Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool
Abstract
:1. Introduction
2. Aquatic Weeds
- (1)
- Emersed or emergent weeds growing on the banks of water or shallow water, with their stems and leaves found over the water’s surface. Examples of emergent aquatic weeds are Cattail (Typha latifolia) [21], Common rush (Jucus usitatus), and Water couch (Paspalum distichum).
- (2)
- Algae can be found floating on water surfaces with no identifiable structures of stems, leaves, or roots. Examples of algae are Filamentous green algae (Cladophora sp., Spirogyra sp.), Chara, and Nitella.
- (3)
- Floating-type weeds can also be found on water surfaces but with identifiable structures, and these can be rooted or nonrooted. Examples of floating aquatic weeds are Water hyacinth (Eichhornia crassipes), Salvinia (Salvinia molesta), and Water lettuce (Pistia stratiotes).
- (4)
- Submersed or submerged weeds are rooted in the bottom of the water and grow within the water body up to the surface. Examples of submerged aquatic weeds are Elodea (Elodea canadensis), Hydrilla (Hydrilla verticillata), and Ribbonweed (Vallisneria australis).
3. Mechanical Control of Aquatic Weeds
4. Physical Control of Aquatic Weeds
5. Biological Control of Aquatic Weeds
6. Other Techniques of Aquatic Weed Control
7. Why UV-C as an Alternative/Novel Aquatic Weed Control Method?
8. Ultraviolet Radiation Impact on Plant Cell Death
9. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brinkhoff, J.; Hornbuckle, J.; Barton, J.L. Assessment of Aquatic Weed in Irrigation Channels Using UAV and Satellite Imagery. Water 2018, 10, 1497. [Google Scholar] [CrossRef]
- Lovell, S.J.; Stone, S.F.; Fernandez, L. The Economic Impacts of Aquatic Invasive Species: A Review of the Literature. Agric. Resour. Econ. Rev. 2016, 35, 195–208. [Google Scholar] [CrossRef]
- Van Vierssen, W.; Van Hofwegen, P.J.M.; Vermaat, J.E. The age of water scarcity: In search of a new paradigm in aquatic weed control. J. Aquat. Plant Manag. 2001, 39, 3–7. [Google Scholar]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Dugdale, T.M.; Clements, D.; Hunt, T.D.; Butler, K.L. Survival of a submerged aquatic weed (Egeria densa) during lake drawdown within mounds of stranded vegetation. Lake Reserv. Manag. 2012, 28, 153–157. [Google Scholar] [CrossRef]
- Hoffmann, M.A.; Benavent Gonzalez, A.; Raeder, U.; Melzer, A. Experimental weed control of Najas marina ssp intermedia and Elodea nuttallii in lakes using biodegradable jute matting. J. Limnol. 2013, 72, 485–493. [Google Scholar] [CrossRef]
- Marwoto, R.M.; Heryanto, H.; Joshi, R.C. The invasive apple snail Pomacea canaliculata in Indonesia: A case study in Lake Rawa Pening, Central Java. In Proceedings of the International Symposium on Indonesian Fauna (ISIF)—Unearthing, Highlighting, and Empowering Research in Indonesian Fauna—Future Challenges and Perspectives, Bogor, Indonesia, 2–4 December 2019. [Google Scholar]
- Duvall, R.J.; Anderson, L.W.J.; Goldman, C.R. Pond enclosure evaluations of microbial products and chemical algicides used in lake management. J. Aquat. Plant Manag. 2001, 39, 99–106. [Google Scholar]
- Cilliers, C.J.; Zeller, D.; Strydom, G. Short- and long-term control of water lettuce (Pistia stratiotes) on seasonal water bodies and on a river system in the Kruger National Park, South Africa. Hydrobiologia 1996, 340, 173–179. [Google Scholar] [CrossRef]
