Effects of Organic Fertilizer on Photosynthesis, Yield, and Quality of Pakchoi under Different Irrigation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Description
2.2. Experimental Design and Field Management
2.3. Measurements and Calculations
2.3.1. Measurements of Pakchoi Samples
2.3.2. Light Response Curve Model
2.4. Statistical Analysis
3. Results
3.1. Photosynthetic Physiological Characteristics
3.2. Applicability Evaluation of Light Response Model
3.3. Change Characteristics of Light Response Model Parameters
3.4. Relationship between Photosynthetic Characteristics and Yield Quality
4. Discussion
4.1. Effects of Irrigation and Fertilization on Photosynthetic Characteristics and Yield of Pakchoi
4.2. Characteristics of Light Response Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leghari, S.J.; Hu, K.; Wei, Y.; Wang, T.; Bhutto, T.A.; Buriro, M. Modelling Water Consumption, N Fates and Maize Yield under Different Water-Saving Management Practices in China and Pakistan. Agric. Water Manag. 2021, 255, 107033. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.S.; Cui, C.F.; Jiang, Y.T.; Chen, Y.; Ju, J.L.; Guo, N. Changes in the Spatial and Temporal Characteristics of China’s Arid Region in the Background of ENSO. Sci. Rep. 2022, 12, 17826. [Google Scholar] [CrossRef]
- Ren, B.Z.; Yu, W.Z.; Liu, P.; Zhao, B.; Zhang, J.W. Responses of Photosynthetic Characteristics and Leaf Senescence in Summer Maize to Simultaneous Stresses of Waterlogging and Shading. Crop J. 2023, 11, 269–277. [Google Scholar] [CrossRef]
- Du, J.R.; Zhang, X.; Feng, X.; Wu, Y.; Cheng, F.; Ali, M.E.A. Desalination of High Salinity Brackish Water by an NF-RO Hybrid System. Desalination 2020, 491, 114445. [Google Scholar] [CrossRef]
- Zhu, J.J.; Yang, M.; Sun, J.N.; Zhang, Z.H. Response of Water-Salt Migration to Brackish Water Irrigation with Different Irrigation Intervals and Sequences. Water 2019, 11, 2089. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Xiao, Y.; Puig-Bargués, J.; Zhou, B.; Liu, Z.Y.; Muhammad, T.; Liang, H.B.; Maitusong, M.; Wang, Z.H.; Li, Y.K. Assessment of Water Quality Ions in Brackish Water on Drip Irrigation System Performance Applied in Saline Areas. Agric. Water Manag. 2023, 289, 108544. [Google Scholar] [CrossRef]
- Feng, X.L.; Liu, R.; Li, C.J.; Zhang, H.; Slot, M. Contrasting Responses of Two C4 Desert Shrubs to Drought but Consistent Decoupling of Photosynthesis and Stomatal Conductance at High Temperature. Environ. Exp. Bot. 2023, 209, 105295. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhang, P.Z.; Wang, X.C.; Hakeem, A.; Niu, M.X.; Song, S.Y.; Fang, J.G.; Shangguan, L.F. Comparative Analysis of Different Bio-Organic Fertilizers on Growth and Rhizosphere Environment of Grapevine Seedlings. Sci. Hortic. 2024, 324, 112587. [Google Scholar] [CrossRef]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef]
