The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review
Abstract
:1. Introduction
2. Seed Dormancy
3. Seed Germination
3.1. Temperature Requirements
3.2. Light Requirement for Germination and Growth
3.3. Water Requirements for Germination and Growth
4. Seed Longevity
5. Seedlings Survival
6. Dispersion
7. Vegetative Reproduction
8. Management
8.1. Mechanical
8.2. Chemical
8.3. Biological
9. Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weber, E.; Gut, D. Assessing the risk of potentially invasive plant species in central Europe. J. Nat. Conserv. 2004, 12, 171–179. [Google Scholar] [CrossRef]
- Kowarik, I.; Säumel, I. Biological Flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 207–237. [Google Scholar] [CrossRef]
- Miller, J.H. Ailanthus altissima (Mill.) Swingle. Ailanthus. Silv. N. Am. 1990, 2, 101–104. [Google Scholar]
- Sànchez-Cuxart, A.; Llistosella, J. Guia il·Lustrada per a Conèixer els Arbres; Publicacions i Edicions de la Universitat Barcelona: Barcelona, Spain, 2015. [Google Scholar]
- Hu, S.Y. Ailanthus. Arnoldia 1979, 39, 29–50. [Google Scholar]
- Sanz e Lorza, M.; Dana Sánchez, E.D.; Sobrino Vesperinas, E. Atlas de las Plantas Alóctonas Invasoras en España; Dirección General para la Biodiversidad: Madrid, Spain, 2004. [Google Scholar]
- Wickert, K.L.; O’Neal, E.S.; Davis, D.D.; Asson, M.T. Seed production, viability, and reproductive limits of the invasive Ailanthus altissima (Tree-of-Heaven) within invaded environments. Forests 2017, 8, 226. [Google Scholar] [CrossRef]
- Evans, C.W.; Moorhead, D.J.; Bargeron, C.T.; Douce, G.K. Invasive Plant Responses to Silvicultural Practices in the South; the University of Georgia Bugwood Network: Tifton, GA, USA, 2006. [Google Scholar]
- Bossard, C.C.; Randall, M.J.; Hoshovsky, C.M. Invasive Plants of California’s Wildlands; Univ of California Press: California, UK, 1957. [Google Scholar]
- Howard, J.L. Ailanthus altissima. In Fire Effects Information System; US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer): Fort Collins, CO, USA, 2004. [Google Scholar]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: Assessment of its ecosystem services and potential biological threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Canham, C. Dispersal and recruitment limitation in native versus exotic tree species: Life-history strategies and janzen-connell effects. Oikos 2010, 119, 807–824. [Google Scholar] [CrossRef]
- Wagner, S.G.K.; Moser, D.G.K.; Franz Essl, F. Urban rivers as dispersal corridors: Which factors are important for the spread of alien woody species along the Danube? Sustainability 2020, 12, 2185. [Google Scholar] [CrossRef]
- Feret, P.O. Ailanthus: Variation, cultivation, and frustration. J. Arboric. 1985, 11, 361–368. [Google Scholar] [CrossRef]
- Brunel, S.; Brundu, G.; Fried, G. Eradication and control of Invasive Alien Plants in the Mediterranean Basin: Towards Better Coordination to Enhance Existing Initiatives. Bull. OEPP/EPPO Bull. 2013, 43, 290–308. [Google Scholar] [CrossRef]
- Andersen, M.C.; Adams, H.; Hope, B.; Powell, M. Risk assessment for invasive species. Risk Anal. 2004, 24, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Vilà, M.; Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 2011, 26, 461–472. [Google Scholar] [CrossRef]
