How Do Mixed Cover Crops (White Mustard + Oats) Contribute to Labile Carbon Pools in an Organic Cropping System in Serbia?
Abstract
:1. Introduction
2. Results
2.1. Soil Properties
2.2. Land Cover Dynamics, Biomass Productivity and Quality
2.3. Microbial Carbon and Soil Respiration
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Climatic Conditions
4.3. Analytical Methods
4.3.1. Basal Soil Respiration
4.3.2. Microbial Biomass Carbon and Nitrogen (MBC and MBN)
4.3.3. Specific Groups of Microorganisms
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eulenstein, F.; Saljnikov, E.; Lukin, S.; Sheudshen, A.K.; Rukhovich, O.; Schindler, U.; Saparov, G.; Pachikin, K.; Thielicke, M.; Behrendt, A.; et al. Climate change as the driving force behind the intensification of agricultural land use. Zemlj. Biljka 2022, 71, 24–39. [Google Scholar] [CrossRef]
- Loke, P.F.; Kotze, E.; du Preez, C.C.; Twigge, L. Dynamics of Soil Carbon Concentrations and Quality Induced by Agricultural Land Use in Central South Africa. SSSAJ Soil Chem. 2019, 83, 366–379. [Google Scholar] [CrossRef]
- Aditi, K.; Abbhishek, K.; Chander, G.; Singh, A.; Falk, T.; Mequanint, M.B.; Cuba, P.; Anupama, G.; Mandapati, R.; Nagaraji, S. Assessing residue and tillage management options for carbon sequestration in future climate change scenarios. Curr. Res. Environ. Sustain. 2023, 5, 100210. [Google Scholar] [CrossRef]
- Bowman, M.M.; Heath, A.E.; Varga, T.; Battu, A.K.; Chu, R.K.; Toyoda, J.; Cheeke, T.E.; Porter, S.S.; Moffett, K.B.; LeTendre, B.; et al. One thousand soils for molecular understanding of belowground carbon cycling. Front. Soil Sci. 2023, 3, 1120425. [Google Scholar] [CrossRef]
- Dugonjić, M.; Đorđević, A.; Golubović, S.; Radmanović, S. Land use impact on soil structure of Pseudogleys in southern Mačva and Pocerina, Serbia. Zemlj. Biljka 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Keller, T.; Lamandé, M.; Naderi-Boldaji, M.; Paiva de Lima, R. Soil compaction due to agricultural field traffic: An overview of current knowledge and techniques for compaction quantification and mapping. In Advances in Understanding Soil Degradation; Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F., Eds.; Innovations in Landscape Research; Springer: Cham, Switzerland, 2022; Chapter 13; pp. 287–312. [Google Scholar] [CrossRef]
- Koković, N.; Saljnikov, E.; Eulenstein, F.; Čakmak, D.; Buntić, A.; Sikirić, B.; Ugrenović, V. Changes in Soil Labile Organic Matter as Affected by 50 Years of Fertilization with Increasing Amounts of Nitrogen. Agronomy 2021, 11, 2026. [Google Scholar] [CrossRef]
- Saljnikov, E.; Ugrenović, V. Agriculture in a changing climate and its role in carbon sequestration. In Innovative Methods of Organic Production for Greater Climate Neutrality of Agriculture; Ugrenović, V., Ed.; Institute of Soil Science: Belgrade, Serbia, 2022; pp. 31–52. ISBN 978-86-911273-7-4. [Google Scholar]
- Ugrenović, V.; Filipović, V. Cover Crops: Achievement of Sustainability in the Ecological Systems of Agriculture. In Sustainable Entrepreneurshipand Investments in the Green Economy; Jean-Vasile, A., Nicolò, D., Eds.; IGI Global: Hershey, PA, USA, 2017; pp. 255–278. [Google Scholar]
- Wang, X.; He, C.; Liu, B.; Zhao, X.; Liu, Y.; Wang, Q.; Zhang, H. Effects of Residue Returning on Soil Organic Carbon Storage and Sequestration Rate in China’s Croplands: A Meta-Analysis. Agronomy 2020, 10, 691. [Google Scholar] [CrossRef]
- EC, European Commision. A Farm to Fork Strategy—For a Fair, Healthy and Environmen Tally Friendly Food System: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 381 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 7 November 2023).
- EC, European Commision. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020), 380 Final. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52020DC0380 (accessed on 7 November 2023).