- Reardon, C.L.; Klein, A.M.; Melle, C.J.; Hagerty, C.H.; Klarer, E.R.; Machado, S.; Paulitz, T.; Pritchett, L.; Schlatter, D.; Smith, S.F.; et al. Enzyme Activities Distinguish Long-Term Fertilizer Effects under Different Soil Storage Methods. Appl. Soil Ecol. 2022, 177, 104518. [Google Scholar] [CrossRef]
- García-Orenes, F.; Roldán, A.; Mataix-Solera, J.; Cerdà, A.; Campoy, M.; Arcenegui, V.; Caravaca, F. Soil Structural Stability and Erosion Rates Influenced by Agricultural Management Practices in a Semi-Arid Mediterranean Agro-Ecosystem. Soil Use Manag. 2012, 28, 571–579. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.C.; Zhang, S.X.; Wang, Y.Q. What Could Promote Farmers to Replace Chemical Fertilizers with Organic Fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Chen, X.J.; Zeng, D.; Xu, Y.; Fan, X.J. Perceptions, Risk Attitude and Organic Fertilizer Investment: Evidence from Rice and Banana Farmers in Guangxi, China. Sustainability 2018, 10, 3715. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different Organic Manure Sources and NPK Fertilizer on Soil Chemical Properties, Growth, Yield and Quality of Okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Sun, G.F.; Du, W.C.; Ai, F.X.; Yin, Y.; Guo, H.Y. Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. Bull. Environ. Contam. Toxicol. 2023, 110, 20. [Google Scholar] [CrossRef]
- Liu, W.B.; Cui, S.Y.; Wu, L.T.; Qi, W.L.; Chen, J.H.; Ye, Z.Q.; Ma, J.W.; Liu, D. Effects of Bio-organic Fertilizer on Soil Fertility, Yield, and Quality of Tea. J. Soil Sci. Plant Nutr. 2023, 23, 5109–5121. [Google Scholar] [CrossRef]
- Gao, F.C.; Li, H.J.; Mu, X.G.; Gao, H.; Zhang, Y.; Li, R.M.; Cao, K.; Ye, L. Effects of Organic Fertilizer Application on Tomato Yield and Quality: A Meta-Analysis. Appl. Sci. 2023, 13, 2184. [Google Scholar] [CrossRef]
- Frąc, M.; Sas-Paszt, L.; Sitarek, M. Changes in the Mineral Content of Soil following the Application of Different Organic Matter Sources. Agriculture 2023, 13, 1120. [Google Scholar] [CrossRef]
- Tomazello, D.A.; Da Fonseca Melo, E.M.; Santos, A.J.M.; Backes, C.; Teodoro, A.G.; Bezerra Fernandes, P.; Rodrigues, L.M.; Da Silva Belizário, D.; Ribon, A.A. Agronomic Performance and Soil Chemical Composition When Using Poultry Litter as Organic Fertilizer in Mombasa Guinea Grass Production. N. Z. J. Agric. Res. 2023. [Google Scholar] [CrossRef]
- Tröster, M.F. Assessing the Value of Organic Fertilizers from the Perspective of EU Farmers. Agriculture 2023, 13, 1057. [Google Scholar] [CrossRef]
- Turner, E.R.; Luo, Y.G.; Buchanan, R.L. Microgreen Nutrition, Food Safety, and Shelf Life: A review. J. Food Sci. 2020, 85, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.H.; Zhang, Y.X.; Ming, C.D.; Wang, J.M.; Zhang, Y. Amended Compost Alleviated the Stress of Heavy Metals to Pakchoi Plants and Affected the Distribution of Heavy Metals in Soil-Plant System. J. Environ. Manag. 2023, 336, 117674. [Google Scholar] [CrossRef] [PubMed]
- Akhkha, A. Modelling Photosynthetic Light-Response Curve in Calotropis Procera Under Salinity or Water Deficit Stress Using Non-Linear Models. J. Taibah Univ. Sci. 2010, 3, 49–57. [Google Scholar] [CrossRef]