- Kuehne, L.M.; Hicks, M.C.; Wamsley, B.; Olden, J.D. Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia 2022, 849, 899–911. [Google Scholar] [CrossRef]
- Rodriguez-Garlito, E.C.; Paz-Gallardo, A.; Plaza, A. Automatic Detection of Aquatic Weeds: A Case Study in the Guadiana River, Spain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8567–8585. [Google Scholar] [CrossRef]
- Sinkala, T.; Mwase, E.T.; Mwala, M. Control of aquatic weeds through pollutant reduction and weed utilization: A weed management approach in the lower Kafue River of Zambia. Phys. Chem. Earth 2002, 27, 983–991. [Google Scholar] [CrossRef]
- Edgerton, E.; Wang, H.H.; Grant, W.E.; Masser, M. Aquatic Plant Invasion and Management in Riverine Reservoirs: Proactive Management via a Priori Simulation of Management Alternatives. Diversity 2022, 14, 1113. [Google Scholar] [CrossRef]
- Abbott, B.N.; Wallace, J.; Nicholas, D.M.; Karim, F.; Waltham, N.J. Bund removal to re-establish tidal flow, remove aquatic weeds and restore coastal wetland services-North Queensland, Australia. PLoS ONE 2020, 15, e0217531. [Google Scholar] [CrossRef] [PubMed]
- Smalling, K.L.; Devereux, O.H.; Gordon, S.E.; Phillips, P.J.; Blazer, V.S.; Hladik, M.L.; Kolpin, D.W.; Meyer, M.T.; Sperry, A.J.; Wagner, T. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. Sci. Total Environ. 2021, 774, 145687. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Lee, H.J.; Ryu, P.D. Public health risks: Chemical and antibiotic residues—Review. Asian-Australas. J. Anim. Sci. 2001, 14, 402–413. [Google Scholar] [CrossRef]
- Lopes, A.R.; Moraes, J.S.; Martins, C.D.G. Effects of the herbicide glyphosate on fish from embryos to adults: A review addressing behavior patterns and mechanisms behind them. Aquat. Toxicol. 2022, 251, 106281. [Google Scholar] [CrossRef] [PubMed]
- Dugdale, T.M.; Hunt, T.D.; Clements, D. Aquatic weeds in Victoria Where and why are they a problem, and how are they being controlled? Plant Prot. Q. 2013, 28, 35–41. [Google Scholar]
- Ortiz, M.F.; Nissen, S.J.; Thum, R.; Heilman, M.A.; Dayan, F.E. Current Status and Future Prospects of Herbicide for Aquatic Weed Management. Outlooks Pest Manag. 2020, 31, 270–275. [Google Scholar]
- Gorham, P. Aquatic Weed Management in Waterways and Dams. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0020/256403/Aquatic-weed-management-in-waterways-and-dams.pdf (accessed on 2 January 2024).
- Gul, B.; Khan, A.; Khan, H. Management of cattail in standing water of Swabi district, Khyber Pakhtunkhwa (KPK) province, Pakistan. J. Aquat. Plant Manag. 2018, 56, 31–34. [Google Scholar]
- Cavalli, R.M.; Fusilli, L.; Laneve, G.; Pascucci, S.; Palombo, A.; Pignatti, S.; Santini, F. Lake victoria aquatic weeds monitoring by high spatial and spectral resolution satellite imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1048–1051. [Google Scholar]
- Eiswerth, M.E.; Donaldson, S.G.; Johnson, W.S. Potential environmental impacts and economic damages of Eurasian watermilfoil (Myriophyllum spicatum) in western Nevada and northeastern California. Weed Technol. 2000, 14, 511–518. [Google Scholar] [CrossRef]
- Stallings, K.D.; Seth-Carley, D.; Richardson, R.J. Management of Aquatic Vegetation in the Southeastern United States. J. Integr. Pest Manag. 2015, 6, 3. [Google Scholar] [CrossRef]
- Zehnsdorf, A.; Hussner, A.; Eismann, F.; Rönicke, H.; Melzer, A. Management options of invasive Elodea nuttallii and Elodea canadensis. Limnologica 2015, 51, 110–117. [Google Scholar] [CrossRef]
