Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Essential Oil (EO) and Hydrosol Extraction
2.3. Headspace Solid-Phase Microextraction (HS-SPME) for VOC Analyses
2.4. Phytochemical Analysis: GC-MS Analysis
2.5. Preparation and Storage of Bacterial Cultures
In Vitro Antibacterial Testing of Hydrosols
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Insight into the Studied Species
3.1.1. Antirrhinum majus L.
3.1.2. Begonia cucullata Willd
3.1.3. Calendula officinalis L.
3.1.4. Dahlia hortensis Guillaumin
No. | Compounds | Formula | Class | LRI cal | LRI lit | VOC-Fs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | hexanal | C6H12O | ADH | 802 | 8008 1 | - | - | 2.2 ± 0.15 |
2 | methoxy-phenyl-oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 0.2 ± 0.08 |
3 | heptanal | C7H14O | ADH | 901 | 904 1 | - | - | 0.8 ± 0.27 |
4 | α-thujene | C10H16 | MH | 933 | 931 1 | - | - | 0.2 ± 0.07 |
5 | α-pinene | C10H16 | MH | 941 | 937 1 | - | 0.8 ± 0.16 | - |
6 | sabinene | C10H16 | MH | 977 | 976 1 | - | 2.2 ± 0.43 | 1.2 ± 0.08 |
7 | β-pinene | C10H16 | MH | 982 | 980 1 | - | 2.0 ± 0.36 | 2.1 ± 0.16 |
8 | β-myrcene | C10H16 | MH | 991 | 990 1 | - | 0.5 ± 0.11 | - |
9 | α-phellandrene | C10H16 | MH | 1006 | 1007 1 | 12.1 ± 0.66 | 5.6 ± 0.50 | - |
10 | α-terpinene | C10H16 | MH | 1020 | 1016 1 | - | - | 0.2 ± 0.04 |
11 | p-cymene | C10H14 | MH | 1028 | 1026 1 | 46.6 ± 2.03 | 18.9 ± 0.86 | 71.3 ± 0.21 |
12 | limonene | C10H16 | MH | 1029 | 1033 1 | - | 16.3 ± 1.30 | 19.2 ± 0.67 |
13 | (E)-β-ocimene | C10H16 | MH | 1052 | 1050 1 | 2.4 ± 0.15 | 8.2 ± 1.50 | 1.0 ± 0.04 |
14 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | - | - | 0.3 ± 0.08 |
15 | cosmene | C10H14 | MH | 1131 | 1134 1 | - | 0.1 ± 0.04 | - |
16 | 4-terpineol | C10H18O | OM | 1177 | 1171 1 | - | - | 0.2 ± 0.04 |
17 | thymol methyl ether | C11H16O | OM | 1235 | 1234 1 | - | 0.1 ± 0.01 | 0.3 ± 0.06 |
18 | α-copaene | C15H24 | SH | 1376 | 1372 1 | 3.5 ± 0.29 | 0.5 ± 0.02 | - |
19 | β-caryophyllene | C15H24 | SH | 1419 | 1418 1 | 11.3 ± 0.49 | 5.8 ± 0.14 | - |
20 | α-humulene | C15H24 | SH | 1455 | 1455 1 | 0.7 ± 0.08 | 0.9 ± 0.03 | - |
21 | (E)-β-farnesene | C15H24 | SH | 1458 | 1454 1 | - | 0.6 ± 0.02 | - |
22 | cis-muurola-4(14),5-diene | C15H24 | SH | 1463 | 1468 1 | 0.5 ± 0.04 | - | - |
23 | γ-muurolene | C15H24 | SH | 1477 | 1477 1 | 0.90.07 | 0.8 ± 0.04 | - |
24 | germacrene D | C15H24 | SH | 1481 | 1480 1 | 14.1 ± 1.07 | 8.6 ± 0.64 | - |
25 | epi-cubebol | C15H24O | OS | 1493 | 1494 1 | - | 0.5 ± 0.04 | - |
26 | bicyclo-germacrene | C15H24 | SH | 1496 | 1494 * | 1.8 ± 0.40 | 0.9 ± 0.06 | - |
27 | α-muurolene | C15H24 | SH | 1499 | 1499 1 | 0.4 ± 0.03 | 0.5 ± 0.03 | - |
28 | 7-epi-α-selinene | C15H24 | SH | 1517 | 1514 1 | - | 0.5 ± 0.05 | - |
29 | δ-cadinene | C15H24 | SH | 1524 | 1524 1 | 5.4 ± 0.61 | 2.7 ± 0.23 | - |
30 | germacrene D-4-ol | C15H26O | OS | 1575 | 1578 1 | - | 0.8 ± 0.09 | - |
31 | caryophyllene oxide | C15H24O | OS | 1581 | 1582 1 | - | 0.5 ± 0.07 | - |
32 | copaborneol | C15H26O | OS | 1600 | 1597 3 | - | 1.1 ± 0.17 | - |
33 | 1-epi-cubenol | C15H26O | OS | 1627 | 1623 1 | - | 0.7 ± 0.11 | - |
34 | caryophylla-4(14),8(15)-dien-5-ol | C15H24O | OS | 1637 | 1631 1 | - | 0.3 ± 0.06 | - |
35 | tau-cadinol | C15H26O | OS | 1641 | 1638 1 | - | 0.1 ± 0.00 | - |
36 | ylangenol | C15H24O | OS | 1667 | 1666 1 | - | 0.4 ± 0.07 | - |
37 | ent-germacra-4(15),5,10(14)-trien-1-β-ol | C15H24O | OS | 1695 | 1694 1 | - | 2.0 ± 0.44 | - |
38 | xanthorrhizol | C15H22O | OS | 1753 | 1754 1 | - | 0.3 ± 0.09 | - |
39 | tricosane | C23H48 | ALK | 2300 | 2300 1 | - | 4.4 ± 0.33 | - |
40 | n-tetracosane (c24) | C24H50 | ALK | 2400 | 2400 1 | - | 2.2 ± 0.44 | - |
41 | n-pentacosane (c25) | C25H52 | ALK | 2500 | 2500 1 | - | 8.6 ± 0.89 | - |
Number of Identified Compounds | 12 | 34 | 13 | |||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | 61.1 ± 0.95 | 54.6 ± 0.82 | 95.5 ± 0.22 | |||||
