Metabolite Profiling of Colvillea racemosa via UPLC-ESI-QTOF-MS Analysis in Correlation to the In Vitro Antioxidant and Cytotoxic Potential against A549 Non-Small Cell Lung Cancer Cell Line
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoid Contents
2.2. In-Vitro Antioxidant Assays
2.3. UPLC-ESI-QTOF-MS Metabolite Profiling of C. racemosa
2.3.1. Phenolic Acids
2.3.2. Flavonoids
2.3.3. Flavone-C-Glycosides
2.3.4. Flavonols
2.3.5. Isoflavones
2.3.6. Fatty Acids
2.4. In Vitro Cytotoxicity against A549 Cell Line and Influence of C. racemosa Extracts on Cell Cycle Distribution
2.5. Docking Results
3. Materials and Methods
3.1. Plant Material
3.2. UPLC-ESI-QTOF-MS Metabolite Profiling of Leaves and Flowers of C. racemosa
3.3. MS Data Processing
3.4. Measurements of Total Phenolics and Flavonoids and In-Vitro Antioxidant Assays
3.4.1. Total Phenolics and Flavonoids
3.4.2. FRAP Assay
3.4.3. DPPH Assay
3.4.4. ABTS Assay
3.5. In-Vitro Cytotoxic Activity of C. racemosa on Lung Cancer Cell Lines
3.5.1. Cytotoxicity Assay
3.5.2. Analysis of Cell Cycle Distribution
3.6. Molecular Docking
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
AQ4 | [6,7-bis(2-methoxy-ethoxy)quinazoline-4-yl]-(3-ethynylphenyl)amine |
CDK2 | Serine/threonine protein kinase |
DMEM | Dulbecco’s modified Eagle medium |
DPPH | 2,2-diphenyl-1-picryl-hydrazyl-hydrate |
DTQ | 4-[3-hydroxyanilino]-6,7-dimethoxyquinazoline |
EGFR | Epidermal growth factor receptor |
FRAP | Ferric reducing antioxidant power |
NSCLC | Non-small cell lung cancer |
γ-PI3K enzyme | γ-phosphatidylinositol 3-kinase |
PI | Propidium iodide |
TCA solution | Trichloroacetic acid |
TE | Trolox equivalent |
TPTZ | 2,4,6-tri(2-pyridyl)-s-triazine |
TRIS | Tris(hydroxymethyl)aminomethane |
SRB | Sulforhodamine B assay |
QYT | 5-quinoxalin-6-ylmethylene-1,3-thiazolidine-2,4-dione |
References
- Usman, M.; Khan, W.R.; Yousaf, N.; Akram, S.; Murtaza, G.; Kudus, K.A.; Ditta, A.; Rosli, Z.; Rajpar, M.N.; Nazre, M. Exploring the phytochemicals and anti-cancer potential of the members of Fabaceae family: A comprehensive review. Molecules 2022, 27, 3863. [Google Scholar] [CrossRef] [PubMed]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef]
- Gođevac, D.; Zdunić, G.; Šavikin, K.; Vajs, V.; Menković, N. Antioxidant activity of nine Fabaceae species growing in Serbia and Montenegro. Fitoterapia 2008, 79, 185–187. [Google Scholar] [CrossRef]
- Jimoh, M.A.; Idris, O.A.; Jimoh, M.O. Cytotoxicity, phytochemical, antiparasitic screening, and antioxidant activities of Mucuna pruriens (Fabaceae). Plants 2020, 9, 1249. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.C.; Calvo, T.R.; Colombo, L.L.; Vilegas, W.; Carlos, I.Z. Immunostimulatory and cytotoxic activities of Indigofera suffruticosa (Fabaceae). Nat. Prod. Res. 2011, 25, 1796–1806. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Hasan, R.