- Casella, F.; Vurro, M. Ailanthus altissima (Tree of heaven): Spread and harmfulness in a case-study urban area. Arboric. J. 2013, 35, 172–181. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Blasi, C. The role of alien and native weeds in the deterioration of archaeological remains in Italy. Weed Technol. 2004, 18, 1508–1513. [Google Scholar]
- Trotta, G.; Savo, V.; Cicinelli, E.; Carboni, M.; Caneva, G. Colonization and damages of Ailanthus altissima (Mill.) Swingle on archaeological structures: Evidence from the Aurelian Walls in Rome (Italy). Int. Biodeterior. Biodegrad. 2020, 153, 105054. [Google Scholar] [CrossRef]
- Fogliatto, S.; Milan, M.; Vidotto, F. Control of Ailanthus altissima using cut stump and basal bark herbicide applications in an eighteenth-century fortress. Weed Res. 2020, 60, 425–434. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Ricotta, C. Plant invasion as an emerging challenge for the conservation of heritage sites: The spread of ornamental trees on ancient monuments in Rome, Italy. Biol. Invasions 2021, 23, 1191–1206. [Google Scholar] [CrossRef]
- Gómez-Aparicio, L.; Canham, C.D. Neighbourhood analyses of the allelopathic effects of the invasive Tree Ailanthus altissima in temperate forests. J. Ecol. 2008, 96, 447–458. [Google Scholar] [CrossRef]
- Brooks, R.K.; Barney, J.N.; Salom, S. The Invasive Tree, Ailanthus altissima, impacts understory nativity, not seedbank nativity. For. Ecol. Manag. 2021, 489, 119025. [Google Scholar] [CrossRef]
- Novak, M.; Novak, N.; Milinović, B. Differences in allelopathic effect of tree of heaven root extracts and isolated ailanthone on test-species. J. Cent. Eur. Agric. 2021, 22, 611–622. [Google Scholar] [CrossRef]
- Heisey, R.M. Identification of an allelopathic compound from Ailanthus altissima (Simaroubaceae) and characterization of its herbicidal activity. Am. J. Bot. 1996, 83, 192–200. [Google Scholar] [CrossRef]
- Terzi, M.; Fontaneto, D.; Casella, F. Effects of Ailanthus altissima invasion and removal on high-biodiversity Mediterranean grasslands. Environ. Manag. 2021, 68, 914–927. [Google Scholar] [CrossRef]
- Medina-Villar, S. Impactos ecológicos de los árboles exóticos invasores en la estructura y funcionamiento de los ecosistemas fluviales y de ribera. Ecosistemas 2016, 25, 116–120. [Google Scholar] [CrossRef]
- Barton, L.V. Experiments at boyce Thompson institute on germination and dormancy in seeds. Sci. Hortic. 1939, 7, 186–193. [Google Scholar]
- Little, S. Ailanthus altissima Mill. Swingle: Ailanthus. In Seeds of Woody Plants in the United States; Schopmeyer, C.S., Ed.; Tech. Coord.; USDA Forest Service: Washington, DC, USA, 1973; pp. 201–202. [Google Scholar]
- Dirr, M.A.; Heuser, C.W., Jr. The Reference Manual of Woody Plant Propagation; Varsity Press: Athens, GA, USA, 1987. [Google Scholar]
- Redwood, M.E.; Matlack, G.R.; Huebner, C.D. Seed longevity and dormancy state in an invasive tree species: Ailanthus altissima (Simaroubaceae). J. Torrey Bot. Soc. 2019, 146, 79–86. [Google Scholar] [CrossRef]
- Deltalab, B.; Naziri Moghaddam, N.; Khorrami Raad, M.; Kaviani, B. The effect of cold and acid scarification on seed germination of three green space tree species. J. Ornam. Plants 2023, 13, 85–97. [Google Scholar]
- Jian, Z.; Shouhua, G.; Yu, S.; Yong-qi, Z.; Xiao-yan, Y.; Lin, Y. The operational seed germination conditions of Ailanthus altissima. Acta Bot. Boreali-Occident. Sin. 2007, 5, 1030–1034. [Google Scholar]