Oxygenated Monoterpenes (OMs) | - | 0.1 ± 0.01 | 0.5 ± 0.18 | |||||
Sesquiterpene Hydrocarbons (SHs) | 38.6 ± 0.65 | 21.8 ± 0.18 | - | |||||
Oxygenated Sesquiterpenes (OSs) | - | 6.7 ± 0.10 | - | |||||
Aldehydes (ADHs) | - | - | 3.0 ± 0.22 | |||||
Alkanes (ALKs) | - | 15.2 ± 0.60 | - | |||||
Nitrogenous Compounds (NCs) | - | - | 0.2 ± 0.08 | |||||
Non-terpenes | 0.70 ± 0.800 | 15.2 ± 0.60 | 3.2 ± 0.14 | |||||
Total Identified | 99.7 ± 0.80 | 98.4 ± 0.34 | 99.2 ± 0.19 |
3.1.5. Polianthes tuberosa L.
3.1.6. Tulbaghia cominsii Vosa
3.2. Antibacterial Activity of Hydrosols
3.3. The Multivariate Analysis of Hydrosol and Key Compound Insights
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigues, H.; Spence, C. Looking to the Future, by Studying the History of Edible Flowers. Int. J. Gastron. Food Sci. 2023, 34, 100805. [Google Scholar] [CrossRef]
- Harries, B.; Chalmin-Pui, L.S.; Gatersleben, B.; Griffiths, A.; Ratcliffe, E. ‘Designing a Wellbeing Garden’ a Systematic Review of Design Recommendations. Des. Health 2023, 7, 180–201. [Google Scholar] [CrossRef]
- Barrales-Cureño, H.J.; Salgado-Garciglia, R.; López-Valdez, L.G.; Reynoso-López, R.; Herrera-Cabrera, B.E.; Lucho-Constantino, G.G.; Zaragoza-Martínez, F.; Reyes-Reyes, C.; Aftab, T. Use of Secondary Metabolites from Medicinal and Aromatic Plants in the Fragrance Industry. In Medicinal and Aromatic Plants: Healthcare and Industrial Applications; Springer: Cham, Switzerland, 2021; pp. 669–690. [Google Scholar]
- Nicknezhad, S.; Hashemabadi, D.; Allahyari, M.S.; Marzban, S.; Ben Hassen, T.; Surujlal, J. Sensorial Analysis of Factors Influencing Consumers’ Perceptions toward the Consumption of Edible Flowers in Iran. J. Agric. Food Res. 2023, 12, 100580. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Malheiro, R.; Rodrigues, N.; Saraiva, J.A.; Ramalhosa, E. Borage, Calendula, Cosmos, Johnny Jump up, and Pansy Flowers: Volatiles, Bioactive Compounds, and Sensory Perception. Eur. Food Res. Technol. 2019, 245, 593–606. [Google Scholar] [CrossRef]
- Mlcek, J.; Plaskova, A.; Jurikova, T.; Sochor, J.; Baron, M.; Ercisli, S. Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species. Foods 2021, 10, 2053. [Google Scholar] [CrossRef]
- Marchioni, I.; Taglieri, I.; Dimita, R.; Ruffoni, B.; Zinnai, A.; Venturi, F.; Sanmartin, C.; Pistelli, L. Postharvest Treatments on Sensorial and Biochemical Characteristics of Begonia Cucullata Willd Edible Flowers. Foods 2022, 11, 1481. [Google Scholar] [CrossRef]
- Janarny, G.; Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S. Nutraceutical Potential of Dietary Phytochemicals in Edible Flowers—A Review. J. Food Biochem. 2021, 45, e13642. [Google Scholar] [CrossRef] [PubMed]
- Pensamiento-Niño, C.A.; Castañeda-Ovando, A.; Añorve-Morga, J.; Hernández-Fuentes, A.D.; Aguilar-Arteaga, K.; Ojeda Ramírez, D. Edible Flowers and Their Relationship with Human Health: Biological Activities. Food Rev. Int. 2023, 40, 620–639. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Badwaik, L.S.; Annapure, U.; Casanova, F.; Alaskar, K. A Review on the Journey of Edible Flowers from Farm to Consumer’s Plate. Appl. Food Res. 2023, 3, 100312. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Mujumdar, A.S. Edible Flower Essential Oils: A Review of Chemical Compositions, Bioactivities, Safety and Applications in Food Preservation. Food Res. Int. 2021, 139, 109809. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Miljanović, A.; Dent, M.; Grbin, D.; Pedisić, S.; Zorić, Z.; Marijanović, Z.; Jerković, I.; Bielen, A. Sage, Rosemary, and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef] [PubMed]
- Paolini, J.; Leandri, C.; Desjobert, J.-M.; Barboni, T.; Costa, J. Comparison of Liquid–Liquid Extraction with Headspace Methods for the Characterization of Volatile Fractions of Commercial Hydrolats from Typically Mediterranean Species. J. Chromatogr. A 2008, 1193, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Drava, G.; Iobbi, V.; Govaerts, R.; Minganti, V.; Copetta, A.; Ruffoni, B.; Bisio, A. Trace Elements in Edible Flowers from Italy: Further Insights into Health Benefits and Risks to Consumers. Molecules 2020, 25, 2891. [Google Scholar] [CrossRef] [PubMed]
- Copetta, A.; Marchioni, I.; Mascarello, C.; Pistelli, L.; Cambournac, L.; Dimita, R.; Ruffoni, B. Polianthes tuberosa as Edible Flower: In Vitro Propagation and Nutritional Properties. ijfe 2020, 6, 57–62. [Google Scholar] [CrossRef]
- Marchioni, I.; Najar, B.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers. Plants 2020, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Najar, B.; Nardi, V.; Cervelli, C.; Mecacci, G.; Mancianti, F.; Ebani, V.V.; Nardoni, S.; Pistelli, L. Volatilome Analyses and In Vitro Antimicrobial Activity of the Essential Oils from Five South African Helichrysum Species. Molecules 2020, 25, 3196. [Google Scholar] [CrossRef] [PubMed]
- NIST NIST/EPA/NIH Mass Spectral Library; The NIST Mass Spectrometry Data Center: Gaithersburg, MD, USA, 2014.