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. Senna singueana: Antioxidant, hepatoprotective, antiapoptotic properties and phytochemical profiling of a methanol bark extract. Molecules 2017, 22, 1502. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; McGaw, L.J.; Eloff, J.N. In vitro antibacterial, antioxidant and cytotoxic activity of acetone leaf extracts of nine under-investigated Fabaceae tree species leads to potentially useful extracts in animal health and productivity. BMC Complement. Altern. Med. 2014, 14, 147. [Google Scholar] [CrossRef]
- Mohamed, E.I.; Zaki, M.A.; Chaurasiya, N.D.; Owis, A.I.; AbouZid, S.; Wang, Y.-H.; Avula, B.; Seida, A.A.; Tekwani, B.L.; Ross, S.A. Monoamine oxidases inhibitors from Colvillea racemosa: Isolation, biological evaluation, and computational study. Fitoterapia 2018, 124, 217–223. [Google Scholar] [CrossRef]
- Sreenath, D.; Rao, J. A new bis-coumarin from the seeds of Colvillea racemosa. Asian J. Chem. 2000, 12, 917. [Google Scholar]
- Rivers, M.C.; Bachman, S.P.; Meagher, T.R.; Nic Lughadha, E.; Brummitt, N.A. Subpopulations, locations and fragmentation: Applying IUCN red list criteria to herbarium specimen data. Biodivers. Conserv. 2010, 19, 2071–2085. [Google Scholar] [CrossRef]
- Shafei, A.A. Qualitative and quantitative estimation of flavonoids and phenolic compounds and the biological activities of Colvillea racemosa cultivated in Egypt. Int. J. Pharmacogn. Phytochem. Res. 2016, 8, 836–840. [Google Scholar]
- Zanin, J.L.B.; De Carvalho, B.A.; Salles Martineli, P.; Dos Santos, M.H.; Lago, J.H.G.; Sartorelli, P.; Viegas, C.; Soares, M.G. The genus Caesalpinia L.(Caesalpiniaceae): Phytochemical and pharmacological characteristics. Molecules 2012, 17, 7887–7902. [Google Scholar] [CrossRef] [PubMed]
- Joselin, J.; Florence, A.R.; Brintha, T.S.S.; Jeeva, S. Secondary metabolites from ornamental flowers: A study of common avenue trees of the family Caesalpiniaceae. J. Chem. Pharm. Res. 2014, 6, 2089–2096. [Google Scholar]
- Berk, Ş.; Kaya, S.; Akkol, E.K.; Bardakçı, H. A comprehensive and current review on the role of flavonoids in lung cancer: Experimental and theoretical approaches. Phytomedicine 2022, 98, 153938. [Google Scholar] [CrossRef] [PubMed]
- Nur, U.; Quaresma, M.; De Stavola, B.; Peake, M.; Rachet, B. Inequalities in non-small cell lung cancer treatment and mortality. J. Epidemiol. Community Health 2015, 69, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Sher, T.; Dy, G.K.; Adjei, A.A. Small cell lung cancer. Mayo Clin. Proc. 2008, 83, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288. [Google Scholar] [CrossRef]
- Raman, V.; Yang, C.-F.J.; Deng, J.Z.; D’Amico, T.A. Surgical treatment for early stage non-small cell lung cancer. J. Thorac. Dis. 2018, 10, S898. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Arjsri, P.; Srisawad, K.; Yodkeeree, S.; Dejkriengkraikul, P. Exploring the Anticancer Potential of Traditional Thai Medicinal Plants: A Focus on Dracaena loureiri and Its Effects on Non-Small-Cell Lung Cancer. Plants 2024, 13, 290. [Google Scholar] [CrossRef]
