Effects of Water and Nitrogen Control on the Growth Physiology, Yields, and Economic Benefits of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System
Abstract
:1. Introduction
2. Results
2.1. Impact of Water and Nitrogen Control on the Growth of Lycium barbarum Plants in a Lycium barbarium + Alfalfa System
2.1.1. Plant Height Growth Amount
2.1.2. Stem Diameter Growth Amount
2.2. Influence of Water and Nitrogen Control on the Physiology of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System
2.2.1. Chlorophyll Content(SPAD)
2.2.2. Photosynthetic Characteristics
- (1)
- Net Photosynthetic Rate (Pn)
- (2)
- Transpiration Rate (Tr)
- (3)
- Carboxylation Efficiency (CE)
- (4)
- Leaf Instantaneous Water Use Efficiency (LWUE)
2.3. Influences of Water and Nitrogen Control on the Yields and Economic Benefits of Lycium barbarum Crops in a Lycium barbarum + Alfalfa System
2.3.1. Yields and Economic Benefits
2.3.2. Regression Analysis of the Relationship between Water and Nitrogen Supply and Plant Yields/Net Profits
3. Discussion
3.1. Impact of Water and Nitrogen Control on the Growth of Lycium barbarum Plants
3.2. Influence of Water and Nitrogen Control on the Physiology of Lycium barbarum Plants
3.3. Influence of Water and Nitrogen Control on the Yields and Economic Benefits of Lycium barbarum Crops
4. Materials and Methods
4.1. Description of the Experimental Site
4.2. Experimental Design and Field Management
4.3. Indicators and Methods for Measurement
4.3.1. Soil Moisture Content
4.3.2. Plant Height and Stem Diameter Growth Amounts
4.3.3. Chlorophyll Content
4.3.4. Photosynthetic Characteristics
4.3.5. Yield
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Sci. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Yong, Q.; Yang, X.; Yu, W.; Hai, W.; Hong, G.; Hui, L. Study on tree species selection and allocation in urban ecological system construction on saline-alkali soil. Sci. Prot. For. 2002, 1, 5–7+27. [Google Scholar] [CrossRef]
- Dou, C.Y.; Kang, Y.H.; Wan, S.Q.; Hu, W. Soil salinity changes under cropping with Lycium barbarum L. and irrigation with saline-sodic water. Sci. Pedosphere. 2011, 21, 539–548. [Google Scholar] [CrossRef]
- Dong, J.Z.; Yang, J.J.; Wang, Y. Resources of Lycium species and related research progress. China J. Chin. Mater. Med. 2008, 33, 2020–2027. [Google Scholar]
- Noble, M.R.; Adair, R.J.; Ireland, K.B. Biology of invasive plants Lycium ferocissimum Miers. Invas. Plant Sci. Mana. 2021, 14, 41–56. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Q.; Li, Y.; Sun, T.; Jin, H.; Zhao, C.; Milime, E.; Easter, M.; Paustian, K.; Yong, H. Energy consumption, carbon emissions and global warming potential of wolfberry production in Jingtai Oasis, Gansu Province, China. Env. Manag. 2019, 64, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Chinese Agricultural Society Monitoring and Early Warning Branch. Chinese Wolfberry Market and Industry Survey and Analysis Report; Chinese Agricultural Society Monitoring and Early Warning Branch: Beijing, China, 2021. [Google Scholar]
- Ma, G.J.; Yue, Y.M.; Peng, Z.C.; He, C.C.; Wu, X.F.; Ji, J.L.; Huang, X.P. Structure and parameter optimization of collection system of gantry type wolfberry picker. For. Mach. Woodwork. Equip. 2024, 52, 50–55. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Wang, D. Sulfated modification can enhance the immune-enhancing activity of Lycium barbarum polysaccharides. Sci. Cell. Immunol. 2010, 263, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M. Water and fertilizer coupling technology model helps improve the quality and efficiency of Qaidam wolfberry industry. Agric. Tech. 2019, 39, 14–17. [Google Scholar] [CrossRef]
- Wei, M.; Shu, J.M.; Yang, R.J.; Li, Y.W. Development and utilization of saline lake resources and protection of ecological environment in Qaidam Basin in Qinghai Province. Sci. Acta. Geol. Sin. 2014, 1, 191–193. [Google Scholar] [CrossRef]