- Armellina, A.D.; Bezic, C.R.; Gajardo, O.A. Propagation and mechanical control of Potamogeton illinoensis Morong in irrigation canals in Argentina. J. Aquat. Plant Manag. 1996, 34, 12–16. [Google Scholar]
- Dall’Armellina, A.; Gajardo, A.; Bezic, C.; Luna, E.; Britto, A.; Dall’Armellina, V. Mechanical aquatic weed management in the lower valley of the Rio Negro, Argentina. Hydrobiologia 1996, 340, 225–228. [Google Scholar] [CrossRef]
- Islam, M.N.; Rahman, F.; Papri, S.A.; Faruk, M.O.; Das, A.K.; Adhikary, N.; Debrot, A.O.; Ahsan, M.N. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. J. Environ. Manag. 2021, 294, 113036:1–113036:9. [Google Scholar] [CrossRef]
- Jain, M.S.; Kalamdhad, A.S. Efficacy of batch mode rotary drum composter for management of aquatic weed (Hydrilla verticillata (L.f.) Royle). J. Environ. Manag. 2018, 221, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K. Aquatic weed problems and their management: A review. II. Physical control measures. Crop Prot. 1988, 7, 283–302. [Google Scholar] [CrossRef]
- Barr, T.C.; Ditomaso, J.M. Curlyleaf pondweed (Potamogeton crispus) turion control with acetic acid and benthic barriers. J. Aquat. Plant Manag. 2014, 52, 31–38. [Google Scholar]
- Hofstra, D.E.; Clayton, J.S. Assessment of benthic barrier products for submerged aquatic weed control. J. Aquat. Plant Manag. 2012, 50, 101–105. [Google Scholar]
- Barr, T.C.; Ditomaso, J.M. Integrating hot water under a benthic barrier for curlyleaf pondweed turion control. J. Aquat. Plant Manag. 2015, 53, 1–6. [Google Scholar]
- Caffrey, J.M.; Millane, M.; Evers, S.; Moran, H.; Butler, M. A novel approach to aquatic weed control and habitat restoration using biodegradable jute matting. Aquat. Invasions 2010, 5, 123–129. [Google Scholar] [CrossRef]
- Caffrey, J.M.; Monahan, C. Control of Myriophyllum verticillatum L. in Irish canals by turion removal. Hydrobiologia 2006, 570, 211–215. [Google Scholar] [CrossRef]
- Cuda, J.P.; Charudattan, R.; Grodowitz, M.J.; Newman, R.M.; Shearer, J.F.; Tamayo, M.L.; Villegas, B. Recent advances in biological control of submersed aquatic weeds. J. Aquat. Plant Manag. 2008, 46, 15–32. [Google Scholar]
- Pipalova, I. A review of grass carp use for aquatic weed control and its impact on water bodies. J. Aquat. Plant Manag. 2006, 44, 1–12. [Google Scholar]
- Kumar, S. History, progress and prospects of classical biological control in India. Indian J. Weed Sci. 2015, 47, 306–320. [Google Scholar]
- Baars, J.R.; Coetzee, J.A.; Martin, G.; Hill, M.P.; Caffrey, J.M. Natural enemies from South Africa for biological control of Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae) in Europe. Hydrobiologia 2010, 656, 149–158. [Google Scholar] [CrossRef]
- Babu, R.M.; Sajeena, A.; Seetharaman, K. Solid substrate for production of Alternaria alternata conidia: A potential mycoherbicide for the control of Eichhornia crassipes (water hyacinth). Weed Res. 2004, 44, 298–304. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Badea, N.; Ungureanu, C.; Iordache, S.M.; Constantin, M.; Purcar, V.; Rau, I.; Pirvu, C. Ecobiophysical Aspects on Nanosilver Biogenerated from Citrus reticulata Peels, as Potential Biopesticide for Controlling Pathogens and Wetland Plants in Aquatic Media. J. Nanomater. 2017, 2017, 4214017. [Google Scholar] [CrossRef]