- Bao, Z.; Nilsen, E.T. Interactions between seedlings of the invasive tree Ailanthus altissima and the native tree Robinia pseudoacacia under low nutrient conditions. J. Plant Interact. 2015, 10, 173–184. [Google Scholar] [CrossRef]
- Facelli, J.M. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields. Ecology 1994, 75, 1727–1735. [Google Scholar] [CrossRef]
- Constán-Nava, S.; Bonet, A. Genetic Variability Modulates the effect of habitat type and environmental conditions on early invasion success of Ailanthus altissima in Mediterranean ecosystems. Biol. Invasions 2012, 14, 2379–2392. [Google Scholar] [CrossRef]
- Rebbeck, J.; Jolliff, J. How long do seeds of the invasive tree, Ailanthus altissima remain viable? For. Ecol. Manag. 2018, 429, 175–179. [Google Scholar] [CrossRef]
- Pepe, M.; Gratani, L.; Fabrini, G.; Arone, L. Seed germination traits of Ailanthus altissima, Phytolacca americana and Robinia pseudoacacia in response to different thermal and light requirements. Plant Species Biol. 2020, 35, 300–314. [Google Scholar] [CrossRef]
- Kheloufi, A.; Mansouri, L.M.; Zerrouni, R.; Abdelhamid, O. Effect of temperature and salinity on germination and seedling establishment of Ailanthus altissima (Mill.) Swingle (Simaroubaceae). Reforesta 2020, 9, 44–53. [Google Scholar] [CrossRef]
- Cruz, O.; Riveiro, S.F.; Arán, D.; Bernal, J.; Casal, M.; Reyes, O. Germinative behaviour of Acacia dealbata Link, Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. in relation to fire and exploration of the regenerative niche of native species for the control of invaders. Glob. Ecol. Conserv. 2021, 31, e01811. [Google Scholar] [CrossRef]
- Graves, W.R. Stratification not required for Tree-of-Heaven seed germination. Tree Plant. Notes 1990, 41, 1012. [Google Scholar]
- Kota, N.L.; Landenberger, R.E.; McGraw, J.B. Germination and early growth of Ailanthus and tulip poplar in three levels of forest disturbance. Biol. Invasions 2007, 9, 197–211. [Google Scholar] [CrossRef]
- Cabra-Rivas, I.; Castro-Díez, P. Potential Germination success of exotic and native trees coexisting in central Spain riparian forests. Int. J. Ecol. 2016, 2016, 7614683. [Google Scholar]
- Stevens, M.T.; Roush, C.D.; Chaney, L. Summer Drought Reduces the Growth of Invasive Tree-of-Heaven (Ailanthus altissima) seedlings. Nat. Areas J. 2018, 38, 230–236. [Google Scholar] [CrossRef]
- Delgado, J.A.; Jimenez, M.D.; Gomez, A. Samara size versus dispersal and seedling establishment in Ailanthus altissima (Miller) Swingle. J. Environ. 2009, 30, 183–186. [Google Scholar]
- Kaproth, M.; McGraw, J. Seed viability and dispersal of the wind-dispersed invasive Ailanthus altissima in aqueous environments. For. Sci. 2008, 54, 490–496. [Google Scholar]
- Kowarik, I.; Säumel, I. Water dispersal as an additional pathway to invasions by the primarily wind-dispersed tree Ailanthus altissima. Plant Ecol. 2008, 198, 241–252. [Google Scholar] [CrossRef]
- González-Muñoz, N.; Castro-Díez, P.; Fierro-Brunnenmeister, N. Establishment success of coexisting native and exotic trees under an experimental gradient of irradiance and soil moisture. Environ. Manag. 2011, 48, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Kostel-Hughes, F.; Young, T.P.; Wehr, J.D. Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. J. Torrey Bot. Soc. 2005, 132, 50–61. [Google Scholar] [CrossRef]