- Scheff, R.J.; Schneider, B.J. Non–Small-Cell Lung Cancer: Treatment of Late Stage Disease: Chemotherapeutics and New Frontiers. Semin. Interv. Radiol. 2013, 30, 191–198. [Google Scholar] [CrossRef]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef]
- Shiau, J.-P.; Chuang, Y.-T.; Tang, J.-Y.; Yang, K.-H.; Chang, F.-R.; Hou, M.-F.; Yen, C.-Y.; Chang, H.-W. The impact of oxidative stress and AKT pathway on cancer cell functions and its application to natural products. Antioxidants 2022, 11, 1845. [Google Scholar] [CrossRef]
- Suvarna, V.; Murahari, M.; Khan, T.; Chaubey, P.; Sangave, P.J. Phytochemicals and PI3K inhibitors in Cancer—An insight. Front. Pharmacol. 2017, 8, 314244. [Google Scholar] [CrossRef] [PubMed]
- Filosto, S.; Khan, E.M.; Tognon, E.; Becker, C.; Ashfaq, M.; Ravid, T.; Goldkorn, T. EGF receptor exposed to oxidative stress acquires abnormal phosphorylation and aberrant activated conformation that impairs canonical dimerization. PLoS ONE 2011, 6, e23240. [Google Scholar] [CrossRef]
- Choudhary, N.; Bawari, S.; Burcher, J.T.; Sinha, D.; Tewari, D.; Bishayee, A. Targeting cell signaling pathways in lung cancer by bioactive phytocompounds. Cancers 2023, 15, 3980. [Google Scholar] [CrossRef]
- Consortium, A.P.G.; André, F.; Arnedos, M.; Baras, A.S.; Baselga, J.; Bedard, P.L.; Berger, M.F.; Bierkens, M.; Calvo, F. AACR Project GENIE: Powering precision medicine through an international consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Maqsummiya, Z.U.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacother. 2022, 153, 113384. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Otify, A.M.; Mohamed, O.G.; El-Amier, Y.A.; Saber, F.R.; Tripathi, A.; Younis, I.Y. Bioherbicidal Activity and Metabolic Profiling of Allelopathic Metabolites of Three Cassia species using UPLC-qTOF-MS/MS and Molecular Networking. Metabolomics 2023, 19, 16. [Google Scholar] [CrossRef]
- Mohsen, E.; Younis, I.Y.; Farag, M. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. J. Ind. Crops Prod. 2020, 155, 112818. [Google Scholar]
- Otify, A.M.; ElBanna, S.A.; Eltanany, B.M.; Pont, L.; Benavente, F.; Ibrahim, R.M. A comprehensive analytical framework integrating liquid chromatography-tandem mass spectrometry metabolomics with chemometrics for metabolite profiling of lettuce varieties and discovery of antibacterial agents. Food Res. Int. 2023, 172, 113178. [Google Scholar] [CrossRef] [PubMed]