- Duan, Q.; Kan, L.; Tsai, S. Analysis on forestry economic growth index based on internet big data. Sci. Math. Probl. Eng. 2021, 2021, 2286629. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Liu, Y.Y.; Yin, J.W.; Chang, Z.J.; Wang, Y.R.; Liu, L.; Tin, Y.S.; Chen, W.N.; Wang, L.S.; Hao, L.H. Effects of watering and CO2 on leaf photosynthesis and water use efficiency of maize. Trans. Chin. Soc. Agric. Eng. 2023, 39, 71–81. [Google Scholar] [CrossRef]
- Gregory, P.J.; Simmonds, L.P.; Warren, G.P. Interactions between plant nutrients, water and carbon dioxide as factors limiting crop yields. Phil. Sci. Trans. R. Soc. Lond. B 1997, 352, 987–996. [Google Scholar] [CrossRef]
- Jia, M.L.; Su, L.T.; Bai, Y.G. Effects of different water treatments on plant growth and yield of Lycium barbarum in Northern Xinjiang. Bull. Soil Water Conserv. 2022, 42, 99–105. [Google Scholar]
- Zheng, G.Q.; Zhang, L.; Zheng, G.B.; Zhang, Y.P.; Wang, J.; Hu, Z.H. Effects of irrigation amount on leaf structure, photosynthetic physiology, and fruit yield of Lycium barbarum in arid area. Chin. J. Appl. Ecol. 2010, 21, 2806–2813. [Google Scholar]
- Zhang, J.; Zhu, H.; Yang, C.; Li, Y.; Wei, H. Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN. Sci. Energ. Convers. Manag. 2011, 52, 538–546. [Google Scholar] [CrossRef]
- Doby, J.R.; Li, D.; Folk, R.A. Aridity drives phylogenetic diversity and species richness patterns of nitrogen-fixing plants in North America. Sci. Glob. Ecol. Biogeogr. 2022, 31, 1630–1642. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, Z.; Huang, H. Nitrogen fertilization in soil affects physiological characteristics and quality of green tea leaves. Hortscience 2018, 53, 715–722. [Google Scholar] [CrossRef]
- He, Z.Q.; Li, Y.Q. Effects of nitrogen fertilizer application on growth and yield of Lycium barbarum Murr. For. By-Prod. Spec. China 2022, 2, 20–22. [Google Scholar]
- Liang, X.J.; An, W.; Li, Y.K.; Wang, Y.J.; Qin, X.Y.; Duan, L.Y. Response of Lycium barbarum root development and above-ground growth to different nitrogen application rates. Acta Agric. Boreali-Occident. Sin. 2023, 32, 72–83. [Google Scholar]
- Lu, J.J.; Sheng, H.Y.; Hua, M.X.; Nie, Y.F.; Gao, Y.J.; Xu, M.C.; Wei, J.J. Effects of different nitrogen rates combined with nitrification inhibitor on wolfberry yield, nitrogen uptake and utilization in Qaidam. Acta Agric. Boreali-Occident. Sin. 2023, 32, 1058–1067. [Google Scholar]
- Sepaskhah, A.R.; Tafteh, A. Yield and nitrogen leaching in rapeseed field under different nitrogen rates and water saving irrigation. Agric. Water Manag. 2012, 112, 55–62. [Google Scholar] [CrossRef]
- Perdoná, M.J.; Soratto, R.P. Higher yield and economic benefits are achieved in the macadamia crop by irrigation and intercropping with coffee. Sci. Hortic. 2015, 185, 59–67. [Google Scholar] [CrossRef]
- Zhao, C.; Chai, Q.; Zhao, Y.; Mu, Y.; Zhang, Y.; Yu, A.; Feng, F.; Liu, C.; Yin, W.; Hu, F. Interspecific competition and complementation is a function of N management in maize-pea intercropping systems. Crop Sci. 2016, 56, 3286–3294. [Google Scholar] [CrossRef]
- Li, C.N.; Wang, R.S.; Zhou, X.; Zheng, C.H.; Liu, W.Z.; Li, Y.H. Effects of water and fertilizer regulation on photosynthetic characteristics yield and water use of apple-soybean intercropping system under drip irrigation. J. Soil Water Conserv. 2020, 34, 299–310. [Google Scholar]