- Al-Gburi, O.; Radhi, M.N.; Rosca, I. Studies on Diaporthe eres (Phomopsis oblonga) as a new pathogen of water hyancith (Eichhornia crassipes) in Romania. Sci. Pap. Ser. A Agron. 2019, 62, 123–127. [Google Scholar]
- Allen, F.; Center, T.D. Reproduction and development of the biocontrol agent Hydrellia pakistanae (Diptera: Ephydridae) on monoecious hydrilla. Biol. Control 1996, 7, 275–280. [Google Scholar] [CrossRef]
- Andersen, T.; González, O.C.B.; Baars, J.R.; Earle, W. A new invasive weed-feeding species of Polypedilum (Pentapedilum) Kieffer from South Africa (Diptera: Chironomidae, Chironominae). Zootaxa 2015, 4000, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Maseko, Z.; Coetzee, J.A.; Hill, M.P. Effect of shade and eutrophication on the biological control of Salvinia molesta (Salviniaceae) by the weevil Cyrtobagous salviniae (Coleoptera: Erirhinidae). Austral Entomol. 2019, 58, 595–601. [Google Scholar] [CrossRef]
- Balciunas, J.K.; Burrows, D.W. Distribution, abundance and field host-range of Hydrellia balciunasi Bock (Diptera: Ephydridae) a biological control agent for the aquatic weed Hydrilla verticillata (Lf) Royle. Aust. J. Entomol. 1996, 35, 125–130. [Google Scholar] [CrossRef]
- Balciunas, J.K.; Burrows, D.W.; Purcell, M.F. Comparison of the physiological and realized host-ranges of a biological control agent from Australia for the control of the aquatic weed. Hydrilla verticillata. Biol. Control 1996, 7, 148–158. [Google Scholar] [CrossRef]
- Cuda, J.P.; Coon, B.R.; Dao, Y.M.; Center, T.D. Effect of an herbivorous stem-mining midge on the growth of hydrilla. J. Aquat. Plant Manag. 2011, 49, 83–89. [Google Scholar]
- Wilson, J.R.U.; Rees, M.; Ajuonu, O. Population regulation of a classical biological control agent: Larval density dependence in Neochetina eichhorniae (Coleoptera: Curculionidae), a biological control agent of water hyacinth Eichhornia crassipes. Bull. Entomol. Res. 2006, 96, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Bownes, A. Suppression of the aquatic weed Hydrilla verticillata (L.f.) Royle (Hydrocharitaceae) by a leaf-cutting moth Parapoynx diminutalis Snellen (Lepidoptera: Crambidae) in Jozini Dam, South Africa. Afr. J. Aquat. Sci. 2018, 43, 153–162. [Google Scholar] [CrossRef]
- Franceschini, M.C.; Hill, M.; Fuentes-Rodríguez, D.; Gervazoni, P.B.; Sabater, L.M.; Coetzee, J.A. Performance and field host range of the life stages of Cornops aquaticum, a biological control agent of water hyacinth. Entomol. Exp. Appl. 2023, 171, 954–964. [Google Scholar] [CrossRef]
- Pipalova, I. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquat. Bot. 2002, 73, 9–18. [Google Scholar] [CrossRef]
- Pal, M.; Yesankar, P.J.; Dwivedi, A.; Qureshi, A. Biotic control of harmful algal blooms (HABs): A brief review. J. Environ. Manag. 2020, 268, 110687:1–110687:10. [Google Scholar] [CrossRef]
- Kok, L.T.; McAvoy, T.J.; Malecki, R.A.; Hight, S.D.; Drea, J.J.; Coulson, J.R. Host Specificity Tests of Hylobius transversovittatus Goeze (Coleoptera: Curculionidae), a Potential Biological Control Agent of Purple Loosestrife, Lythrum salicaria L. (Lythraceae). Biol. Control 1992, 2, 1–8. [Google Scholar] [CrossRef]
- McAvoy, T.J.; Kok, L.T.; Mays, W.T. Establishment of Hylobius transversovittatus Goeze (Coleoptera: Curculionidae), a biological control agent of purple loosestrife, in Virginia. Biol. Control 2002, 24, 245–250. [Google Scholar] [CrossRef]