- Otify, A.; George, C.; Elsayed, A.; Farag, M.A. Mechanistic evidence of Passiflora edulis (Passifloraceae) anxiolytic activity in relation to its metabolite fingerprint as revealed via LC-MS and chemometrics. Food Funct. 2015, 6, 3807–3817. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kong, Y.; Zu, Y.; Fu, Y.; Luo, M.; Zhang, L.; Li, J. Determination and quantification of active phenolic compounds in pigeon pea leaves and its medicinal product using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 4723–4731. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Sun, W.; Chen, R.; Wang, Z.; Cui, X.; Zhang, H.; Qian, S.; Zheng, Q.; Zhou, Y.; Wan, J.; et al. Pharmacokinetics in rat plasma and tissue distribution in mice of galangin determined by UHPLC–MS/MS. Acta Chromatogr. 2019, 31, 120–125. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Q.; Zheng, Y.; Zhang, Y.; Liu, B.; Shi, W.; Zeng, Z. Kaempferitrin: A Flavonoid Marker to Distinguish Camellia oleifera Honey. Nutrients 2023, 15, 435. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rivera, M.P.; Lugo-Cervantes, E.; Winterhalter, P.; Jerz, G. Metabolite profiling of polyphenols in peels of Citrus limetta Risso by combination of preparative high-speed countercurrent chromatography and LC–ESI–MS/MS. Food Chem. 2014, 158, 139–152. [Google Scholar] [CrossRef]
- Yang, N.-Y.; Yang, Y.-F.; Li, K. Analysis of Hydroxy Fatty Acids from the Pollen of Brassica campestris L. var. oleifera DC. by UPLC-MS/MS. J. Pharm. 2013, 2013, 874875. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef]
- Younis, I.Y.; Khattab, A.R.; Selim, N.M.; Sobeh, M.; Elhawary, S.S.; Bishbishy, M.H.E. Metabolomics-based profiling of 4 avocado varieties using HPLC–MS/MS and GC/MS and evaluation of their antidiabetic activity. Sci. Rep. 2022, 12, 4966. [Google Scholar] [CrossRef]
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as antitumor agents targeting key players in cancer-driving signaling pathways. Front. Pharmacol. 2021, 12, 710304. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.-B.; Wang, W.-J.; Xu, C.; Xie, Y.-J.; Wang, X.-R.; Zhang, Y.-Z.; Huang, J.-M.; Huang, M.; Xie, C.; Liu, P.; et al. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett. 2021, 515, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Sonoki, H.; Tanimae, A.; Endo, S.; Matsunaga, T.; Furuta, T.; Ichihara, K.; Ikari, A.J. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients 2017, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol. 2020, 871, 172937. [Google Scholar] [CrossRef] [PubMed]
- Fekry, M.I.; Ezzat, S.M.; Salama, M.M.; Alshehri, O.Y.; Al-Abd, A.M. Bioactive glycoalkaloides isolated from Solanum melongena fruit peels with potential anticancer properties against hepatocellular carcinoma cells. Sci. Rep. 2019, 9, 1746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Li, D.; Chen, H.; Zhang, J.; Jin, X. Vitexin induces G2/M-phase arrest and apoptosis via Akt/mTOR signaling pathway in human glioblastoma cells. Mol. Med. Rep. 2018, 17, 4599–4604. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des. Dev. Ther. 2018, 12, 1303. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Wang, Y.; Zheng, X.; Chu, Q. Kaempferol-3-O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct. 2021, 12, 8351–8365. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.T.; Shen, G.N.; Li, T.Z.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Zhang, D.J.; Jin, C.H. Isoorientin induces the apoptosis and cell cycle arrest of A549 human lung cancer cells via the ROS-regulated MAPK, STAT3 and NF-κB signaling pathways. Int. J. Oncol. 2020, 57, 550–561. [Google Scholar] [CrossRef]