- Luo, C.; Wang, R.; Li, C.; Zheng, C.; Dou, X. Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, China. Agric. Water Manag. 2023, 275, 108001. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, R.; Gao, F.; Xiao, H.; Xu, H.; Wang, D. Apple and maize physiological characteristics and water-use efficiency in an alley cropping system under water and fertilizer coupling in Loess Plateau, China. Agric. Water Manag. 2019, 221, 1–12. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; He, J.; Zhou, X.; Wang, F.; Zhao, Y.; Liang, X.; Nan, X.; Li, Y.; Qin, K. Development of Lycium barbarum–forage intercropping iatterns. Agronomy 2023, 13, 1365. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Su, Z.; Du, G.; Bai, W.; Wang, Q.; Wang, R.; Nie, J.; Sun, T.; Feng, C.; et al. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crop Res. 2022, 282, 108523. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, F.; Ma, C.; Zhang, F.; Jensen, E.S. Interspecific interactions of iron and nitrogen use in peanut (Arachis hypogaea L.)-maize (Zea mays L.) intercropping on a calcareous soil. Eur. J. Agron. 2021, 128, 126303. [Google Scholar] [CrossRef]
- Wang, C.; Liang, Q.; Liu, J.; Zhou, R.; Lang, X.; Xu, S.; Li, X.; Gong, A.; Mu, Y.; Fang, H.; et al. Impact of intercropping grass on the soil rhizosphere microbial community and soil ecosystem function in a walnut orchard. Front. Microbiol. 2023, 14, 1137590. [Google Scholar] [CrossRef]
- Qi, G.P.; Yin, M.H.; Su, P.H.; Kang, Y.X.; Li, X.M.; Wang, J.H. Effects of water regulation on photosynthetic characteristics and water use Lycium barbarum under the mode of intercropping alfalfa and Lycium barbarum. J. Soil Water Conserv. 2019, 33, 242–248+256. [Google Scholar]
- Yang, Y.; Zha, W.; Tang, K.; Deng, G.; Du, G.; Liu, F. Effect of nitrogen supply on growth and nitrogen utilization in hemp (Cannabis sativa L.). Agronomy 2021, 11, 2310. [Google Scholar] [CrossRef]
- Yu, H.; Xu, L.G.; Wang, H.B. Effects of different water and fertilizer coupling on the growth, yield and quality of Lycium barbarum L. in Ningxia. J. Water Res. Eng. 2023, 34, 208–215+224. [Google Scholar]
- Gao, R.; Pan, Z.; Zhang, J.; Chen, X.; Qi, Y.; Zhang, Z.; Chen, S.; Jiang, K.; Ma, S.; Wang, J.; et al. Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agric. Water Manag. 2023, 283, 108326. [Google Scholar] [CrossRef]
- Dai, Z.; Fei, L.; Huang, D.; Zeng, J.; Chen, L.; Cai, Y. Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region. Agric. Water Manag. 2019, 213, 146–154. [Google Scholar] [CrossRef]
- Dai, Z.; Fei, L.; Zeng, J.; Huang, D.; Liu, T. Optimization of water and nitrogen management for surge-root irrigated apple trees in the Loess Plateau of China. J. Integr. Agric. 2021, 20, 260–273. [Google Scholar] [CrossRef]
- Mofokeng, M.M.; Steyn, J.M.; Plooy, C.P.; Prinsloo, G.; Araya, H.T. Growth of pelargonium sidoides DC. in response to water and nitrogen level. S. Afr. J. Bot. 2015, 100, 183–189. [Google Scholar] [CrossRef]
- He, Y.; Xi, B.; Li, G.; Wang, Y.; Jia, L.; Zhao, D. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agric. Water Manag. 2021, 243, 106460. [Google Scholar] [CrossRef]
- Li, Y.X.; Yu, J.H.; Zhang, G.B.; Wu, T.N. Effects of irrigation limits and fertilizing amount on enzyme and microbial activity in greenhouse tomato rhizosphere soil. Hubei Agric. Sci. 2019, 58, 128–132. [Google Scholar] [CrossRef]
- Yang, K.J.; Chi, Y.X.; Fu, J.; Yang, L.; Zhou, X.B.; Ahmad, S.; Zhu, H.D. Effects of nitrogen and water stress on the rehydration, endogenous hormonal regulation and yield of maize. J. Agron. Crop Sci. 2023, 209, 161–175. [Google Scholar] [CrossRef]
- Hong, G.L.; Xin, L.H.; Jing, L.; Fang, L.; Ping, G.; Jie, Z.; Guang, Y. Effects of water-fertilizer coupling on root distribution and yield of Chinese Jujube trees in Xinjiang. Int. J. Agric. Biol. Eng. 2017, 10, 103–114. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, M.; Li, Y.; Zhang, B.; Wu, X.; Shi, Y.; Liu, H. Evaluating the combined effects of water and fertilizer coupling schemes on pear vegetative growth and quality in North China. Agronomy 2023, 13, 867. [Google Scholar] [CrossRef]
- The Editorial Committee of Biology Volume of the General Editorial Committee of the Chinese Agricultural Encyclopedia, the Editorial Department of the Chinese Agricultural Encyclopedia; Encyclopedia of Chinese Agriculture Biology Volume; Agriculture Press: Beijing, China, 1996; pp. 611–613.