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20 M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography. J. Chem. Educ. 1981, 58, 12. [Google Scholar] [CrossRef]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiely & Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiely & Sons, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes; Aldrich Chemical Company: Wisconsin, WI, USA, 1981. [Google Scholar]
- Choi, Y.H.; Kim, H.K.; Hazekamp, A.; Erkelens, C.; Lefeber, A.W.M.; Verpoorte, R. Metabolomic Differentiation of Cannabis sativa Cultivars Using 1H NMR Spectroscopy and Principal Component Analysis. J. Nat. Prod. 2004, 67, 953–957. [Google Scholar] [CrossRef]
- Zubkov, F.I.; Kouznetsov, V.V. Traveling across Life Sciences with Acetophenone—A Simple Ketone That Has Special Multipurpose Missions. Molecules 2023, 28, 370. [Google Scholar] [CrossRef] [PubMed]
- Suchet, C.; Dormont, L.; Schatz, B.; Giurfa, M.; Simon, V.; Raynaud, C.; Chave, J. Floral Scent Variation in Two Antirrhinum majus Subspecies Influences the Choice of Naïve Bumblebees. Behav. Ecol. Sociobiol. 2011, 65, 1015–1027. [Google Scholar] [CrossRef]
- Da Silva, A.G.M.; Silva, M.W.F.; Bezerra, G.B.; Ramos, C.S. The First Report of Chemical and Biological Study of Essential Oil from Begonia reniformis Leaf (Begoniaceae). Eclet. Quim. J. 2017, 42, 60. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical Composition and Biological Activities of Essential Oils from Calendula officinalis L. Flowers and Leaves. Flavour Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Dhingra, G.; Dhakad, P.; Tanwar, S. Review on Phytochemical Constituents and Pharmacological Activities of Plant Calendula officinalis Linn. Biolsciences 2022, 2, 216–228. [Google Scholar] [CrossRef]
- Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers. 2017, 14, e1600482. [Google Scholar] [CrossRef]
- Bahmanzadegan, A.; Rowshan, V. Static Headspace Analysis and Polyphenol Content of Tagetes erecta, Matthiola incana, Erysimum cheiri, Gaillardia grandiflora and Dahlia pinnata in Iran. Anal. Chem. Lett. 2018, 8, 794–802. [Google Scholar] [CrossRef]
- Wang, D.-C.; Qiu, D.-R.; Shi, L.-N.; Pan, H.-Y.; Li, Y.-W.; Sun, J.-Z.; Xue, Y.-J.; Wei, D.-S.; Li, X.; Zhang, Y.-M.; et al. Identification of Insecticidal Constituents of the Essential Oils of Dahlia pinnata Cav. against Sitophilus zeamais and Sitophilus oryzae. Nat. Prod. Res. 2015, 29, 1748–1751. [Google Scholar] [CrossRef] [PubMed]
- Cicció, J.F.; Chaverri, C. Chemical Composition of Essential Oils of Dahlia imperialis (Asteraceae) Growing Wild in Costa Rica. J. Mex. Chem. Soc. 2022, 66, 468–479. [Google Scholar] [CrossRef]
- Manan, N.; Ïztelew, B.M.; Azïmbaeva, G.E.; Djïembaev, B.J. Study of Component Composition of Essential Oil Isolated from Dahlia evelines Plants by Chromato-Mass-Spectrometry Method. Bull. Kazakh State Girl’sPedagogical Univ. 2018, 3, 37–45. [Google Scholar]
- Gamal El-Din, M.I.; Youssef, F.S.; Altyar, A.E.; Ashour, M.L. GC/MS Analyses of the Essential Oils Obtained from Different Jatropha Species, teir Discrimination Using Chemometric Analysis and Assessment of their Antibacterial and Anti-Biofilm Activities. Plants 2022, 11, 1268. [Google Scholar] [CrossRef]
- Maiti, S.; Mitra, A. Morphological, Physiological and Ultrastructural Changes in Flowers Explain the Spatio-Temporal Emission of Scent Volatiles in Polianthes tuberosa L. Plant Cell Physiol. 2017, 58, 2095–2111. [Google Scholar] [CrossRef]
- Kutty, N.N.; Mitra, A. Profiling of Volatile and Non-Volatile Metabolites in Polianthes tuberosa L. Flowers Reveals Intraspecific Variation among Cultivars. Phytochemistry 2019, 162, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, M.; Ahmadi, N.; Babaei, A.; Naghavi, M.R.; Ayyari, M. Comparison of Volatile Compounds at Various Developmental Stages of Tuberose (Polianthes tuberosa L. Cv. Mahallati) Flower with Different Extraction Methods. J. Essent. Oil Res. 2018, 30, 197–206. [Google Scholar] [CrossRef]
- Marchioni, I.; Najar, B.; Copetta, A.; Ferri, B.; Ruffoni, B.; Pistelli, L.; Pistelli, L. Phytonutritional and Aromatic Profiles of Tulbaghia simmleri Beauv. Edible Flowers during Cold Storage. Adv. Hort. Sci. 2023, 37, 25–32. [Google Scholar] [CrossRef]
- Lyantagaye, S. Ethnopharmacological and Phytochemical Review of Allium Species (Sweet Garlic) and Tulbaghia Species (Wild Garlic) from Southern Africa. Tanzan. J. Sci. 2011, 37, 58–72. [Google Scholar]