- Yigit, N.; Sevik, H.; Cetin, M.; Kaya, N. Determination of the Effect of Drought Stress on the Seed Germination in Some Plant Species. Doctoral Dissertation, InTech, London, UK, 2016. [Google Scholar]
- Sevik, H.; Cetin, M. Effects of water stress on seed germination for select landscape plants. Pol. J. Environ. Stud. 2015, 24, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Knüsel, S.; De Boni, A.; Conedera, M.; Schleppi, P.; Thormann, J.J.; Frehner, M.; Wunder, J. Shade tolerance of Ailanthus altissima revisited: Novel insights from southern Switzerland. Biol. Invasions 2017, 19, 455–461. [Google Scholar] [CrossRef]
- Thomson, F.J.; Moles, A.T.; Auld, T.D. Kingsford, R.T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 2011, 99, 1299–1307. [Google Scholar] [CrossRef]
- Borger, G.A.; Kozlowski, T.T. Effects of photoperiod on early periderm and xylem development in Fraxinus pennsylvanica, Robinia pseudoacacia and Ailanthus altissima seedlings. New Phytol. 1972, 71, 703–708. [Google Scholar]
- Song, L.; Wenwen, L.; Shufen, C. Effect of PEG on seed germination of Ailanthus altissima. J. Ningxia Agric. Coll. 2005, 4, 25–29. [Google Scholar]
- Pepe, M.; Crescente, M.F.; Varone, L. Effect of Water Stress on Physiological and Morphological Leaf Traits: A Comparison among the Three Widely-Spread Invasive Alien Species Ailanthus altissima, Phytolacca americana, and Robinia pseudoacacia. Plants 2022, 11, 899. [Google Scholar] [CrossRef]
- Trifilò, P.; Raimondo, F.; Nardini, A.; Lo Gullo, M.A.; and Salleo, S. Drought resistance of Ailanthus altissima: Root hydraulics and water relations. Tree Physiol. 2004, 24, 107–114. [Google Scholar] [CrossRef]
- Granda, E.; Antunes, C.; Máguas, C.; Castro-Díez, P. Water use partitioning of native and non-native tree species in riparian ecosystems under contrasting climatic conditions. Funct. Ecol. 2022, 36, 2480–2492. [Google Scholar] [CrossRef]
- Petruzzellis, F.; Nardini, A.; Savi, T.; Tonet, V.; Castello, M.; and Bacaro, G. Less safety for more efficiency: Water relations and hydraulics of the invasive tree Ailanthus altissima (Mill.) Swingle compared with native Fraxinus ornus L. Tree Physiol. 2019, 39, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Planchuelo, G.; Catalán, P.; Delgado, J.A. Gone with the wind and the stream: Dispersal in the invasive species Ailanthus Altissima. Acta Oecologica 2016, 73, 31–37. [Google Scholar] [CrossRef]
- Kota, N.L. Comparative Seed Dispersal, Seedling Establishment and Growth of Exotic, Invasive Ailanthus Altissima (Mill.) Swingle and Native Liriodendron tulipifera (L.). Graduate Theses, West Virginia University, Morgantown, WV, USA, 2005. [Google Scholar]
- Cho, C.W.; Lee, K.J. Seed dispersion and seedling spatial distribution of the tree of heaven in urban environments. Korean J. Environ. Ecol. 2002, 16, 87–93. [Google Scholar]
- Landenberger, R.E.; Kota, N.L.; McGraw, J.B. Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol. 2007, 192, 55–70. [Google Scholar] [CrossRef]
- Säumel, I.; Kowarik, I. Urban rivers as dispersal corridors for primarily wind-dispersed invasive tree species. Landsc. Urban Plan. 2010, 94, 244–249. [Google Scholar] [CrossRef]
- Säumel, I.; Kowarik, I. Propagule morphology and river characteristics shape secondary water dispersal in tree species. Plant Ecol. 2013, 214, 1257–1272. [Google Scholar] [CrossRef]