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Wang, R.F.; Xu, H.S.; Wang, D.M.; Yang, Z.R. Analysis of crop growth and economic benefit in an apple-maize intercropping system under water and fertilizer coupling. Agric. Res. Arid Areas 2017, 35, 20–28+37. [Google Scholar] [CrossRef]
- Atti, S.; Bonnell, R.; Smith, D.; Prasher, S. Response of an indeterminate soybean {Glycine Max (L.) Merr} to chronic water deficit during reproductive development under greenhouse conditions. Can. Water Resour. J. 2004, 29, 209–222. [Google Scholar] [CrossRef]
- Hui, Y.; Hong, X.C.; Shi, H.L.; Mei, Y.L. Effects of water and nitrogen coupling on photosynthetic characteristics and yield of greenhouse tomato. J. Irrig. Drain. Eng. 2014, 33, 58–62. [Google Scholar]
- Yue, W.; Liu, L.; Chen, S.; Bai, Y.; Li, N. Effects of water and nitrogen coupling on growth, yield and quality of greenhouse tomato. Water 2022, 14, 3665. [Google Scholar] [CrossRef]
- Liang, J.; He, Z.; Shi, W. Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China. Agric. Water. Manag. 2020, 240, 106277. [Google Scholar] [CrossRef]
- Ren, H.; Jiang, Y.; Zhao, M.; Qi, H.; Li, C. Nitrogen supply regulates vascular bundle structure and matter transport characteristics of spring maize under high plant density. Front. Plant. Sci. 2021, 11, 602739. [Google Scholar] [CrossRef] [PubMed]
- Maghsud, S.G.; Zargari, M.; Lakzayi, M.; Keshtehgar, A.; Rigi, K. Influence of drought stress on assimilation of carbon, activity of photosynthetic enzymes, heat shock proteins, antioxidants, proline accumulation and protein contents in crop plants. Int. J. Biosci. 2014, 5. [Google Scholar] [CrossRef]
- Nasar, J.; Khan, W.; Khan, M.Z.; Gitari, H.I.; Gbolayori, J.F.; Moussa, A.A.; Mandozai, A.; Rizwan, N.; Anwari, G.; Maroof, S.M. Photosynthetic activities and photosynthetic nitrogen use efficiency of maize crop under different planting patterns and nitrogen fertilization. J. Soil Sci. Plant Nut. 2021, 21, 2274–2284. [Google Scholar] [CrossRef]
- Qiang, B.; Zhou, W.; Zhong, X.; Fu, C.; Cao, L.; Zhang, Y.; Jin, X. Effect of nitrogen application levels on photosynthetic nitrogen distribution and use efficiency in soybean seedling leaves. J. Plant Physiol. 2023, 287, 154051. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhong, C.; Sa, J.H.; Zhu, L.; Zhang, J.; Wu, L.; Jin, Q. Effects of watering regime and nitrogen application rate on the photosynthetic parameters, physiological characteristics, and agronomic traits of rice. Acta Physiol. Plant. 2017, 39, 135. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Xie, Z. Effects of silicon on maize photosynthesis and grain yield in black soils. Emir. J. Food Agric. 2016, 28, 1. [Google Scholar] [CrossRef]