- Yao, H.S.; Zhang, Y.L.; Yi, X.P.; Zuo, W.Q.; Lei, Z.Y.; Sui, L.L.; Zhang, W.F. Characters in Light-Response Curves of Canopy Photosynthetic Use Efficiency of Light and N in Responses to Plant Density in Field-Grown Cotton. Field Crop. Res. 2017, 203, 192–200. [Google Scholar] [CrossRef]
- Li, Y.T.; Yang, C.; Zhang, Z.S.; Zhao, S.J.; Gao, H.Y. Photosynthetic Acclimation Strategies in Response to Intermittent Exposure to High Light Intensity in Wheat (Triticum aestivum L.). Environ. Exp. Bot. 2021, 181, 104275. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H.Y.; Xian, S.T.; Wang, J.W.; Zheng, X.B.; Song, X.L. Phytotoxic Effects of Polyethylene Microplastics Combined with Cadmium on the Photosynthetic Performance of Maize (Zea mays L.). Plant Physiol. Biochem. 2023, 203, 108065. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, T.S.; Wu, F.Y.; Liu, Y.; Zhou, S.; Wang, Y.X. Photosynthetic and Hydraulic Changes Caused by Water Deficit and Flooding Stress Increase Rice’s Intrinsic Water-Use Efficiency. Agric. Water Manag. 2023, 289, 108527. [Google Scholar] [CrossRef]
- Lin, S.D.; Wang, C.H.; Lei, Q.Y.; Wei, K.; Wang, Q.J.; Deng, M.J.; Su, L.J.; Liu, S.Y.; Duan, X.X. Effects of Combined Application of Organic Fertilizer on the Growth and Yield of Pakchoi under Different Irrigation Water Types. Agronomy 2023, 13, 2468. [Google Scholar] [CrossRef]
- Wang, X.K. Experimental Principle and Technique for Plant Physiology and Biochemistry; Higher Education Press: Beijing, China, 2006. [Google Scholar]
- Lin, S.D.; Wang, Q.J.; Wei, K.; Sun, Y.; Shao, F.F.; Lei, Q.Y.; Deng, M.J. Enhancing pakchoi (Brassica chinensis L.) agriculture with magnetized-ionized brackish water and organic fertilizers: A sustainable approach to soil quality and crop yield optimization. J. Clean. Prod. 2024, 450, 141935. [Google Scholar] [CrossRef]
- Thornley, J.H.M. Mathematical Models in Plant Physiology; Academic Press: Pittsburgh, PA, USA, 1976. [Google Scholar]
- Ye, Z.P. A New Model for Relationship Between Irradiance and the Rate of Photosynthesis in Oryza Sativa. Photosynthetica 2007, 45, 637–640. [Google Scholar] [CrossRef]
- Prado, C.H.B.A.; De Moraes, J.A.P.V. Photosynthetic Capacity and Specific Leaf Mass in Twenty Woody Species of Cerrado Vegetation under Field Conditions. Photosynthetica 1997, 33, 103–112. [Google Scholar] [CrossRef]
- Cui, B.J.; Liu, J.; Zhang, M.Y.; Wan, H.; Wei, G.Y.; Wei, Z.H.; Liu, F.L. CO2 Elevation Modulates the Growth and Physiological Responses of Soybean (Glycine max L. Merr.) to Progressive Soil Drying. Plant Growth Regul. 2023, 103, 139–150. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Jiang, Y.L.; Jia, B.R.; Zhou, G.S. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. Front. Plant Sci. 2016, 7, 657. [Google Scholar] [CrossRef]