- Golijan, J.; Sečanski, M. The development of organic agriculture in Serbia and worldwide. Contemp. Agric. 2021, 70, 85–94. [Google Scholar] [CrossRef]
- Ćupina, B.; Antanasović, S.; Krstić, Đ.; Mikić, A.; Manojlović, M.; Pejić, P.; Erić, P. Cover crops for enhanced sustainability of cropping system in temperate regions. Agric. For. 2013, 59, 55–72. [Google Scholar]
- Ćupina, B.; Vujić, S.; Krstić, Đ.; Radanović, Z.; Čabilovski, R.; Manojlović, M.; Latković, D. Winter cover crops as green manure in a temperate region: The effect on nitrogen budget and yield of silage maize. Crop Pasture Sci. 2017, 68, 1060–1069. [Google Scholar] [CrossRef]
- Ličina, V.; Nešić, L.J.; Belić, M.; Hadžić, V.; Sekulić, P.; Vasin, J.; Ninkov, J. The soils of Serbia and their degradation. Field Veg. Crop Res. 2011, 48, 285–290. [Google Scholar] [CrossRef]
- Krstić, Đ.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef]
- Vasiljević, M.; Đorđević, V.; Miladinović, J.; Šeremešić, S.; Ćeran, M.; Kosanović, J.; Aćin, V. Organic and low input soybean production: Role of winter cover crops in production systems and its effect on yield parameters. In Proceedings of the Abstracts, 11th World Soybean Research Conference (WSRC 11), Soybean Research for Sustainable Development, Vienna, Austria, 18–23 June 2023; p. 364. [Google Scholar] [CrossRef]
- Vujić, S.; Krstić, D.; Mačkić, K.; Čablovski, R.; Radanović, Z.; Zhan, A.; Ćupina, B. Effect of winter cover crops on water soil storage, total forage production, and quality of silage. Eur. J. Agron. 2021, 130, 126366. [Google Scholar] [CrossRef]
- Xiang, Y.; Cheng, M.; Wen, Y.; Darboux, F. Soil Organic Carbon Sequestration under Long-Term Chemical and Manure Fertilization in a Cinnamon Soil, Northern China. Sustainability 2022, 14, 5109. [Google Scholar] [CrossRef]
- Körschens, M. Long-Term Field Experiments (LTEs)—Importance, Overview, Soil Organic Matter. In Exploring and Optimizing Agricultural Landscapes; Mueller, L., Sychev, V.G., Dronin, N.M., Eulenstein, F., Eds.; Innovations in Landscape Research; Springer: Cham, Switzerland, 2021; pp. 215–231. [Google Scholar]
- Cidón, C.F.; Figueiró, P.S.; Schreiber, D. Benefits of Organic Agriculture under the Perspective of the Bioeconomy: A Systematic Review. Sustainability 2021, 13, 6852. [Google Scholar] [CrossRef]
- Clark, A. Managing cover Crops Profitably, 3rd ed.; DIANE Publishing: Collingdale, PA, USA, 2008; pp. 1–248. [Google Scholar]
- Chatterjee, A.; Acharya, U. Controls of carbon and nitrogen releases during crops’ residue decomposition in the Red River Valley, USA. Arch. Agron. Soil Sci. 2020, 669, 614–624. [Google Scholar] [CrossRef]
- Doran, J. Soil Respiration Kit. Guide for Educators. USDA-ARS; NRCS 8. 2001. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053267.pdf (accessed on 14 November 2023).