- Querné, A.; Battie-laclau, P.; Dufour, L.; Wery, J.; Dupraz, C. Effects of walnut trees on biological nitrogen fixation and yield of intercropped alfalfa in a mediterranean agroforestry system. Eur. J. Agron. 2017, 84, 35–46. [Google Scholar] [CrossRef]
- Szymańska, R.; Ślesak, I.; Orzechowska, A.; Kruk, J. Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 2017, 139, 165–177. [Google Scholar] [CrossRef]
- Hao, K.; Liu, X.G.; Han, Z.H.; Yu, N.; Cheng, J.H.; Liu, C.; Li, Y.L.; Yang, Q.L. Effects of deficit irrigation on water-radiation use and yield of coffea arabica under different shade cultivation modes in dry-hot region. J. Appl. Ecol. 2018, 29, 3550–3558. [Google Scholar] [CrossRef]
- Gao, Y.; Qi, G.; Ma, Y.; Yin, M.; Wang, J.; Wang, C.; Tian, R.; Xiao, F.; Lu, Q.; Wang, J. Regulation effects of water and nitrogen on yield, water, and nitrogen use efficiency of wolfberry. J. Arid Land. 2024, 16, 29–45. [Google Scholar] [CrossRef]
- Wang, A.X.; Ma, Y.L.; Qi, G.P.; Kang, Y.X.; Yin, M.H.; Wang, J.H.; Jia, Q.; Tang, Z.X.; Jiang, Y.B. Water and nitrogen regulation patterns for productivity improvement of bromus inermis and alfalfa mixed grassland. J. Soil Water Conserv. 2022, 36, 322–330. [Google Scholar] [CrossRef]
- Hao, K.; Fei, L.; Wang, X. Comprehensive evaluation on the yield, quality, and water-nitrogen use efficiency of mountain apple under surge-root irrigation in the Loess Plateau based on the improved TOPSIS method. Front. Plant. Sci. 2022, 13, 853546. [Google Scholar] [CrossRef]
- Deng, Z.; Yin, J.; Wu, J.B.; Zhang, H.J. Comprehensive evaluation of water and fertilizer application for Lycium barbarum L. based on AHP and entropy weight method. J. Drain. Irrig. Mach. Eng. 2021, 39, 712–719. [Google Scholar] [CrossRef]
- Tang, Z.; Yin, M.; Qi, G.; Kang, Y.; Ma, Y.; Wang, J.; Jia, Q.; Wang, A.; Jiang, Y. Effects of optimal irrigation and nitrogen coupling on Bromus inermis yield, nitrogen, phosphorus, and potassium stoichiometric characteristics. J. Plant Nutr. Fert. 2022, 28, 532–545. [Google Scholar] [CrossRef]
W | N | Irrigation Amount (m3·ha−1) | Yield (kg·ha−1) | Economic Benefits | ||||
---|---|---|---|---|---|---|---|---|
Dry Weight | Fresh Weight | Total Income (×104 CNY·ha−1) | Total Cost (×104 CNY·ha−1) | Net Income (×104 CNY·ha−1) | Input–Output Ratio | |||
W1 | N0 | 2475.09 | 1424.93 i | 5099.49 h | 5.13 i | 2.86 g | 2.27 f | 1.79 h |
N1 | 2410.16 | 1566.56 h | 5342.62 gh | 5.64 h | 2.84 g | 2.80 e | 1.99 ef | |
N2 | 2540.60 | 1690.24 g | 5878.4 g | 6.08 g | 2.92 g | 3.16 d | 2.08 de | |
N3 | 2612.09 | 1566.14 h | 5672.99 gh | 5.64 h | 2.75 g | 2.89 de | 2.05 de | |
W2 | N0 | 3150.11 | 1873.35 f | 6906.36 f | 6.74 f | 3.52 e | 3.23 d | 1.92 fg |
N1 | 2905.85 | 1986.88 f | 7026.51 f | 7.15 f | 3.44 ef | 3.71 c | 2.08 de | |
N2 | 3233.47 | 2117.5 e | 7444.83 def | 7.62 e | 3.50 ef | 4.13 b | 2.18 bc | |