- Thangaraj, K.; Balasubramanian, B.; Park, S.; Natesan, K.; Liu, W.; Manju, V. Orientin induces G0/G1 Cell Cycle arrest and mitochondria mediated intrinsic apoptosis in human colorectal carcinoma HT29 Cells. Biomolecules 2019, 9, 418. [Google Scholar] [CrossRef]
- Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol. 2018, 9, 923. [Google Scholar] [CrossRef]
- Saber, F.R.; Ashour, R.M.; El-Halawany, A.M.; Mahomoodally, M.F.; Ak, G.; Zengin, G.; Mahrous, E.A. Phytochemical profile, enzyme inhibition activity and molecular docking analysis of Feijoa sellowiana O. Berg. J. Enzym. Inhib. Med. Chem. 2021, 36, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Mirza-Aghazadeh-Attari, M.; Ekrami, E.M.; Aghdas, S.A.M.; Mihanfar, A.; Hallaj, S.; Yousefi, B.; Safa, A.; Majidinia, M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci. 2020, 255, 117481. [Google Scholar] [CrossRef]
- Adusumilli, R.; Mallick, P. Data Conversion with ProteoWizard msConvert. Methods Mol. Biol. 2017, 1550, 339–368. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Kumar, C.M.; Mohammed, I. Comparison of total flavanoid content of Azadirachta indica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Boly, R.; Lamkami, T.; Lompo, M.; Dubois, J.; Guissou, I. DPPH free radical scavenging activity of two extracts from Agelanthus dodoneifolius (Loranthaceae) leaves. Int. J. Toxicol. Pharmacol. Pharmacol. Res. Res. 2016, 8, 29–34. [Google Scholar]
- Chen, Z.; Bertin, R.; Froldi, G. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Allam, R.M.; Al-Abd, A.M.; Khedr, A.; Sharaf, O.A.; Nofal, S.M.; Khalifa, A.E.; Mosli, H.A.; Abdel-Naim, A.B. Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol. Lett. 2018, 291, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Soliman, F.M.; Fathy, M.M.; Salama, M.M.; Al-Abd, A.M.; Saber, F.R.; El-Halawany, A.M. Cytotoxic activity of acyl phloroglucinols isolated from the leaves of Eucalyptus cinerea F. Muell. ex Benth. cultivated in Egypt. Sci. Rep. 2014, 4, 5410. [Google Scholar] [CrossRef]
Extract | Total Phenolic Content (mg Gallic acid/g Extract) # | Total Flavonoid Content (mg Rutin/g Extract) # | FRAP (µM TE/mg Extract) # | DPPH IC50 (µg/mL) * | ABTS IC50 (µg/mL) * |
---|---|---|---|---|---|
Leaves | 34.99 ± 3.50 a | 24.14 ± 1.60 a | 362.05 ± 23.64 b | 381.0 ± 2.0 c | 36.28 ± 1.82 c |
Flowers | 98.24 ± 3.40 b | 86.68 ± 3.48 b | 190.40 ± 8.29 a | 177.0 ± 2.0 b | 26.08 ± 1.56 b |
Trolox | --- | --- | --- | 9.77 ± 0.53 a | 2.82 ± 0.10 a |
Nº | RT | m/z exp. [M − H]− | m/z Theoretical [M − H]− | Error (ppm) | Neutral Formula | Compound | MS/MS | Leaf 1 | Flower 1 | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Sugars | ||||||||||