- Eid, H.H. The Influence of Extraction Methods on the Composition and Antimicrobial Activity of the Volatile Constituents of Tulbaghia violacea Harv. Cultivated in Egypt. J. Pharmacogn. Phytochem. 2015, 4, 118–125. [Google Scholar]
- Değirmenci, H.; Erkurt, H. Relationship between Volatile Components, Antimicrobial and Antioxidant Properties of the Essential Oil, Hydrosol and Extracts of Citrus aurantium L. Flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Goker, G.; Demirtas, A. Preliminary Study on Stimulatory and Inhibitory Effects of Aldehydes from the Green Leaf Volatiles Family on Beneficial and Pathogenic Bacteria from the Intestine. Med. Weter. 2020, 76, 170–175. [Google Scholar] [CrossRef]
- Mahboubi, M.; Feizabadi, M.M. Antimicrobial Activity of Ducrosia anethifolia Essential Oil and Main Component, Decanal Against Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus. J. Essent. Oil Bear. Plants 2009, 12, 574–579. [Google Scholar] [CrossRef]
- Trombetta, D.; Saija, A.; Bisignano, G.; Arena, S.; Caruso, S.; Mazzanti, G.; Uccella, N.; Castelli, F. Study on the Mechanisms of the Antibacterial Action of Some Plant Alpha,Beta-Unsaturated Aldehydes. Lett. Appl. Microbiol. 2002, 35, 285–290. [Google Scholar] [CrossRef]
- Han, Y.; Chen, W.; Sun, Z. Antimicrobial Activity and Mechanism of Limonene against Staphylococcus aureus. J. Food Saf. 2021, 41, e12918. [Google Scholar] [CrossRef]
- Sreepian, A.; Popruk, S.; Nutalai, D.; Phutthanu, C.; Sreepian, P.M. Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus. Sci. World J. 2022, 2022, 8418287. [Google Scholar] [CrossRef] [PubMed]
- Miladi, H.; Zmantar, T.; Kouidhi, B.; Al Qurashi, Y.M.A.; Bakhrouf, A.; Chaabouni, Y.; Mahdouani, K.; Chaieb, K. Synergistic Effect of Eugenol, Carvacrol, Thymol, p-Cymene and γ-Terpinene on Inhibition of Drug Resistance and Biofilm Formation of Oral Bacteria. Microb. Pathog. 2017, 112, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Merghni, A.; Belmamoun, A.R.; Urcan, A.C.; Bobiş, O.; Lassoued, M.A. 1,8-Cineol (Eucalyptol) Disrupts Membrane Integrity and Induces Oxidative Stress in Methicillin-Resistant Staphylococcus aureus. Antioxidants 2023, 12, 1388. [Google Scholar] [CrossRef]
- Ahmad, W.; Ansari, M.A.; Yusuf, M.; Amir, M.; Wahab, S.; Alam, P.; Alomary, M.N.; Alhuwayri, A.A.; Khan, M.; Ali, A.; et al. Antibacterial, Anticandidal, and Antibiofilm Potential of Fenchone: In Vitro, Molecular Docking and In Silico/ADMET Study. Plants 2022, 11, 2395. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Balahbib, A.; Bakrim, S.; Benali, T.; Ullah, R.; Alotaibi, A.; Naceiri El Mrabti, H.; Goh, B.H.; Ong, S.-K.; Ming, L.C.; et al. Fenchone and Camphor: Main Natural Compounds from Lavandula stoechas L.; Expediting Multiple in Vitro Biological Activities. Heliyon 2023, 9, e21222. [Google Scholar] [CrossRef] [PubMed]
- Asaad, A.Y. In-vitro Antimicrobial Activity of Essential oil Derived from Callistemon viminalis Aerial Part. Al-Kindy Coll. Med. J. 2023, 19, 69–74. [Google Scholar] [CrossRef]
- El Karkouri, J.; Bouhrim, M.; Al Kamaly, O.M.; Mechchate, H.; Kchibale, A.; Adadi, I.; Amine, S.; Alaoui Ismaili, S.; Zair, T. Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants 2021, 10, 2068. [Google Scholar] [CrossRef]
- Burranboina, K.K.; Kumar, K.M.; Manjunatha Reddy, G.B.; Yogisharadhya, R.; Prashantha, C.N.; Dhulappa, A. GC-MS Analysis, Molecular Docking and Pharmacokinetic Studies of Various Bioactive Compounds from Methanolic Leaf Extracts of Leucas aspera (L.) against Anti—Capripox Viral Activity. Chem. Data Collect. 2022, 39, 100873. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of p-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Electrospun Nanofibers from Cyclodextrin Inclusion Complexes with Cineole and p-Cymene: Enhanced Water Solubility and Thermal Stability. Int. J. Food Sci. Tech. 2018, 53, 112–120. [Google Scholar] [CrossRef]
- Serafini, M.R.; Menezes, P.P.; Costa, L.P.; Lima, C.M.; Quintans, L.J.; Cardoso, J.C.; Matos, J.R.; Soares-Sobrinho, J.L.; Grangeiro, S.; Nunes, P.S.; et al. Interaction of p-Cymene with β-Cyclodextrin. J. Therm. Anal. Calorim. 2012, 109, 951–955. [Google Scholar] [CrossRef]
- Cic, M.Z.; Li, M. Ocimene –A Versatile Floral Ingredient. Perfum. Flavorist 2013, 38, 42–44. [Google Scholar]