- Cabra-Rivas, I.; Alonso, A.; Castro-Díez, P. Does stream structure affect dispersal by water? A case study of the invasive tree Ailanthus altissima in Spain. Manag. Biol. Invasions 2014, 5, 179–186. [Google Scholar] [CrossRef]
- Constán-Nava, S.; Bonet, A.; Pastor, E.; Lledó, J. Long-term control of the invasive tree Ailanthus altissima: Insights from Mediterranean protected forests. For. Ecol. Manag. 2010, 260, 1058–1064. [Google Scholar] [CrossRef]
- EPPO. PM 9/29 Ailanthus altissima. OEPP/EPPO Bull. 2020, 50, 148–155. [Google Scholar] [CrossRef]
- Burch, P.; Zedaker, S. Removing the invasive tree Ailanthus altissima and restoring natural cover. J. Arboric. 2003, 29, 18–24. [Google Scholar] [CrossRef]
- Meloche, C.; Murphy, S.D. Managing Tree-of-Heaven (Ailanthus altissima) in Parks and Protected Areas: A Case Study of Rondeau Provincial Park (Ontario, Canada). Environ. Manag. 2006, 37, 764–772. [Google Scholar] [CrossRef]
- Young, C.; Bell, J.; Morrison, L. Long-term treatment leads to reduction of tree-of-heaven (Ailanthus altissima) populations in the Buffalo National River. Invasive Plant Sci. Manag. 2020, 13, 276–281. [Google Scholar] [CrossRef]
- DiTomaso, J.; Kyser, G. Control of Ailanthus altissima using stem herbicide application techniques. Arboric. Urban For. 2007, 33, 55–63. [Google Scholar] [CrossRef]
- Johnson, J.M. An Evaluation of Application Timing and Herbicides to Control Ailanthus altissima. Master’s Thesis, The Pennsylvania State University, The Graduate School College of Agricultural Sciences, University Park, PA, USA, 2011. [Google Scholar]
- Kok, L.T.; Salom, S.M.; Yan, S.; Herrick, N.J.; McAvoy, T.J. Quarantine evaluation of Eucryptorrhynchus brandti (Harold) (Coleoptera: Curculionidae), a potential biological control agent of tree of heaven, Ailanthus altissima in Virginia, USA. In Proceedings of the XII International Symposium on Biological Control of Weeds, La Grande Motte, France, 22–27 April 2008. [Google Scholar]
- Venegas, T.J.; Pérez, P.C. Análisis y optimización de técnicas de eliminación de especies vegetales invasoras en medios forestales de Andalucía. In Proceedings of the V Congreso Forestal Español, Ávila, Spain, 21–25 September 2009. S.E.C.F-Junta de Castilla y León, Ed.. [Google Scholar]
- Eck, W.; McGill, D. Testing the Efficacy of Triclopyr and Imazapir Using Two Application Methods for Controlling Tree-of-Heaven along a West Virginia Highway; e-Gen. Tech. Rep. SRS-101; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2007; pp. 163–168. [Google Scholar]
- Lewis, K.; McCarthy, B. Nontarget Tree Mortality after Tree-of-Heaven (Ailanthus altissima) injection with Imazapyr. North. J. Appl. For. 2007, 25, 66–72. [Google Scholar] [CrossRef]
- Bowker, D.; Stringer, J. Efficacy of herbicide treatments for controlling residual sprouting of tree-of-heaven. In Proceedings of the 17th Central Hardwood Forest Conference, Lexington, KY, USA, 5–7 April 2010; Fei, S., Lhotka, J., Stringer, J., Gottschalk, K., Miller, G., Eds.; Gen; Tech. Rep. NRS-P-78. U.S. Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; pp. 128–133. [Google Scholar]
- Ding, J.; Wu, Y.; Zheng, H.; Fu, W.; Reardon, R.; Liu, M. Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima. Biocontrol Sci. Technol. 2006, 16, 547–566. [Google Scholar] [CrossRef]