1 | 4.02 | 195.0497 | 195.0510 | −6.66 | C6H12O7 | Gluconic acid | 75(77), 129(54), 195(100) | + | HMDB00625 | |
2 | 4.30 | 144.0666 | 144.0666 | 0.00 | C6H11NO3 | 4-Acetamido-butanoate | Level 3 | + | + | HMDB03681 |
3 | 4.48 | 341.1078 | 341.1089 | −3.22 | C12H22O11 | Disaccharide-trehalose | 59(7), 71(17), 89(25), 101(28), 179(47), 341(100) | + | + | [30] |
4 | 4.49 | 503.1617 | 503.1617 | 0.00 | C18H32O16 | Raffinose | 161(7), 179(14), 221(3), 323(15), 341(29), 503(100) | + | HMDB03213 | |
Phenolic acids | ||||||||||
5 | 4.58 | 295.0667 | 295.0670 | −1.02 | C10H16O10 | Malic acid hexoside | 115(100), 133(52) | + | - | |
6 | 6.57 | 295.0667 | 295.0670 | −1.02 | C10H16O10 | Malic acid hexoside isomer | 115(100), 133(53) | + | - | |
7 | 11.47 | 169.0149 | 169.0142 | 4.14 | C7H6O5 | Gallic acid | 125(100), 169(15) | + | [31] | |
8 | 15.59 | 153.0211 | 153.0193 | 11.76 | C7H6O4 | Protocatechuic acid | 109(100)/153(35) | + | HMDB01856 | |
9 | 17.04 | 285.0611 | 285.0615 | −1.40 | C12H14O8 | Dihydroxybenzoic acid pentoside | 108(100)/153(23) | + | - | |
10 | 21.48 | 417.1038 | 417.1038 | 0.00 | C17H22O12 | Dihydroxybenzoic acid dipentoside | 108(21), 152(41), 241(5), 285(2), 417(100) | + | - | |
11 | 27.57 | 299.0771 | 299.0772 | −0.33 | C13H16O8 | Hexosyl-oxy-benzoic acid | Level 3 | + | - | |
Amino acids | ||||||||||
12 | 13.00 | 164.0712 | 164.0717 | −3.05 | C9H11NO2 | Phenylalanine | 72(1), 103(8), 147(29), 164(100) | + | + | [32] |
Flavone-C-glycosides | ||||||||||
13 | 29.39 | 609.1459 | 609.1461 | −0.33 | C27H30O16 | Luteolin 6-C hexoside 8-C-arabinoside | 369(100), 399(41), 489(49), 609(91) | + | HMDB29258 | |
14 | 31.63 | 593.1508 | 593.1511 | −0.51 | C27H30O15 | Apigenin-6,8-C-dihexoside (vicenin-2) | 353(52), 383(34), 473(31), 593(100) | + | + | HMDB30708 |
15 | 34.36 | 447.0931 | 447.0932 | −0.22 | C21H20O11 | Luteolin-8-C-glucoside (orientin) | 133(5), 285(9), 299(17), 327(100), 357(29), 447(44) | + | HMDB30614 | |
16 | 34.38 | 563.1399 | 563.1406 | −1.24 | C26H28O14 | Apigenin 6-C-hexoside-8-C pentoside I | 297(17), 353(41), 383(28), 443(30), 473(20), 503(3), 545(5), 563(100) | + | FDB004202 | |
17 | 34.71 | 447.0926 | 447.0932 | −1.34 | C21H20O11 | Luteolin-6-C-glucoside (isoorientin) | 133(9), 285(20), 297(32), 327(100), 357(69), 447(56) | + | + | FDB012395 |
18 | 35.81 | 431.0975 | 431.0983 | −1.86 | C21H20O10 | Apigenin-8-C-glucoside (vitexin) | 283(56), 311(100), 341(9), 431(58) | + | + | [33] |
19 | 36.18 | 563.1400 | 563.1406 | −1.07 | C26H28O14 | Apigenin 6-C-hexoside-8-C pentoside II | 297(15), 353(39), 383(26), 443(31), 473(23), 503(2), 545(4), 563(100) | + | FDB000137 | |
20 | 36.95 | 431.0975 | 431.0983 | −1.86 | C21H20O10 | Apigenin-6-C-glucoside (isovitexin) | 269(9), 283(55), 311(100), 341(37), 353(4), 431(54) | + | + | [33] |
21 | 38.42 | 577.1561 | 577.1562 | −0.17 | C27H30O14 | Rhoifolin (apigenin-7-O-neohesperidoside) | 269(100), 577(20) | + | HMDB38848 | |