- Tomimatsu, H.; Sakata, T.; Fukayama, H.; Tang, Y.H. Short-term Effects of High CO2 Accelerate Photosynthetic Induction in Populus Koreana x Trichocarpa with Always-open Stomata Regardless of Phenotypic Changes in High CO2 Growth Conditions. Tree Physiol. 2019, 39, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Gamage, D.; Hirotsu, N.; Martin, A.; Seneweera, S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front. Physiol. 2017, 8, 578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.H.; Sun, D.Y.; Niu, Z.R.; Yan, J.X.; Zhou, X.L.; Kang, X. Effects of Combined Organic/Inorganic Fertilizer Application on Growth, Photosynthetic Characteristics, Yield and Fruit Quality of Actinidia Chinesis cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Hao, J.H.; Tan, J.Y.; Zhang, Y.; Wang, S.; Zhang, X.K.; Wang, Z.Y.; Li, J. Metabolomics Reveals the Molecular Mechanism of Sewage Sludge-Derived Nutrients and Biostimulants Stimulating Resistance Enhancement and the Redistribution of Carbon and Nitrogen Metabolism in Pakchoi Cabbage. Sci. Total Environ. 2023, 891, 164330. [Google Scholar] [CrossRef] [PubMed]
- Aslam, Z.; Ahmad, A.; Abbas, R.N.; Sarwar, M.; Bashir, S. Morpho-physiological, Biochemical and Yield Responses of Wheat (Triticum aestivum L.) to Vermicompost, Simple Compost and NP Fertilizer Applications. Pak. J. Bot. 2023, 55, 2143–2154. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.J.; Deng, X.P. The Spike Weight Contribution of the Photosynthetic Area Above the Upper Internode in A Winter Wheat under Different Nitrogen and Mulching Regimes. Crop J. 2019, 7, 89–100. [Google Scholar] [CrossRef]
- Wang, X.W.; Tan, X.; Dang, C.C.; Lu, Y.; Xie, G.J.; Liu, B.F. Thermophilic Microorganisms Involved in the Nitrogen Cycle in Thermal Environments: Advances and Prospects. Sci. Total Environ. 2023, 896, 165259. [Google Scholar] [CrossRef]
- Lin, S.D.; Wang, Q.J.; Deng, M.J.; Su, L.J.; Wei, K.; Guo, Y.; Zhang, J.H. Assessing the Influence of Water Fertilizer, and Climate Factors on Seed Cotton Yield under Mulched Drip Irrigation in Xinjiang Agricultural Regions. Eur. J. Agron. 2024, 152, 127034. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhu, Y.K.; Zhang, J.Z.; Li, W.H.; Bian, Q.Y. Effects of Water and Nitrogen Fertilization on Physiological Characteristics and Yield of Cotton under Drip Irrigation in Mildly Salinized Soil. Trans. Chin. Soc. Agric. Mach. 2018, 49, 296–308. [Google Scholar]
- Ding, S.S.; Li, Y.T.; Yuan, L.; Zhao, B.Q.; Lin, Z.A.; Yang, X.D.; Li, J.; Zhang, J.J. Effects of Sugar Alcohols and Amino Acids on Growth, Quality and Calcium Nutrition of Chinese Cabbage. J. Plant Nutr. Fertil. 2016, 22, 744–751. [Google Scholar]
- Pouris, J.; Tampiziva, E.; Rhizopoulou, S. Unraveling Seasonal Allocation of Soluble Sugars, Starch and Proline in Sternbergia lutea. Plants 2023, 12, 3043. [Google Scholar] [CrossRef]
- Li, Y.L.; Liu, X.G.; Hao, K.; Yang, Q.L.; Yang, X.Q.; Zhang, W.H.; Cong, Y. Light-response Curve of Photosynthesis and Model Fitting in Leavesof Mangifera Indica under Different Soil Water Conditions. Photosynthetica 2019, 57, 796–803. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.J.; Wang, K.; Zhang, J.H.; Wei, K.; Liu, Y. Spring Irrigation with Magnetized Water Affects Soil Water-Salt Distribution, Emergence, Growth, and Photosynthetic Characteristics of Cotton Seedlings in Southern Xinjiang, China. BMC Plant Biol. 2023, 23, 174. [Google Scholar]