- Marini, F.; Profeta, E.; Vidović, B.; Petanović, R.; de Lillo, E.; Weyl, P.; Hinz, H.L.; Moffat, C.E.; Bon, M.-C.; Cvrković, T.; et al. Field Assessment of the host range of Aculus mosoniensis (Acari: Eriophyidae), a biological control agent of the Tree of Heaven (Ailanthus altissima). Insects 2021, 12, 637. [Google Scholar] [CrossRef]
- Skvarla, M.J.; Ochoa, R.; Ulsamer, A.; Amrine, J. The eriophyid mite Aculops ailanthic Lin, Jin, and Kuang, 1997 (Acariformes: Prostigmata: Eriophyidae) from tree of heaven in the United States new state records and morphological observations. Acarologia 2021, 61, 121–127. [Google Scholar] [CrossRef]
- De Lillo, E.; Marini, F.; Cristofaro, M.; Valenzano, D.; Petanović, R.; Vidović, B.; Cvrković, T.; Bon, M.C. Integrative taxonomy and synonymization of Aculus mosoniensis (Acari: Eriophyidae), a potential biological control agent for Tree of Heaven (Ailanthus altissima). Insects 2022, 13, 489. [Google Scholar] [CrossRef]
- Kashefi, J.; Vidović, B.; Guermache, F.; Cristofaro, C. Occurrence of Aculus mosoniensis (Ripka, 2014) (Acari; Prostigmata; Eriophyoidea) on Tree of heaven (Ailanthus altissima Mill.) is expanding across europe. first record in France confirmed by barcoding. Phytoparasitica 2022, 50, 391–398. [Google Scholar] [CrossRef]
- Herrick, N.J.; McAvoy, T.J.; Zedaker, S.M.; Salom, S.M.; Kok, L.T. Site characteristics of Leitneria floridana (Leitneriaceae) as related to potential biological control of the invasive Tree-of-heaven, Ailanthus altissima. Phytoneuron 2011, 27, 1–10. [Google Scholar]
- Herrick, N.J.; Mcavoy, T.J.; Snyder, A.L.; Salom, S.M.; Kok, L.T. Host-range testing of Eucryptorrhynchus brandti (Coleoptera: Curculionidae), a candidate for biological control of Tree-of-heaven, Ailanthus altissima. Environ. Entomol. 2012, 41, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Bubici, G.; Prigigallo, M.I.; Garganese, F.; Nugnes, F.; Jansen, M.; Porcelli, F. First report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the insect microbiome and micrornas. Insects 2020, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.; Landry, J.-F.; Janzen, D.; Hallwachs, W.; Nazari, V.; Hajibabaei, M.; Hebert, P. D-N. Identity of the Ailanthus webworm moth (Lepidoptera: Yponomeutidae), a complex of two species: Evidence from DNA barcoding, morphology and ecology. ZooKeys 2010, 46, 41–60. [Google Scholar] [CrossRef]
- Kreitman, D.; Keena, M.A.; Nielsen, A.L.; Hamilton, G. Effects of temperature on development and survival of Nymphal Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 2021, 50, 183–191. [Google Scholar] [CrossRef]
- Snyder, A.L.; Salom, S.M.; Kok, L.T. Survey of Verticillium nonalfalfae (Plectosphaerellaceae) on Tree-of-heaven in the southeastern United States. Biocontrol Sci. Technol. 2014, 24, 303–314. [Google Scholar] [CrossRef]
- Rebbeck, J.; Malone, M.A.; Short, D.P.G.; Kasson, M.T.; O’Neal, E.S.; Davis, D.D. First report of Verticillium wilt caused by Verticillium nonalfalfae on Tree-of-Heaven (Ailanthus altissima) in Ohio. Plant Dis. 2013, 97, 999. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.E. Biological Control of Ailanthus altissima: Transmission, Formulation, and Risk Assessment of Verticillium nonalfalfae . Master’s Thesis, The Pennsylvania State University. The Graduate School College of Agricultural Sciences, University Park, PA, USA, 2014. [Google Scholar]