- Howell, A.W.; Leon, R.G.; Everman, W.J.; Mitasova, H.; Nelson, S.A.C.; Richardson, R.J. Performance of unoccupied aerial application systems for aquatic weed management: Two novel case studies. Weed Technol. 2023, 37, 277–286. [Google Scholar] [CrossRef]
- Göktogan, A.H.; Sukkarieh, S.; Bryson, M.; Randle, J.; Lupton, T.; Hung, C. A Rotary-wing Unmanned Air Vehicle for Aquatic Weed Surveillance and Management. J. Intell. Robot. Syst. 2010, 57, 467–484. [Google Scholar] [CrossRef]
- Gettys, L.A.; Thayer, K.L.; Sigmon, J.W. Evaluating the Effects of Acetic Acid and d-Limonene on Four Aquatic Plants. Horttechnology 2021, 31, 225–233. [Google Scholar] [CrossRef]
- Gettys, L.A.; Thayer, K.L.; Sigmon, J.W. Phytotoxic Effects of Acetic Acid and d-limonene on Four Aquatic Plants. Horttechnology 2022, 32, 110–118. [Google Scholar] [CrossRef]
- Gettys, L.A.; Thayer, K.L.; Sigmon, J.W.; Bishop, J.H. Selectivity and Efficacy of Acetic Acid and d-Limonene on Four Aquatic Plants. Horttechnology 2023, 33, 186–192. [Google Scholar] [CrossRef]
- Andreasen, C.; Hansen, L.; Streibig, J.C. The effect of ultraviolet radiation on the fresh weight of some weeds and crops. Weed Technol. 1999, 13, 554–560. [Google Scholar] [CrossRef]
- Rashid, M.H.; Alam, M.M.; Rao, A.N.; Ladha, J.K. Comparative efficacy of pretilachlor and hand weeding in managing weeds and improving the productivity and net income of wet-seeded rice in Bangladesh. Field Crops Res. 2012, 128, 17–26. [Google Scholar] [CrossRef]
- Chicouene, D. Mechanical destruction of weeds. A review. Agron. Sustain. Dev. 2007, 27, 19–27. [Google Scholar] [CrossRef]
- Machleb, J.; Peteinatos, G.G.; Kollenda, B.L.; Andujar, D.; Gerhards, R. Sensor-based mechanical weed control: Present state and prospects. Comput. Electron. Agric. 2020, 176, 105638. [Google Scholar] [CrossRef]
- Thompson, M.; Chauhan, B.S. History and perspective of herbicide use in Australia and New Zealand. Adv. Weed Sci. 2022, 40, e20210075. [Google Scholar] [CrossRef]
- Cullen, J.M.; Palmer, W.A.; Sheppard, A.W. Biological control of weeds in Australia: The last 120 years. Austral Entomol. 2023, 62, 133–148. [Google Scholar] [CrossRef]
- Roberts, J.; Florentine, S.; Fernando, W.G.D.; Tennakoon, K.U. Achievements, Developments and Future Challenges in the Field of Bioherbicides for Weed Control: A Global Review. Plants 2022, 11, 2242. [Google Scholar] [CrossRef]
- Bauer, M.V.; Marx, C.; Bauer, F.V.; Flury, D.M.; Ripken, T.; Streit, B. Thermal weed control technologies for conservation agriculture-a review. Weed Res. 2020, 60, 241–250. [Google Scholar] [CrossRef]
- Australian Radiation Protection and Nuclear Safety Agency. Radiation Protection Standard for Occupational Exposure to Ultraviolet Radiation. Available online: https://www.arpansa.gov.au/sites/default/files/legacy/pubs/rps/rps12.pdf (accessed on 10 January 2024).
- Paoluccio, J.J.; Paoluccio, J.A. Short Wavelength Ultraviolet Light Array for Aquatic Invasisve Weed Species Control Apparatus and Method. US Patent 9,622,465 B1, 18 April 2017. [Google Scholar]
- Paoluccio, J.J.; Paoluccio, J.A. Aquatic Plant Treatment Method and Apparatus with Flotation Containment Chamber. US Patent 10,123,525 B2, 13 November 2018. [Google Scholar]
- Tahoe Resource Conservation District. Aquatic Invasive Plant Control Pilot Project Final Monitoring Report. Available online: https://tahoercd.org/wp-content/uploads/2019/02/UV_Plant_Control_Pilot_2018_Monitoring_FINAL.pdf (accessed on 8 January 2024).