- Cao, Y.; He, Z.; Zhu, T.; Zhao, F. Organic-C quality as a key driver of microbial nitrogen immobilization in soil: A meta-analysis. Geoderma 2020, 383, 114784. [Google Scholar] [CrossRef]
- Rui, Y.; Murphy, D.; Wang, X.; Hoyle, F.C. Microbial respiration, but not biomass, responded linearly to increasing light fraction organic matter input: Consequences for carbon sequestration. Sci. Rep. 2016, 6, 35496. [Google Scholar] [CrossRef]
- Moukanni, N.; Brewer, K.M. Gaudin ACM and O’Geen AT. Optimizing Carbon Sequestration through Cover Cropping in Mediterranean Agroecosystems: Synthesis of Mechanisms and Implications for Management. Front. Agron. 2022, 4, 844166. [Google Scholar] [CrossRef]
- Manzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Agren, G.I. Environmental and stoichiometric controls on microbial carbon use efficiency in soils. New Phytol. 2012, 196, 79–91. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The role of cover crops towards sustainable soil health and agriculture—A review paper. Am. J. Plant Sci. 2018, 9, 1935–1951. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Olson, K.; Ebelhar, S.; Lang, J. Long-Term Effects of Cover Crops on Crop Yields, Soil Organic Carbon Stocks and Sequestration. Open J. Soil Sci. 2014, 4, 284–292. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and economic services: Indisghts from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Derrouch, D.; Chauvel, B.; Felten, E.; Dessaint, F. Weed management in the transition to conservation agriculture: Farmers’ response. Agronomy 2020, 10, 843. [Google Scholar] [CrossRef]
- Cabrera-Pérez, C.; Valencia-Gredilla, F.; Royo-Esnal, A.; Recasens, J. Organic Mulches as an Alternative to Conventional Under-Vine Weed Management in Mediterranean Irrigated Vineyards. Plants 2022, 11, 2785. [Google Scholar] [CrossRef]
- Liu, N.; Li, Y.; Cong, P.; Wang, J.; Guo, W. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil Tillage Res. 2021, 205, 104772. [Google Scholar] [CrossRef]
- USDA. Soil Taxonomy, 2nd ed.; USDA: Washington, DC, USA, 1999; pp. 555–655.
- Hack, H.; Gall, H.; Klemke, T.; Klose, R.; Meier, U.; Stauss, R.; Witzenberger, A. The BBCH scale for phonological growth stages. In Growth Stages of Mono- and Dicotyledonous Plants, BBCH Monograph; Meier, U., Ed.; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001; pp. 1–158. [Google Scholar] [CrossRef]
- Richardson, M.D.; Karcher, D.E.; Purcell, L.C. Quantifying turfgrass cover using digital image analysis. Crop Sci. 2001, 41, 1884–1888. [Google Scholar] [CrossRef]
- Egnér, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. K. Lantbrukshögskolans Ann. 1960, 26, 199–215. [Google Scholar]
- Jenkinson, D.S.; Powlson, D.S. The effect of biocidal treatments on metabolism in soil. A method for measuring soil biomass. Soil Biol. Biochem. 1976, 8, 209–213. [Google Scholar] [CrossRef]
- Sarić, M. Lekovite biljke SR Srbije; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1989; 638p. [Google Scholar]
- Govedarica, M.; Jarak, M. Praktikum iz Mikrobiologije, 2nd ed.; Faculty of Agriculture: Novi Sad, Serbia, 1996; 201p. [Google Scholar]
Year/Treatment | pH | CaCO3 | Organic C | Total N | Available | ||
---|---|---|---|---|---|---|---|
nKCl | H2O | % | % | % | P2O5 mg/100 g | K2O mg/100 g | |
2016—initial state | 7.54 ± 0.27 a | 8.32 ± 0.12 a | 12.13 ± 0.07 a | 3.26 ± 0.11 a | 0.22 ± 0.01 a | 19.32 ± 0.14 a | 16.40 ± 0.24 a |
OF + CC | 7.42 ± 0.25 a | 8.14 ± 0.10 a | 12.12 ± 0.06 a | 3.40 ± 0.20 a | 0.24 ± 0.01 a | 19.44 ± 0.13 a | 16.35 ± 0.26 a |
OF | 7.47 ± 0.30 a | 8.28 ± 0.14 a | 12.20 ± 0.01 a | 3.22 ± 0.12 a | 0.22 ± 0.00 a | 19.30 ± 0.02 a | 16.23 ± 0.13 a |