- Kasson, M.T.; Short, D.P.; O’Neal, E.S.; Subbarao, K.V.; Davis, D.D. Comparative pathogenicity, biocontrol efficacy, and multilocus sequence typing of Verticillium nonalfalfae from the invasive Ailanthus altissima and other hosts. Phytopathology 2014, 104, 282–292. [Google Scholar] [CrossRef]
- Kasson, M.T.; O’Neal, E.S.; Davis, D.D. Expanded Host Range Testing for Verticillium nonalfalfae: Potential Biocontrol Agent Against the Invasive Ailanthus altissima. Plant Dis. 2015, 99, 823–835. [Google Scholar] [CrossRef]
- Brooks, R.K.; Wickert, K.; Baudoin, A.; Kasson, M.T.; Salom, S. Field-inoculated Ailanthus altissima stands reveal the biological control potential of Verticillium nonalfalfae in the mid-Atlantic region of the United States. Biol. Control. 2020, 148, 104298. [Google Scholar] [CrossRef]
- Maschek, O.; Halmschlager, E. Natural distribution of Verticillium wilt on invasive Ailanthus altissima in eastern Austria and its potential for biocontrol. For. Pathol. 2017, 47, e12356. [Google Scholar] [CrossRef]
- Pisuttu, C.; Marchica, A.; Bernardi, R.; Calzone, A.; Cotrozzi, L.; Nali, C.; Pellegrini, E.; Lorenzini, G. Verticillium wilt of Ailanthus altissima in Italy caused by V. dahliae: New outbreaks from Tuscany. iForest 2020, 13, 238–245. [Google Scholar]
- Moragrega, C.; Carol, J.; Bisbe, E.; Fabregas, E.; Lorente, I. First report of Verticillium Wilt and mortality of Ailanthus altissima caused by Verticillium dahliae and V. albo-atrum sensulato in Spain. Plant Dis. 2021, 105, 3754. [Google Scholar] [CrossRef]
- Snyder, A.L.; Salom, S.M.; Kok, L.T.; Griffin, G.J.; Davis, D.D. Assessing Eucryptorrhynchus brandti (Coleoptera: Curculionidae) as a potential carrier for Verticillium nonalfalfae (Phyllachorales). Biocontrol Sci. Technol. 2012, 22, 1005–1019. [Google Scholar] [CrossRef]
Seed Harvest Date | Germination Place | Pre-Treatment | Light/Dark (h) | Temperature (°C) | Seeds per Treatment | Germination (%) | Author |
---|---|---|---|---|---|---|---|
March | Growth chamber | No | 12/12 | 20.5 | 100 | 67 to 97 | [44] |
September | 150 | 50 to 90 | |||||
November | Greenhouse | No | Natural sunlight | 21–24 | 10 | 66.1 | [45] |
December | Greenhouse | No | Natural sunlight | Ambient | 25 | 90.67 to 91.38 | [46] |
October | Laboratory | Seeds floating on water up to 5 months | Fluorescent lights | 22–25 | 50 | 94.4 | [47] |
Seeds in leaf litter under forest canopy up to 5 months + 4 °C for 5 weeks in moist sand | Fluorescent lights | 22–25 | 50 | 78.9 | |||
January | Greenhouse | No | Natural sunlight | 15–20 | 250 | 52.7 | [48] |
Greenhouse | Floating seeds in water for | Natural sunlight | 15–20 | 250 | |||
3 days | 86.8 | ||||||
10 days | 58.8 | ||||||
20 days | 32.4 | ||||||
Greenhouse | Submerged seeds in water for | Natural sunlight | 15–20 | 250 | |||
3 days | 67.7 | ||||||
10 days | 35.3 | ||||||
20 days | 30.7 | ||||||
Not defined | Field | Yes | Sunlight limited at 100, 65, 35, 7% | 12.9–46.9 | 96 | * ≈ 80 | [49] |
Not defined | Greenhouse | 0–1.5 °C (no time defined) + water soaked for 48 h + 3–5 °C moist vermiculite for 3 months + | 12/12 | 20–30 | 45 | [50] | |
Bare soil or | ≈ 70 | ||||||
low leaf litter or | ≈ 80 | ||||||
high leaf litter | ≈ 50 | ||||||
October | Growth chamber | Stratification for 8 weeks | Not defined | 25 | 20 | 60.2 | [51] |
October | Growth chamber | Stratification for 8 weeks | Not defined | 25 | 20 | 58.3 | [52] |
Growth chamber | Gibberellic acid 40 ppm | Light/dark | 30 | good | [34] | ||