N3 | 3324.47 | 1994.58 f | 7116.63 ef | 7.18 f | 3.28 f | 3.9 bc | 2.19 bc | |
W3 | N0 | 3825.13 | 1899.94 f | 7245.93 ef | 6.84 f | 3.66 de | 3.18 d | 1.87 gh |
N1 | 3528.56 | 2247.62 d | 8136.67 c | 8.09 d | 3.85 cd | 4.24 b | 2.1 cd | |
N2 | 3926.39 | 2521.14 ab | 8843.86 b | 9.08 ab | 4.01 bc | 5.07 a | 2.26 ab | |
N3 | 4036.85 | 2339.56 cd | 7984.34 cd | 8.42 cd | 3.6 e | 4.82 a | 2.34 a | |
W4 | N0 | 4500.05 | 1902.05 f | 7741.42 cde | 6.85 f | 3.85 cd | 2.99 de | 1.78 h |
N1 | 4151.24 | 2254.65 d | 8804.01 b | 8.12 d | 4.11 b | 4.01 bc | 1.98 ef | |
N2 | 4619.28 | 2623.07 a | 10668.14 a | 9.44 a | 4.67 a | 4.77 a | 2.02 de | |
N3 | 4749.22 | 2451.05 bc | 8894.13 b | 8.82 bc | 3.95 bc | 4.88 a | 2.24 ab | |
F | W | – | 293.403 ** | 211.238 ** | 293.403 ** | 234.409 ** | 161.587 ** | 21.775 ** |
N | – | 96.613 ** | 33.792 ** | 96.613 ** | 20.572 ** | 124.943 ** | 93.061 ** | |
W × N | – | 7.697 ** | 4.926 ** | 7.697 ** | 4.934 ** | 7.179 ** | 3.152 ** |
Treatment | Irrigation Mode (% θf) | Nitrogen Application Level (kg·ha−1) |
---|---|---|
W1N0 | 45–55 (Severe water deficit) | 0 |
W1N1 | 150 | |
W1N2 | 300 | |
W1N3 | 450 | |
W2N0 | 55–65 (Moderate water deficit) | 0 |
W2N1 | 150 | |
W2N2 | 300 | |
W2N3 | 450 | |
W3N0 | 65–75 (Mild water deficit) | 0 |
W3N1 | 150 | |
W3N2 | 300 | |
W3N3 | 450 | |
W4N0 | 75–85 (sufficient irrigation) | 0 |
W4N1 | 150 | |
W4N2 | 300 | |
W4N3 | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Qi, G.; Ma, Y.; Yin, M.; Wang, J.; Kang, Y.; Jia, Q.; Gao, Y.; Tian, R.; Zhang, R.; et al. Effects of Water and Nitrogen Control on the Growth Physiology, Yields, and Economic Benefits of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System. Plants 2024, 13, 1095. https://doi.org/10.3390/plants13081095
Wang C, Qi G, Ma Y, Yin M, Wang J, Kang Y, Jia Q, Gao Y, Tian R, Zhang R, et al. Effects of Water and Nitrogen Control on the Growth Physiology, Yields, and Economic Benefits of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System. Plants. 2024; 13(8):1095. https://doi.org/10.3390/plants13081095
Chicago/Turabian StyleWang, Chen, Guangping Qi, Yanlin Ma, Minhua Yin, Jinghai Wang, Yanxia Kang, Qiong Jia, Yalin Gao, Rongrong Tian, Rong Zhang, and et al. 2024. "Effects of Water and Nitrogen Control on the Growth Physiology, Yields, and Economic Benefits of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System" Plants 13, no. 8: 1095. https://doi.org/10.3390/plants13081095
APA StyleWang, C., Qi, G., Ma, Y., Yin, M., Wang, J., Kang, Y., Jia, Q., Gao, Y., Tian, R., Zhang, R., Lu, Q., & Xiao, F. (2024). Effects of Water and Nitrogen Control on the Growth Physiology, Yields, and Economic Benefits of Lycium barbarum Plants in a Lycium barbarum + Alfalfa System. Plants, 13(8), 1095. https://doi.org/10.3390/plants13081095