22 | 39.98 | 269.0449 | 269.0455 | −2.23 | C15H10O5 | Apigenin | 107(2), 117(11), 151(4), 269(100) | + | + | [34] |
23 | 40.86 | 253.0498 | 253.0506 | −3.16 | C15H10O4 | 7,4’-Dihydroxyflavone | 117(15), 135(7), 253(100) | + | HMDB0247290 | |
24 | 41.20 | 285.0399 | 285.0404 | −1.75 | C15H10O6 | Luteolin | 133(29), 151(5), 175(7), 285(100) | + | + | [30] |
25 | 41.75 | 285.0388 | 285.0404 | −5.61 | C15H10O6 | Fisetin | 135(27), 163(15), 285(100) | + | + | [35] |
Flavonols | ||||||||||
26 | 36.71 | 593.1505 | 593.1511 | −1.01 | C27H30O15 | Kaempferol-3-O-rutinoside | 151(1), 284, 285(100), 327(2), 593(71) | + | + | [30] |
27 | 37.18 | 447.0931 | 447.0932 | −0.22 | C21H20O11 | Kaempferol 7-O-glucoside | 285(100), 327(3), 447(51) | + | HMDB0303599 | |
28 | 38.00 | 577.1551 | 577.1562 | −1.91 | C27H30O14 | Kaempferitrin | 285(100), 431(4), 577(20) | + | [36] | |
29 | 41.30 | 345.0608 | 345.0615 | −2.03 | C17H14O8 | Limocitrin | 330(96), 345(100) | + | [37] | |
Isoflavones | ||||||||||
30 | 40.86 | 253.0509 | 253.0506 | 1.19 | C15H10O4 | Daidzin | Level 3 | + | HMDB33991 | |
Pentacyclic triterpenoids | ||||||||||
31 | 40.00 | 425.3745 | 425.3788 | −10.11 | C30H50O | Lupeol | Level 3 | + | + | - |
Fatty acids | ||||||||||
32 | 40.90 | 275.2011 | 275.2016 | −1.82 | C18H28O2 | Stearidonic acid | Level 3 | + | + | - |
33 | 41.36 | 255.2331 | 255.2329 | 0.78 | C16H32O2 | Palmitic acid | Level 3 | + | - | |
34 | 41.42 | 277.2161 | 277.2173 | −4.33 | C18H30O2 | Linolenic acid | Level 3 | + | + | - |
35 | 42.20 | 327.2304 | 327.2329 | −7.64 | C22H32O2 | DHA | Level 3 | + | - | |
36 | 43.51 | 281.2519 | 281.2486 | 11.73 | C18H34O2 | Oleic acid | Level 3 | + | - | |
37 | 43.71 | 585.4850 | 585.4888 | −6.49 | C38H66O4 | FAHFA 38:4 | Level 3 | + | - | |
38 | 43.81 | 279.2333 | 279.2329 | 1.43 | C18H32O2 | Linoleic acid | Level 3 | + | - | |
39 | 44.29 | 363.2509 | 363.2540 | −8.53 | C22H36O4 | FAHFA 22:3 | Level 3 | + | - | |
40 | 44.83 | 293.2116 | 293.2122 | −2.05 | C18H30O3 | Hydroxy octadecatrienoic acid | 221(13), 227(25), 277(65), 293(100) | + | [38] | |
Miscellaneous | ||||||||||
41 | 28.35 | 401.1446 | 401.1453 | −1.75 | C18H26O10 | Benzyl alcohol-hexoside-pentoside | 89(20), 101(52), 133(70), 193(41), 233(26), 269(61), 401(100) | + | HMDB41514 | |
42 | 32.11 | 415.1578 | 415.1609 | −7.47 | C19H28O10 | Benzyl-O-rutinoside | Level 3 | + | - | |
Unknowns | ||||||||||
43 | 3.36 | 201.0250 | 201.0252 | −0.99 | C4H10O9 | Unknown | - | + | + | - |
44 | 3.76 | 317.0514 | 317.0514 | 0.00 | C12H14O10 | Unknown | - | + | - | |
45 | 22.43 | 162.0555 | 162.0560 | −3.09 | C9H9NO2 | Unknown alkaloid | - | + | - | |
46 | 29.24 | 385.1861 | 385.1867 | −1.56 | C19H30O8 | Unknown | - | + | - | |
47 | 29.27 | 445.2076 | 445.2079 | −0.67 | C21H34O10 | Unknown | - | + | - | |
48 | 38.52 | 607.1669 | 607.1668 | 0.16 | C28H32O15 | Unknown | - | + | + | - |