Not defined | Growth chamber | Stored from 2 to 4 years + 4 °C for one month + Gibberellic acid 500 ppm | Dark | 40 °C for 24 h | Not defined | good | [35] |
October | Greenhouse | Seeds incubated under field conditions for 1 to 5 years at: | 26.5 | 30–50 | [38] | ||
soil depth = 10 cm | Natural sunlight | 1.9 to 81 | |||||
soil depth = 0 cm | 79.4 to 83 | ||||||
Greenhouse | 1–4 °C for 88 days | Natural sunlight | 25/20 | 50 | 87 | ||
Greenhouse | Stored 5 years in lab conditions | Natural sunlight | Not defined | 50 | 83.5 | ||
Late summer | Greenhouse | 1.7 °C for 28 days | Natural sunlight | Ambient | depending on source: 40, 43, or 64 | 0 to 78.1 | [7] |
December | Laboratory | Seeds incubated under litter and duff layers in field conditions | 12/12 Fluorescent lights | 18-20 | 100 | 28 and 79 | [32] |
December | Field | 1 year with cold moist sand | High flux of sunlight Low flux of sunlight | Ambient | 50 | ≈ 25 ≈ 21 | [43] |
3 months with cold moist sand | High flux of sunlight Low flux of sunlight | ≈ 15 ≈ 8 | |||||
October | Growth chamber | 2 months at 17–20 °C | 16/8 | 15 | 80 | ≈ 55 | [37] |
20 | ≈ 25 | ||||||
30 | ≈ 18 | ||||||
Growth chamber | Stored 1 year (no treatment) | 16/8 | 20 | 100 | 12 | ||
Stored 2 years (no treatment) | 19 | ||||||
Stored 3 years (no treatment) | 20 | ||||||
Field | no | Natural sunlight | Ambient | 792 | ≈25 | ||
Dispersal season | Growth chamber | 4 °C more than 1 year | 16/8 | 24/16 | 125 | 50.8 | [41] |
Fall | Growth chamber | 4 °C during winter | Not defined | Not defined | Not defined | 87 | [36] |
Field | Natural sunlight | Ambient | 100 | ≈ 6 to 9 | |||
80 | ≈ 6 to 13 | ||||||
October | Growth chamber | No | 12/12 | 15/6 | 25 | 0 | [39] |
20/10 | 71 | ||||||
30/20 | 87 | ||||||
24 Dark | 15/6 | 0 | |||||
20/10 | 75 | ||||||
30/20 | 84 | ||||||
Growth chamber | 4 °C for one month | 12/12 | 15/6 | 19 | |||
20/10 | 51 | ||||||
30/20 | 82 | ||||||
24 Dark | 15/6 | 7 | |||||
20/10 | 37 | ||||||
30/20 | 89 | ||||||
October | Growth chamber | Moist at 5 °C for 12 days | Dark | 20(16 h)/30(8 h) | 30 | 95 | [42] |
Dry at 5 °C for 12 days | 76 | ||||||
Moist at 25 °C for 12 days | 84 | ||||||
Dry at 25 °C for 12 days | 75 | ||||||
Control | 70 | ||||||
5 °C for 4 days | 77 | ||||||
5 °C for 12 days | 96 | ||||||
November | Growth chamber | 4 °C for 1 month | Dark | 25 25/30 30 40 | 100 naked embryos | 40 73 94 51 | [40] |
Not defined | Growth chamber | Control | Not defined | 20 | 100 | 26 | [33] |
Sulfuric acid 95% for 10 min | 20 | ||||||
Sulfuric acid 50% for 10 min | 60 | ||||||
Hot water 95 °C for 15 min | 40 | ||||||
3 °C for 10 days | 29 | ||||||
3 °C for 15 days | 32 | ||||||
3 °C for 20 days | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soler, J.; Izquierdo, J. The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review. Plants 2024, 13, 931. https://doi.org/10.3390/plants13070931
Soler J, Izquierdo J. The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review. Plants. 2024; 13(7):931. https://doi.org/10.3390/plants13070931
Chicago/Turabian StyleSoler, Jordi, and Jordi Izquierdo. 2024. "The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review" Plants 13, no. 7: 931. https://doi.org/10.3390/plants13070931
APA StyleSoler, J., & Izquierdo, J. (2024). The Invasive Ailanthus altissima: A Biology, Ecology, and Control Review. Plants, 13(7), 931. https://doi.org/10.3390/plants13070931