F | 0.257 | 3.672 | 3.324 | 2.494 | 2.984 | 3.016 | 1.028 |
p | 0.777 | 0.050 | 0.064 | 0.116 | 0.081 | 0.079 | 0.382 |
Biomass | Total C and N of Mixed Biomass | |||||||
---|---|---|---|---|---|---|---|---|
White Mustard | Oats | White Mustard + Oats | ||||||
Year | t ha−1 | C/N | t ha−1 | C/N | t ha−1 | C/N | C% | N% |
2017 | 7.40 ± 0.03 a | 8.79:1 | 1.60 ± 0.04 b | 14.31:1 | 9.00 ± 0.07 a | 9.77:1 | 38.46 ± 0.37 a | 3.94 ± 0.05 a |
2019 | 9.21 ± 0.04 b | 8.56:1 | 1.40 ± 0.03 a | 13.24:1 | 10.61 ± 0.03 b | 9.83:1 | 40.31 ± 0.03 b | 4.10 ± 0.02 b |
F | 5102.345 | - | 53.157 | - | 1413.873 | - | 76.368 | 25.102 |
p | 0.000 | - | 0.002 | - | 0.000 | - | 0.001 | 0.007 |
Treatment | μg/g CO2-C/week | MBC, μg/g | qCO2 | MBN, μg/g | MBC/MBN |
---|---|---|---|---|---|
OF + CC | 1065.81 ± 103.89 b | 235.28 ± 5.93 b | 4.53 ± 0.44 b | 159.43 ± 5.90 b | 1.48 ± 0.08 b |
OF | 469.33 ± 54.42 a | 159.83 ± 4.46 a | 2.95 ± 0.41 a | 135.95 ± 4.30 a | 1.18 ± 0.04 a |
F | 155.190 | 619.289 | 41.220 | 61.981 | 63.926 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
MBC | MBN | qCO2 | pHKCl | pHH2O | CaCO3 | orgC | TN | |
---|---|---|---|---|---|---|---|---|
CO2 | 0.944 *** | 0.916 ** | 0.989 *** | −0.601 | −0.802 | −0.926 ** | 0.729 * | 0.745 * |
MBC | 0.841 * | 0.890 ** | −0.516 | −0.846 * | −0.960 ** | 0.804 * | 0.895 ** | |
MBN | 0.932 ** | −0.732 * | −0.800 | −0.833 * | 0.793 * | 0.588 | ||
qCO2 | −0.629 | −0.780 * | −0.888 * | 0.679 | 0.654 | |||
pHKCl | 0.275 | 0.495 | −0.712 | −0.128 | ||||
pHH2O | 0.901 ** | −0.634 | −0.839 * | |||||
CaCO3 | −0.773 * | −0.873 * | ||||||
orgC | 0.671 |
Treatment | Cover Crop C% | MBC % | CO2-C/week % | SOC t ha−1 | Cover Crop C, t ha−1 | MBC t ha−1 | CO2-C, t ha−1/week |
---|---|---|---|---|---|---|---|
OF + CC | 40.31 | 0.02353 | 0.1066 | 62.2545 | 788.799 | 0.427 | 1.935 |
OF | - | 0.01598 | 0.0469 | 58.4430 | - | 0.290 | 0.851 |
Treatment | Total Number of Microorganismsi (×106/g) | Number of Fungi (×104/g) | Number of Actinomycetesi (×104/g) | Number of Ammonifiersi (×105/g) | Number of Azotobacter MPN † | Free N-Fixers (×105/g) |
---|---|---|---|---|---|---|
OF + CC | 35.21 ± 3.17 b | 11.67 ± 1.28 b | 32.58 ± 4.28 b | 116.25 ± 9.99 b | 462.50 ± 0.76 b | 95.59 ± 3.62 b |
OF | 10.33 ± 2.26 a | 7.23 ± 0.63 a | 11.34 ± 0.77 a | 31.50 ± 2.02 a | 173.75 ± 9.05 a | 49.01 ± 1.90 a |
F | 245.596 | 58.490 | 143.413 | 415.048 | 6059.769 | 778.103 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrenović, V.; Filipović, V.; Miladinović, V.; Simić, D.; Janković, S.; Stanković, S.; Saljnikov, E. How Do Mixed Cover Crops (White Mustard + Oats) Contribute to Labile Carbon Pools in an Organic Cropping System in Serbia? Plants 2024, 13, 1020. https://doi.org/10.3390/plants13071020
Ugrenović V, Filipović V, Miladinović V, Simić D, Janković S, Stanković S, Saljnikov E. How Do Mixed Cover Crops (White Mustard + Oats) Contribute to Labile Carbon Pools in an Organic Cropping System in Serbia? Plants. 2024; 13(7):1020. https://doi.org/10.3390/plants13071020
Chicago/Turabian StyleUgrenović, Vladan, Vladimir Filipović, Vladimir Miladinović, Divna Simić, Snežana Janković, Slađan Stanković, and Elmira Saljnikov. 2024. "How Do Mixed Cover Crops (White Mustard + Oats) Contribute to Labile Carbon Pools in an Organic Cropping System in Serbia?" Plants 13, no. 7: 1020. https://doi.org/10.3390/plants13071020
APA StyleUgrenović, V., Filipović, V., Miladinović, V., Simić, D., Janković, S., Stanković, S., & Saljnikov, E. (2024). How Do Mixed Cover Crops (White Mustard + Oats) Contribute to Labile Carbon Pools in an Organic Cropping System in Serbia? Plants, 13(7), 1020. https://doi.org/10.3390/plants13071020