- Najeeb, U.; Xu, L.; Ahmed, Z.I.; Rasheed, M.; Jilani, G.; Naeem, M.S.; Shen, W.; Zhou, W. Ultraviolet-C mediated physiological and ultrastructural alterations in Juncus effusus L. shoots. Acta Physiol. Plant. 2010, 33, 481–488. [Google Scholar] [CrossRef]
- Barrado-Moreno, M.M.; Beltrán-Heredia, J.; Martín-Gallardo, J. Degradation of microalgae from freshwater by UV radiation. J. Ind. Eng. Chem. 2017, 48, 1–4. [Google Scholar] [CrossRef]
- Borderie, F.; Laurence, A.-S.; Naoufal, R.; Faisl, B.; Geneviève, O.; Dominique, R.; Badr, A.-S. UV–C irradiation as a tool to eradicate algae in caves. Int. Biodeterior. Biodegrad. 2011, 65, 579–584. [Google Scholar] [CrossRef]
- Chen, E.S.; Bridgeman, T.B. The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: A nature-based solution (NBS). Environ. Res. 2017, 156, 183–189. [Google Scholar] [CrossRef]
- Ji, N.H.; Chen, F.H.; Pang, Z.Z. Composition identification and UV-C irradiation growth inhibition effect of green shading on the greenhouse cover. Sci. Total Environ. 2022, 850, 158024:1–158024:8. [Google Scholar] [CrossRef]
- Li, S.; Tao, Y.; Zhan, X.M.; Dao, G.H.; Hu, H.Y. UV-C irradiation for harmful algal blooms control: A literature review on effectiveness, mechanisms, influencing factors and facilities. Sci. Total Environ. 2020, 723, 137986. [Google Scholar] [CrossRef] [PubMed]
- Lung, W.Q.C.; Yeh, H.-Y.; Yang, S.-J.; Huang, C.-Y.; Nan, F.-H.; Lee, M.-C. Delayed Signs of UV-C Damage to Chlorella sp. Observed through Fluorescent Staining. Diversity 2022, 14, 376. [Google Scholar] [CrossRef]
- Moharikar, S.; D’Souza, J.S.; Kulkarni, A.B.; Rao, B.J. Apoptotic-Like Cell Death Pathway Is Induced in Unicellular Chlorophyte Chlamydomonas Reinhardtii (Chlorophyceae) Cells Following UV Irradiation: Detection and Functional Analyses. J. Phycol. 2006, 42, 423–433. [Google Scholar] [CrossRef]
- Tekiner, M.; Ak, I.; Kurt, M. Impact of UV-C radiation on growth of micro and macro algae in irrigation systems. Sci. Total Environ. 2019, 672, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.; Oliveira, V.; Baptista, I.; Henriques, I.; Gomes, N.C.; Almeida, A.; Correia, A.; Cunha, A. Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch. Microbiol. 2013, 195, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Attia, H.; Ouhibi, C.; Urban, L.; Aarrouf, J. Effect of different doses of UV-C on visual appearance and chlorophyll fluorescence parameters of lettuce. In Proceedings of the 2021 International Conference of Women in Data Science at Taif University (WiDSTaif), Taif, Saudi Arabia, 30–31 March 2021; pp. 1–4. [Google Scholar]
- Danon, A.; Gallois, P. UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett. 1998, 437, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Xing, D.; Li, L.; Zhang, L. Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 2008, 227, 755–767. [Google Scholar] [CrossRef]
- Iriti, M.; Guarnieri, S.; Faoro, F. Responsiveness of Lycopersicon pimpinellifolium to acute UV-C exposure: Histo-cytochemistry of the injury and DNA damage. Acta Biochim. Pol. 2007, 54, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Vrahas, M.S.; Murray, C.K.; Hamblin, M.R. Ultraviolet C irradiation: An alternative antimicrobial approach to localized infections? Expert Rev. Anti-Infect. Ther. 2012, 10, 185–195. [Google Scholar] [CrossRef]
- Bintsis, T.; Litopoulou-Tzanetaki, E.; Robinson, R.K. Existing and potential applications of ultraviolet light in the food industry—A critical review. J. Sci. Food Agric. 2000, 80, 637–645. [Google Scholar] [CrossRef]