- Shi, Y.Y.; Guo, E.J.; Cheng, X.; Wang, L.Z.; Jiang, S.K.; Yang, X.L.; Ma, H.Y.; Zhang, T.Y.; Li, T.; Yang, X.G. Effects of Chilling at Different Growth Stages on Rice Photosynthesis, Plant Growth, and Yield. Environ. Exp. Bot. 2022, 203, 105045. [Google Scholar] [CrossRef]
- Borlongan, I.A.; Arita, R.; Nishihara, G.N.; Terada, R. The Effects of Temperature and Irradiance on the Photosynthesis of Two Heteromorphic Life History Stages of Saccharina japonica (Laminariales) from Japan. J. Appl. Phycol. 2020, 32, 4175–4187. [Google Scholar] [CrossRef]
- Manzoor; Ma, L.F.; Ni, K.; Ruan, J.Y. Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards’ Top Rhizosphere Soil. Plants 2024, 13, 207. [Google Scholar] [CrossRef]
- Xu, J.Z.; Lv, Y.P.; Liu, X.Y.; Wei, Q.; Qi, Z.M.; Yang, S.B.; Liao, L.X. A General Non-Rectangular Hyperbola Equation for Photosynthetic Light Response Curve of Rice at Various Leaf Ages. Sci. Rep. 2019, 9, 9909. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zheng, X.; Yao, L.R.; Luo, L.X.; Zuo, T.; Hou, Q.; Ni, W.Z. Glycinebetaine Facilitates the Photosynthesis of Albino Tea under Low Temperature by Regulating Related Gene Methylation. Sci. Hortic. 2022, 303, 111235. [Google Scholar] [CrossRef]
Depth (cm) | Bulk Density (g·cm−3) | Mechanical Composition (%) | Alkali-Hydrolyzed Nitrogen (mg·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) | Organic Matter (g·kg−1) | ||
---|---|---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||||
0–20 | 1.45 | 5.3 | 52.5 | 42.2 | 24.34 | 41.37 | 240 | 8.10 |
20–40 | 1.37 | 3.3 | 32.9 | 63.8 | 13.83 | 8.79 | 144 | 5.10 |
Treatments | Rectangular Hyperbolic Model | Non-Rectangular Hyperbolic Model | Modified Rectangular Hyperbolic Model | Exponential Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | R2 | RMSE | RE | |
F0 | 0.983 | 0.6282 | 0.0044 | 0.999 | 2.4456 | 0.0664 | 0.990 | 0.4770 | 0.0025 | 0.996 | 0.2861 | 0.0009 |
F1 | 0.987 | 0.5779 | 0.0028 | 0.999 | 2.6259 | 0.0577 | 0.994 | 0.4048 | 0.0014 | 0.997 | 0.2918 | 0.0007 |
F2 | 0.986 | 0.7995 | 0.0027 | 0.996 | 5.8056 | 0.1417 | 0.994 | 0.5344 | 0.0012 | 0.996 | 0.4148 | 0.0007 |
F3 | 0.979 | 1.1974 | 0.0039 | 0.999 | 2.4317 | 0.0159 | 0.993 | 0.7774 | 0.0016 | 0.996 | 0.4813 | 0.0006 |
F4 | 0.992 | 0.6182 | 0.0010 | 0.998 | 9.3961 | 0.2388 | 0.995 | 0.4745 | 0.0006 | 0.995 | 1.8696 | 0.0095 |
B0 | 0.987 | 0.3915 | 0.0031 | 0.999 | 2.3158 | 0.1073 | 0.994 | 0.2555 | 0.0013 | 0.998 | 0.1385 | 0.0004 |
B1 | 0.984 | 0.6101 | 0.0049 | 0.999 | 2.3278 | 0.0715 | 0.992 | 0.4467 | 0.0026 | 0.997 | 0.2844 | 0.0011 |
B2 | 0.993 | 0.4001 | 0.0023 | 0.998 | 5.3386 | 0.4135 | 0.996 | 0.2968 | 0.0013 | 0.997 | 0.2724 | 0.0011 |
B3 | 0.987 | 0.7684 | 0.0037 | 0.998 | 2.1734 | 0.0292 | 0.994 | 0.5161 | 0.0016 | 0.995 | 0.4974 | 0.0015 |
