleLopes, L. d. L., Cunha, J. P. A. R. d., Nomelini, Q. S. S., & Alvarenga, C. B. d. (2024). Control of Urochloa decumbens Using Glyphosate Applied by Remotely Piloted Aircraft and Ground Sprayer with Different Spray Nozzles. Plants, 13(6), 757. https://doi.org/10.3390/plants13060757