- Cao, Y.; Zhang, H.; Liu, H.; Liu, W.; Zhang, R.; Xian, M.; Liu, H. Biosynthesis and Production of Sabinene: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Valussi, M.; Morais-Braga, M.; Carneiro, J.; Leal, A.; Coutinho, H.; Vitalini, S.; Kręgiel, D.; Antolak, H.; Sharifi-Rad, M.; et al. Tagetes Spp. Essential Oils and Other Extracts: Chemical Characterization and Biological Activity. Molecules 2018, 23, 2847. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhu, X.; Xie, Y.; Liang, J. Antifungal Properties and Mechanisms of Three Volatile Aldehydes (Octanal, Nonanal and Decanal) on Aspergillus flavus. Grain Oil Sci. Technol. 2021, 4, 131–140. [Google Scholar] [CrossRef]
- Kim, M.; Sowndhararajan, K.; Choi, H.J.; Park, S.J.; Kim, S. Olfactory Stimulation Effect of Aldehydes, Nonanal, and Decanal on the Human Electroencephalographic Activity, According to Nostril Variation. Biomedicines 2019, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.; Chidananda Varma, P.; Poojitha Reddy, M.; Sreelekha, C.; Chandiramouli, R. Acetophenone and Benzophenone Adsorption Studies on θ-Phosphorene Nanosheets—A DFT Investigation. Comput. Theor. Chem. 2022, 1215, 113808. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Q.; Li, S.; Chen, C.; Chen, Z.; Huang, W. In Vitro Antimicrobial Activities and Mechanism of 1-Octen-3-Ol against Food-Related Bacteria and Pathogenic Fungi. J. Oleo Sci. 2017, 66, 1041–1049. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Ruan, X. Bornyl Acetate: A Promising Agent in Phytomedicine for Inflammation and Immune Modulation. Phytomedicine 2023, 114, 154781. [Google Scholar] [CrossRef]
- Song, H.-J.; Yong, S.-H.; Kim, H.-G.; Kim, D.-H.; Park, K.-B.; Shin, K.-C.; Choi, M.-S. Insecticidal Activity against Myzus persicae of Terpinyl Acetate and Bornyl Acetate in Thuja occidentalis Essential Oil. Horticulturae 2022, 8, 969. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, R.; Chen, H.; Jia, P.; Bao, L.; Tang, H. Bornyl Acetate Has an Anti-inflammatory Effect in Human Chondrocytes via Induction of IL-11. IUBMB Life 2014, 66, 854–859. [Google Scholar] [CrossRef]
- Kyoui, D.; Saito, Y.; Takahashi, A.; Tanaka, G.; Yoshida, R.; Maegaki, Y.; Kawarai, T.; Ogihara, H.; Suzuki, C. Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables. Foods 2023, 12, 3097. [Google Scholar] [CrossRef]
- Bhowal, M.; Gopal, M. Eucalyptol: Safety and Pharmacological Profile. RJPS 2016, 5, 125–131. [Google Scholar] [CrossRef]
- Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol Alleviates Inflammation and Pain Responses in a Mouse Model of Gout Arthritis. Br. J. Pharmacol. 2020, 177, 2042–2057. [Google Scholar] [CrossRef]
- Chung, M.; Cheng, S.; Lin, C.; Chang, S. Profiling of Volatile Compounds with Characteristic Odors in Bambusa oldhamii Shoots from Taiwan. BioRes 2021, 16, 5901–5914. [Google Scholar] [CrossRef]
- Al-Mussawii, M.A.Y.; Al-Sultan, E.Y.A.; Al-Hamdan, M.A.; Ramadhan, U.H. Antibacterial Activity of Alkaloid Compound Methoxy Phenyl- Oxime (C8H9NO2) Isolated and Purified from Leaf of Conocarpus lancifolius Engl. Teikyo Med. J. 2022, 45, 4971–4981. [Google Scholar]
- Surowiak, A.K.; Lochyński, S.; Strub, D.J. Unsubstituted Oximes as Potential Therapeutic Agents. Symmetry 2020, 12, 575. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Q.; Liu, Y.; Zhou, X.; Wang, X. Isolation and Biological Activities of Decanal, Linalool, Valencene, and Octanal from Sweet Orange Oil. J. Food Sci. 2012, 77, C1156–C1161. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, A. A Floral Fragrance, Methyl Benzoate, Is An Efficient Green Pesticide. Sci. Rep. 2017, 7, 42168. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, X.; Cui, X.; Wang, H. Rapid Determination of 6-Methyl-5-Hepten-2-One in Fruit with LLE-GC-MS. J. Chromatogr. Sci. 2022, 60, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool Bioactive Properties and Potential Applicability in Drug Delivery Systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef] [PubMed]
- Poudel, D.K.; Rokaya, A.; Ojha, P.K.; Timsina, S.; Satyal, R.; Dosoky, N.S.; Satyal, P.; Setzer, W.N. The Chemical Profiling of Essential Oils from Different Tissues of Cinnamomum camphora L. and Their Antimicrobial Activities. Molecules 2021, 26, 5132. [Google Scholar] [CrossRef] [PubMed]
- Yadav, E.; Rao, R. A Promising Bioactive Component Terpinen-4-Ol: A REVIEW. Int. J. Pharmacogn. 2016, 3, 336–345. [Google Scholar]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of Innovation in Health and Disease. Chem.-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef]