B4 | 0.990 | 0.5241 | 0.0022 | 0.995 | 7.3740 | 0.4320 | 0.995 | 0.3769 | 0.0011 | 0.994 | 0.3958 | 0.0012 |
Treatments | Maximum Net Photosynthesis Rate (µmol·m−2·s−1) | Apparent Quantum Efficiency | Light Compensation Point (µmol·m−2·s−1) | Light Saturation Point (µmol·m−2·s−1) | Dark Respiration Rate (µmol·m−2·s−1) | ∆I (µmol·m−2·s−1) | R2 |
---|---|---|---|---|---|---|---|
F0 | 11.46 de ± 0.56 | 0.0858 bc ± 0.0042 | 52.63 d ± 0.0066 | 1606 i ± 0.24 | 3.65 ab ± 0.18 | 1553 i ± 0.103 | 0.990 |
F1 | 13.58 cd ± 0.67 | 0.0493 de ± 0.0024 | 26.59 g ± 0.0007 | 1850 c ± 0.08 | 1.23 ef ± 0.06 | 1824 c ± 0.041 | 0.993 |
F2 | 18.77 b ± 0.92 | 0.0833 bc ± 0.0041 | 17.80 h ± 0.0001 | 1698 e ± 0.03 | 1.41 def ± 0.07 | 1679 f ± 0.015 | 0.994 |
F3 | 23.38 a ± 1.15 | 0.0999 bc ± 0.0049 | 10.70 i ± 0.4512 | 1539 j ± 0.05 | 1.03 f ± 0.01 | 1527 j ± 0.018 | 0.992 |
F4 | 19.14 ab ± 1.09 | 0.1995 a ± 0.0098 | 10.22 j ± 0.3141 | 1690 f ± 0.01 | 1.89 de ± 0.04 | 1686 e ± 0.003 | 0.995 |
B0 | 8.62 e ± 0.42 | 0.0500 de ± 0.0025 | 45.76 e ± 0.0014 | 1667 h ± 0.01 | 1.96 d ± 0.10 | 1622 g ± 0.002 | 0.994 |
B1 | 10.69 de ± 0.52 | 0.0687 cd ± 0.0034 | 77.95 b ± 0.0054 | 1685 g ± 0.28 | 4.20 a ± 0.21 | 1608 h ± 0.128 | 0.991 |
B2 | 10.68 de ± 0.52 | 0.0414 e ± 0.0020 | 89.45 a ± 0.0110 | 2184 a ± 0.13 | 3.10 bc ± 0.15 | 2094 a ± 0.072 | 0.996 |
B3 | 16.93 bc ± 0.83 | 0.0321 e ± 0.0016 | 60.20 c ± 0.0003 | 2086 b ± 0.01 | 1.83 de ± 0.09 | 2026 b ± 0.005 | 0.994 |
B4 | 12.54 cde ± 0.66 | 0.0888 bc ± 0.0044 | 35.10 f ± 0.0008 | 1740 d ± 0.02 | 2.70 c ± 0.13 | 1705 d ± 0.009 | 0.995 |
Irrigation Water | Mathematical Model | R2 | p |
---|---|---|---|
Fresh water | Yield = −2.7732 × OF + 413.92 × OF + 35387 | 0.950 | <0.05 |
SS = −0.0059 × OF + 0.5349 × OF + 23.503 | 0.793 | ||
SP = −0.0014 × OF + 0.1142 × OF + 3.9225 | 0.963 | ||
Brackish water | Yield = −2.1405 × OF + 326.11 × OF + 34706 | 0.966 | |
SS = −0.0035 × OF + 0.3984 × OF + 21.632 | 0.585 | ||
SP = −0.0006 × OF + 0.0466 × OF + 3.5578 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Wei, K.; Wang, Q.; Sun, Y.; Deng, M.; Tao, W. Effects of Organic Fertilizer on Photosynthesis, Yield, and Quality of Pakchoi under Different Irrigation Conditions. Plants 2024, 13, 1308. https://doi.org/10.3390/plants13101308
Lin S, Wei K, Wang Q, Sun Y, Deng M, Tao W. Effects of Organic Fertilizer on Photosynthesis, Yield, and Quality of Pakchoi under Different Irrigation Conditions. Plants. 2024; 13(10):1308. https://doi.org/10.3390/plants13101308
Chicago/Turabian StyleLin, Shudong, Kai Wei, Quanjiu Wang, Yan Sun, Mingjiang Deng, and Wanghai Tao. 2024. "Effects of Organic Fertilizer on Photosynthesis, Yield, and Quality of Pakchoi under Different Irrigation Conditions" Plants 13, no. 10: 1308. https://doi.org/10.3390/plants13101308
APA StyleLin, S., Wei, K., Wang, Q., Sun, Y., Deng, M., & Tao, W. (2024). Effects of Organic Fertilizer on Photosynthesis, Yield, and Quality of Pakchoi under Different Irrigation Conditions. Plants, 13(10), 1308. https://doi.org/10.3390/plants13101308