- Danon, A.; Delorme, V.; Mailhac, N.; Gallois, P. Plant programmed cell death: A common way to die. Plant Physiol. Biochem. 2000, 38, 647–655. [Google Scholar] [CrossRef]
- Fomicheva, A.S.; Tuzhikov, A.I.; Beloshistov, R.E.; Trusova, S.V.; Galiullina, R.A.; Mochalova, L.V.; Chichkova, N.V.; Vartapetian, A.B. Programmed cell death in plants. Biochemistry 2012, 77, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- Reape, T.J.; Molony, E.M.; McCabe, P.F. Programmed cell death in plants: Distinguishing between different modes. J. Exp. Bot. 2008, 59, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Palavan-Unsal, N.; Buyuktuncer, E.-D.; Tufekci, M.A. Programmed cell death in plants. J. Cell Mol. Biol. 2005, 4, 9–23. [Google Scholar]
- Nawkar, G.M.; Maibam, P.; Park, J.H.; Sahi, V.P.; Lee, S.Y.; Kang, C.H. UV-Induced cell death in plants. Int. J. Mol. Sci. 2013, 14, 1608–1628. [Google Scholar] [CrossRef]
- Dinakaran, R.; Zhang, L.; Li, C.S.; Bouridane, A.; Jiang, R. Robust and Fair Undersea Target Detection with Automated Underwater Vehicles for Biodiversity Data Collection. Remote Sens. 2022, 14, 3680. [Google Scholar] [CrossRef]
Life Form of Selected Aquatic Weeds | Scientific Name of Weed | Control Mechanism | Control Agent | Reference |
---|---|---|---|---|
Floating | Eichhornia crassipes | Fungal infection effect on plant growth | Diaporthe eres (Phomopsis oblonga) | [42] |
Submerged | Hydrilla verticillata | Leaf damage by larvae | Hydrellia pakistanae | [43] |
Submerged | Lagarosiphon major | larvae feed on actively growing shoots | Polypedilum tuburcinatum | [44] |
Floating | Eichhornia crassipes | Fungal pathogen | Alternaria alternata | [40] |
Floating | Salvinia molesta | Weevil feeding on leaves | Cyrtobagous salviniae | [45] |
Submerged | Hydrilla verticillata | Leaf damage by larvae | Hydrellia balciunas | [46] |
Submerged | Hydrilla verticillata | Feeding on plant | Bagous hydrillae | [47] |
Submerged | Hydrilla verticillata | Larvae feeding on growing tips | Cricotopus lebetis | [48] |
Floating | Eichhornia crassipes | Feeding on plant | Neochetina eichhorniae | [49] |
Submerged | Hydrilla verticillata | Feed on plant | Parapoynx diminutalis | [50] |
Floating | Eichhornia crassipes | Feed on leaves | Cornops aquaticum | [51] |
Algae | Cladophora globulina | Feed on algae | Ctenopharyngodon idella | [52] |
Algae | Phaeocystis globosa | Release of algicidal substances | Bacillus sp. | [53] |
Emergent | Lythrum salicaria | Feed on plant | Hylobius transversovittatus | [54,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udugamasuriyage, D.; Kahandawa, G.; Tennakoon, K.U. Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool. Plants 2024, 13, 1052. https://doi.org/10.3390/plants13081052
Udugamasuriyage D, Kahandawa G, Tennakoon KU. Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool. Plants. 2024; 13(8):1052. https://doi.org/10.3390/plants13081052
Chicago/Turabian StyleUdugamasuriyage, Dian, Gayan Kahandawa, and Kushan U. Tennakoon. 2024. "Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool" Plants 13, no. 8: 1052. https://doi.org/10.3390/plants13081052
APA StyleUdugamasuriyage, D., Kahandawa, G., & Tennakoon, K. U. (2024). Nonchemical Aquatic Weed Control Methods: Exploring the Efficacy of UV-C Radiation as a Novel Weed Control Tool. Plants, 13(8), 1052. https://doi.org/10.3390/plants13081052