No. | Compounds | Formula | Class | LRI cal | LRI lit | VOC-Fs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | 2,4,5-trimethyl oxazole | C6H9NO | NC | 852 | 850 1 | - | - | 2.5 ± 0.12 |
2 | 1-hexanol | C6H14O | ALC | 871 | 873 1 | - | - | 4.5 ± 0.17 |
3 | methoxy-phenyl-oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 4.0 ± 0.22 |
4 | benzaldehyde | C7H6O | ADH | 962 | 969 1 | - | - | 1.1 ± 0.09 |
5 | 1-octen-3-one | C8H14O | KET | 975 | 978 1 | - | 1.0 ± 0.08 | - |
6 | β-pinene | C10H16 | MH | 982 | 980 1 | - | - | 0.2 ± 0.06 |
7 | 6-methyl-5-hepten-2-one, | C8H14O | KET | 986 | 987 1 | - | - | 1.0 ± 0.04 |
8 | myrcene | C10H16 | MH | 991 | 990 1 | - | - | 0.2 ± 0.09 |
9 | 1-hexyl acetate | C8H16O | EST | 1012 | 1015 1 | - | 0.9 ± 0.37 | - |
10 | p-cymene | C10H14 | MH | 1028 | 1026 1 | - | - | 2.8 ± 0.07 |
11 | limonene | C10H16 | MH | 1029 | 1033 1 | - | - | 5.3 ± 0.11 |
12 | eucalyptol | C10H18O | OM | 1032 | 1033 1 | - | - | 2.5 ± 0.07 |
13 | (E)-β-ocimene | C10H16 | MH | 1052 | 1050 1 | 4.3 ± 0.68 | - | - |
14 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | - | - | 0.5 ± 0.02 |
15 | acetophenone | C8H8O | KET | 1065 | 1066 1 | 59.3 ± 1.00 | 5.7 ± 0.65 | 40.2 ± 0.85 |
16 | methyl benzoate | C8H8O2 | EST | 1092 | 1091 1 | - | 0.4 ± 0.07 | - |
17 | methyl ester-benzoic acid | C8H8O2 | EST | 1094 | 1091 1 | 5.4 ± 0.12 | - | - |
18 | linalool | C10H18O | OM | 1101 | 1094 1 | 8.3 ± 0.46 | 2.3 ± 0.39 | 3.8 ± 0.04 |
19 | nonanal | C9H18O | ADH | 1104 | 1101 1 | - | 0.9 ± 0.16 | 23.6 ± 0.03 |
20 | methyl nicotinate | C7H7NO2 | PYR | 1139 | 1137 1 | 0.4 ± 0.00 | - | - |
21 | camphor | C10H16O | OM | 1142 | 1143 1 | - | - | 0.1 ± 0.01 |
22 | 1-phenyl-2-Propen-1-one | C9H8O | KET | 1143 | 1047 1 | - | 1.8 ± 0.31 | - |
23 | 2-hydroxyacetophenone | C8H8O2 | KET | 1162 | 1167 1 | 3.3 ± 0.24 | - | - |
24 | dimethoxybenzene | C8H10O2 | ETR | 1190 | 1192 1 | 2.9 ± 0.32 | - | - |
25 | methyl salicylate | C8H8O3 | EST | 1192 | 1190 1 | 1.8 ± 0.03 | - | - |
26 | estragol | C10H12O | OM | 1196 | 1997 1 | - | - | 1.0 ± 0.03 |
27 | decanal | C10H20O | ADH | 1206 | 1208 1 | - | - | 2.0 ± 0.01 |
28 | 2-methyl-2-nonen-4-one | C10H18O | KET | 1213 | 1215 1 | - | - | 0.2 ± 0.13 |
29 | 3,5-dimethoxytoluene | C9H12O2 | ETR | 1274 | 1276 1 | 2.9 ± 0.23 | 0.6 ± 0.02 | 1.9 ± 0.03 |
30 | (e)-anethole | C10H12O2 | PP | 1286 | 1284 1 | - | 0.6 ± 0.00 | 0.6 ± 0.02 |
31 | thymol | C10H14O | OM | 1291 | 1292 1 | 0.9 ± 0.05 | 1.9 ± 0.14 | - |
32 | geranylacetone | C13H22O | AC | 1456 | 1457 1 | - | - | 0.4 ± 0.00 |
33 | (e,e)-α-farnesene | C15H24 | SH | 1507 | 1506 1 | 1.2 ± 0.35 | - | - |
34 | viridiflorol | C15H26O | OS | 1591 | 1593 1 | 2.1 ± 0.05 | 6.6 ± 0.22 | - |
35 | hedione | C13H22O3 | EST | 1649 | 1648 1 | 1.8 ± 0.12 | - | - |
36 | precocene ii | C13H16O3 | CHR | 1658 | 1656 1 | 1.0 ± 0.20 | - | - |
37 | coumarin derivative | C19H18O2 | LAC | 1658 | 1.0 ± 0.02 | - | - | |
38 | 2-hexyl-(e)-cinnamaldehyde | C15H20O | ADH | 1749 | 1754 1 | 0.2 ± 0.04 | - | - |
39 | iso-propyl myristate | C17H34O2 | EST | 1827 | 1824 1 | 1.8 ± 0.17 | - | - |
40 | hexahydrofarnesylacetone | C18H36O | AC | 1844 | 1847 1 | 1.4 ± 0.03 | 68.0 ± 2.70 | - |
41 | phytol | C20H40O | OD | 2114 | 2119 1 | - | 4.0 ± 0.29 | - |
Number of Identified Compounds | 18 | 13 | 21 | |||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | 4.3 ± 0.68 | - | 9.0 ± 0.11 | |||||
Oxygenated Monoterpenes (OMs) | 9.2 ± 0.25 | 4.2 ± 0.35 | 7.4 ± 0.04 | |||||
Sesquiterpene Hydrocarbons (SHs) | 1.2 ± 0.35 | - | - | |||||
Oxygenated Sesquiterpenes (OSs) | 2.1 ± 0.05 | 6.6 ± 0.22 | - | |||||
Oxygenated Diterpenes (ODs) | - | 4.0 ± 0.29 | - | |||||
Apocarotenoids (ACs) | 1.4 ± 0.03 | 68.0 ± 2.70 | 0.4 ± 0.00 | |||||
Phenylpropanoids (PPs) | - | 0.6 ± 0.00 | 0.6 ± 0.02 | |||||
Aldehydes (ADHs) | 0.2 ± 0.04 | 0.9 ± 0.16 | 26.7 ± 0.13 | |||||
Alcohols (ALCs) | - | - | 4.5 ± 0.17 | |||||
Chromene Compounds (CHRs) | 1.0 ± 0.20 | - | - | |||||
Esters (ESTs) | 10.8 ± 0.44 | 1.3 ± 0.21 | - | |||||
Ethers (ETRs) | 5.8 ± 0.28 | 0.6 ± 0.02 | 1.9 ± 0.03 | |||||
Ketones (KETs) | 62.6 ± 0.75 | 8.5 ± 0.65 | 41.4 ± 0.34 | |||||
Lactones Compounds (LACs) | 1.0 ± 0.02 | - | - | |||||
Nitrogenous Compounds (NCs) | - | - | 6.5 ± 0.15 | |||||
Pyridines (PYRs) | 0.4 ± 0.00 | - | - | |||||