49 | 39.29 | 431.2268 | 431.2286 | −4.17 | C21H36O9 | Unknown | - | + | - |
Compound | Target Biomolecule | Docking Score (kcal/mol) | RMSD | H-Bonding Interactions with Active Site Amino Acids |
---|---|---|---|---|
QYT | γ PI3K (PDB ID: 2A5U) | −6.6005 | 0.3195 | Asp 964, Val 882, Ile 881, Lys 833, Ser 806 |
Vitexin | −7.5173 | 1.4669 | Asp 964, Asp 950, Val 882, Ile 879, Ser 806, THR 887 | |
Kaempferol rutinoside | −8.7140 | 1.8553 | Asp 964, Asp 950, Lys 890, Val 882 | |
Luteolin | −6.3425 | 08061 | Asp 841, Asp 964, Ile 963 | |
Isoorinetin | −7.1223 | 1.3817 | Asp 950, Asp 964, Lys 807, Lys 833 | |
AQ4 | EGFR (PDB ID: 1M17) | −8.5478 | 1.6563 | Thr 766, Met 769 |
Vitexin | −7.3955 | 1.2149 | Met 742, Val 702, Asp 831 | |
Kaempferol rutinoside | −9.3078 | 2.3618 | Ala 719, Asp 831, Arg 817, Asn 818 | |
Luteolin | −6.2791 | 1.0875 | Met 769, Glu 738, Met 742 | |
Isoorinetin | −8.0587 | 1.5661 | Met 742, Asp 831, Leu 694, Met 769 | |
DTQ | CDK2 (PDB ID: 1DI8) | −7.1365 | 0.4501 | Glu 81, Asp 145, Leu 83, Phe 80 |
Vitexin | −7.5700 | 1.5588 | Gln 131, Gly 11, Phe 82, Leu 83, Val 18 | |
Kaempferol rutinoside | −8.5236 | 3.3823 | Asp 145, Val 18, Ala 144 | |
Luteolin | −6.3872 | 0.6960 | Leu 83, Asp 145, Val 18, Ala 144 | |
Isoorinetin | −6.8739 | 3.5786 | Asp 145, Lys 89, Val 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Ochoa, Á.; Younis, I.Y.; Arafa, R.K.; Cádiz-Gurrea, M.d.l.L.; Leyva-Jiménez, F.J.; Segura Carretero, A.; Mohsen, E.; Saber, F.R. Metabolite Profiling of Colvillea racemosa via UPLC-ESI-QTOF-MS Analysis in Correlation to the In Vitro Antioxidant and Cytotoxic Potential against A549 Non-Small Cell Lung Cancer Cell Line. Plants 2024, 13, 976. https://doi.org/10.3390/plants13070976
Fernández-Ochoa Á, Younis IY, Arafa RK, Cádiz-Gurrea MdlL, Leyva-Jiménez FJ, Segura Carretero A, Mohsen E, Saber FR. Metabolite Profiling of Colvillea racemosa via UPLC-ESI-QTOF-MS Analysis in Correlation to the In Vitro Antioxidant and Cytotoxic Potential against A549 Non-Small Cell Lung Cancer Cell Line. Plants. 2024; 13(7):976. https://doi.org/10.3390/plants13070976
Chicago/Turabian StyleFernández-Ochoa, Álvaro, Inas Y. Younis, Reem K. Arafa, María de la Luz Cádiz-Gurrea, Francisco Javier Leyva-Jiménez, Antonio Segura Carretero, Engy Mohsen, and Fatema R. Saber. 2024. "Metabolite Profiling of Colvillea racemosa via UPLC-ESI-QTOF-MS Analysis in Correlation to the In Vitro Antioxidant and Cytotoxic Potential against A549 Non-Small Cell Lung Cancer Cell Line" Plants 13, no. 7: 976. https://doi.org/10.3390/plants13070976
APA StyleFernández-Ochoa, Á., Younis, I. Y., Arafa, R. K., Cádiz-Gurrea, M. d. l. L., Leyva-Jiménez, F. J., Segura Carretero, A., Mohsen, E., & Saber, F. R. (2024). Metabolite Profiling of Colvillea racemosa via UPLC-ESI-QTOF-MS Analysis in Correlation to the In Vitro Antioxidant and Cytotoxic Potential against A549 Non-Small Cell Lung Cancer Cell Line. Plants, 13(7), 976. https://doi.org/10.3390/plants13070976