Non-terpenes | 81.8 ± 0.25 | 11.3 ± 0.26 | 81.0 ± 0.17 | |||||
Total Identified | 100.0 ± 00 | 94.7 ± 0.51 | 98.4 ± 0.09 |
No. | Compounds | Formula | Class | LRI cal | LRI lit | VOC-Fs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | hexanal | C6H12O | ADH | 802 | 800 1 | - | - | 4.1 ± 0.25 |
2 | methoxy-phenyl-oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 9.8 ± 0.79 |
3 | 1-octen-3-ol | C8H16O | ALC | 981 | 979 1 | - | - | 3.1 ± 0.08 |
4 | 5-hepten-2-one, 6-methyl- | C8H14O | KET | 986 | 987 1 | - | - | 1.0 ± 0.14 |
5 | p-cymene | C10H14 | MH | 1028 | 1026 1 | - | - | 1.7 ± 0.02 |
6 | limonene | C10H16 | MH | 1029 | 1033 1 | - | - | 7.5 ± 0.03 |
7 | eucalyptol | C10H18O | OM | 1032 | 1033 1 | - | - | 1.2 ± 0.12 |
8 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | - | - | 0.7 ± 0.04 |
9 | 1-octanol | C8H18O | ALC | 1071 | 1074 1 | - | - | 2.9 ± 0.51 |
10 | nonanal | C9H18O | ADH | 1104 | 1101 1 | - | 3.4 ± 0.44 | 56.9 ± 1.70 |
11 | camphor | C10H16O | OM | 1142 | 1143 1 | - | - | 0.9 ± 0.09 |
12 | benzyl acetate | C9H10O2 | EST | 1164 | 1162 1 | 7.6 ± 0.14 | - | - |
13 | estragol | C10H12O | OM | 1196 | 1997 1 | - | - | 0.6 ± 0.03 |
14 | decanal | C10H20O | AD | 1206 | 1208 1 | 25.7 ± 2.28 | - | 4.6 ± 0.26 |
15 | bornyl acetate | C12H20O2 | OM | 1285 | 1284 1 | - | - | 1.9 ± 0.07 |
16 | tetradecane | C14H30 | ALK | 1400 | 1400 1 | 33.7 ± 0.03 | - | - |
17 | β-caryophyllene | C15H24 | SH | 1419 | 1418 1 | 8.3 ± 0.12 | - | - |
18 | geranylacetone | C13H22O | AC | 1456 | 1457 1 | - | - | 0.8 ± 0.04 |
19 | 5,9-Undecadien-2-one, 6,10-dimethyl- (trans-geranylacetone) | C13H22O | KET | 1456 | 1453 1 | 13.7 ± 0.52 | - | - |
20 | viridiflorol | C15H26O | OS | 1591 | 1593 1 | 8.8 ± 0.10 | 0.7 ± 0.19 | - |
21 | precocene ii | C13H16O3 | CHR | 1658 | 1656 1 | - | 3.0 ± 0.31 | - |
22 | n-nonadecane | C19H40 | ALK | 1900 | 1900 1 | - | 1.5 ± 0.30 | - |
23 | n-heneicosane | C21H44 | ALK | 2100 | 2100 1 | - | 50.5 ± 2.90 | - |
24 | n-tricosane | C23H48 | AKL | 2300 | 2300 1 | - | 6.3 ± 0.80 | - |
25 | n-tetracosane | C24H50 | ALK | 2400 | 2400 1 | - | 13.4 ± 1.82 | - |
26 | n-pentacosane | C25H52 | ALK | 2500 | 2500 1 | - | 20.0 ± 0.76 | - |
Number of Identified Compounds | 6 | 8 | 15 | |||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | - | - | 9.9 ± 0.09 | |||||
Oxygenated Monoterpenes (OMs) | - | - | 4.6 ± 0.19 | |||||
Sesquiterpene Hydrocarbons (SHs) | 8.3 ± 0.12 | - | - | |||||
Oxygenated Sesquiterpenes (OSs) | 8.8 ± 0.10 | 0.7 ± 0.19 | - | |||||
Apocarotenoids (ACs) | - | - | 0.8 ± 0.04 | |||||
Aldehydes (ADHs) | 25.7 ± 1.32 | 3.4 ± 0.44 | 65.6 ± 1.10 | |||||
Alcohols (ALCs) | - | - | 6.0 ± 0.30 | |||||
Alkanes (ALKs) | 33.7 ± 0.32 | 91.7 ± 1.30 | - | |||||
Chromene Compounds (CHRs) | - | 3.0 ± 0.31 | - | |||||
Esters (ESTs) | 7.6 ± 0.14 | - | - | |||||
Ketones (KETs) | 13.7 ± 0.52 | - | 1.0 ± 0.14 | |||||
Nitrogenous Compounds (NCs) | - | - | 9.8 ± 0.79 | |||||
Non-terpenes | 80.7 ± 0.58 | 98.1 ± 0.69 | 82.4 ± 0.59 | |||||
Total Identified | 97.8 ± 0.24 | 98.8 ± 0.57 | 97.7 ± 0.35 |
No. | Compounds | Formula | Class | LRI cal | LRI lit | SEs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | ethyl acetate | C4H8O2 | EST | 743 | - | - | 1.8 ± 0.02 | |
2 | methoxy-phenyl-oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 5.3 ± 0.36 |
3 | α-thujene | C10H16 | MH | 933 | 931 1 | 44.8 ± 3.44 | - | - |
4 | β-thujene | C10H16 | MH | 976 | 978 1 | 1.2 ± 0.15 | - | - |
5 | sabinene | C10H16 | MH | 977 | 976 1 | 0.2 ± 0.01 | - | - |
6 | β-myrcene | C10H16 | MH | 991 | 990 1 | 1.0 ± 0.11 | - | - |
7 | o-cymene | C10H14 | MH | 1022 | 1020 1 | 0.4 ± 0.03 | - | - |
8 | p-cymene | C10H14 | MH | 1028 | 1026 1 | - | - | 3.0 ± 0.00 |
9 | eucalyptol | C10H18O | OM | 1032 | 1033 1 | 0.2 ± 0.01 | - | 41.4 ± 0.34 |
10 | limonene | C10H16 | MH | 1029 | 1033 1 | 0.4 ± 0.04 | - | 5.6 ± 0.15 |
11 | cis-β-ocimene | C10H16 | MH | 1038 | 1039 1 | 0.3 ± 0.00 | - | - |
12 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | 1.2 ± 0.23 | - | 0.8 ± 0.02 |
13 | fenchone | C10H16O | OM | 1096 | 1097 1 | - | - | 1.4 ± 0.02 |
14 | linalool | C10H18O | OM | 1101 | 1094 1 | - | - | 12.2 ± 0.33 |
15 | α-thujone | C10H16O | OM | 1103 | 1102 1 | - | - | 4.2 ± 0.27 |
16 | nonanal | C9H18O | ALD | 1104 | 1101 1 | 0.7 ± 0.06 | - | - |
17 | β-thujone | C10H16O | OM | 1117 | 1114 1 | - | - | 1.4 ± 0.14 |
18 | camphor | C10H16O | OM | 1142 | 1143 1 | - | - | 6.9 ± 0.05 |
19 | citronellal | C10H18O | OM | 1155 | 1157 1 | - | - | 0.9 ± 0.06 |
20 | cis-p-menthan-3-one | C10H18O | OM | 1166 | 1164 1 | - | - | 0.6 ± 0.02 |
21 | thujen-2-one | C10H14O | OM | 1177 | 1173 1 | - | - | 0.6 ± 0.03 |
22 | 4-terpineol | C10H18O | OM | 1177 | 1171 1 | - | - | 6.4 ± 0.06 |
23 | α-terpineol | C10H18O | OM | 1191 | 1189 1 | - | - | 0.7 ± 0.02 |
24 | 2-propylheptanol | C10H22O | ALC | 1193 | 1194 2 | - | - | 1.3 ± 0.08 |
25 | estragole | C10H12O | pp | 1196 | 1195 1 | - | - | 1.5 ± 0.06 |
26 | decanal | C10H20O | ALD | 1206 | 1208 1 | 1.6 ± 0.02 | - | 0.5 ± 0.03 |
27 | 3,5-dimethyl-2-isobutyl-pyrazine | C10H16N2 | NTN | 1210 | 1211 1 | 0.6 ± 0.04 | - | - |
28 | pulegone | C10H16O | OM | 1240 | 1237 1 | - | - | 0.4 ± 0.03 |
29 | methyl carvacrol | C11H16O | OM | 1244 | 1245 1 | - | - | 0.8 ± 0.02 |
30 | 5-undecen-4-one | C11H20 | KET | 1250 | 1259 2 | - | 0.2 ± 0.02 | - |
31 | linalyl acetate | C12H20O2 | OM | 1259 | 1257 1 | - | - | 0.3 ± 0.02 |
32 | bornyl acetate | C12H20O2 | OM | 1285 | 1284 1 | - | - | 1.7 ± 0.02 |
33 | α-copaene | C15H24 | SH | 1376 | 1372 1 | 1.3 ± 0.44 | - | - |
34 | β-caryophyllene | C15H24 | SH | 1419 | 1418 1 | 0.9 ± 0.03 | - | - |
35 | humulene | C15H24 | SH | 1454 | 1455 1 | 2.5 ± 0.07 | - | - |
36 | γ-muurolene | C15H24 | SH | 1477 | 1477 1 | 1.3 ± 0.18 | 0.2 ± 0.02 | - |
37 | germacrene d | C15H24 | SH | 1481 | 1480 1 | 4.1 ± 0.51 | 0.5 ± 0.07 | - |
38 | β-selinene | C15H24 | SH | 1486 | 1486 1 | 0.3 ± 0.09 | - | - |
39 | epi-cubebol | C15H24O | OS | 1493 | 1494 1 | - | 1.5 ± 0.21 | - |
40 | α-muurolene | C15H24 | SH | 1499 | 1499 1 | 2.1 ± 0.07 | 1.3 ± 0.13 | - |
41 | γ-cadinene | C15H24 | SH | 1513 | 1513 1 | 11.1 ± 1.14 | - | - |
42 | cubebol | C15H26O | OS | 1515 | 1516 1 | - | 1.7 ± 0.16 | - |
43 | δ-cadinene | C15H24 | SH | 1524 | 1524 1 | 15.3 ± 1.56 | 15.0 ± 0.73 | 0.2 ± 0.04 |
44 | α-cadinene | C15H24 | SH | 1538 | 1541 1 | 0.7 ± 0.09 | - | - |
45 | germacrene d-4-ol | C15H26O | OS | 1575 | 1578 1 | - | 1.7 ± 0.17 | - |
46 | 1-epi-cubenol | C15H26O | OS | 1627 | 1623 1 | - | 0.8 ± 0.09 | - |
47 | tau-cadinol | C15H26O | OS | 1641 | 1638 1 | 1.4 ± 0.21 | 16.1 ± 1.45 | - |
48 | tau-muurolol | C15H26O | OS | 1646 | 1642 1 | - | 2.1 ± 0.15 | - |
49 | α-cadinol | C15H26O | OS | 1653 | 1653 1 | 0.5 ± 0.05 | 18.8 ± 1.90 | - |
50 | hexahydrofarnesylacetone | C18H36O | AC | 1844 | 1847 1 | - | 0.6 ± 0.09 | - |
51 | nonadecane | C19H40 | ALK | 1900 | 1900 1 | 1.3 ± 0.27 | 0.2 ± 0.03 | - |
52 | methyl linolenate | C19H32O2 | FA | 2098 | 2101 1 | - | 0.3 ± 0.07 | - |
53 | heneicosane | C21H44 | ALK | 2100 | 2100 1 | - | 0.3 ± 0.06 | - |
54 | linolenic acid | C18H30O2 | FA | 2139 | 2143 1 | - | 1.0 ± 0.17 | - |
55 | dodecyl caprylate | C20H40O2 | EST | 2160 | 2160 1 | 0.2 ± 0.05 | - | - |
56 | octadecyl acetate | C20H40O2 | EST | 2208 | 2211 1 | - | 0.3 ± 0.03 | - |
57 | 3-methylbutyl hexadecanoate | C21H42O2 | EST | 2253 | 2260 1 | - | 11.0 ± 1.41 | - |
58 | methyl arachidonate | C21H34O2 | FA | 2255 | 2274 1 | - | 0.2 ± 0.05 | - |
59 | tetracosane | C24H50 | ALK | 2300 | 2400 1 | - | 0.4 ± 0.14 | - |
60 | (Z,Z,Z)-8,11,14-eicosatrienoic acid | C20H34O2 | FA | 2346 | 2347 1 | - | 1.1 ± 0.12 | - |
61 | hexyl heptadecanoate | C23H46O2 | EST | 2464 | 2464 1 | - | 8.2 ± 0.43 | - |
62 | pentacosane | C25H52 | ALK | 2500 | 2500 1 | - | 6.0 ± 0.91 | - |
Number of Identified compounds | 26 | 24 | 24 | |||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | 49.5 ± 2.13 | - | 9.4 ± 0.17 | |||||
Oxygenated Monoterpenes (OMs) | 0.2 ± 0.01 | - | 79.9 ± 0.12 | |||||
Sesquiterpene Hydrocarbons (SHs) | 39.6 ± 1.84 | 17.0 ± 0.94 | 0.2 ± 0.04 | |||||
Oxygenated Sesquiterpenes (OSs) | 1.9 ± 0.20 | 42.7 ± 2.25 | - | |||||
Apocarotenoids (ACs) | - | - | - | |||||
Phenylpropanoids (PPs) | - | - | 1.5 ± 0.06 | |||||
Alcohols (ACLs) | - | - | 1.3 ± 0.08 | |||||
Aldehydes (ALDs) | 2.3 ± 0.03 | - | 0.5 ± 0.03 | |||||
Alkanes (ALKs) | 1.3 ± 0.27 | 6.9 ± 0.13 | - | |||||
Esters (ESTs) | 0.2 ± 0.05 | 19.5 ± 0.75 | 1.8 ± 0.02 | |||||
Fatty acids (FAs) | - | 2.6 ± 0.13 | - | |||||
Ketones (KETs) | - | 0.2 ± 0.02 | - | |||||
Nitrogenous Compounds (NCs) | - | - | 5.3 ± 0.36 | |||||
Nitrogenous Compunds (NTNs) | 0.6 ± 0.04 | - | - | |||||
Non-terpenes | 4.4 ± 0.33 | 29.2 ± 2.28 | 8.9 ± 0.26 | |||||
Total Identified | 95.7 ± 1.25 | 89.5 ±1.25 | 99.9 ± 0.05 |
No. | Compounds | Formula | Class | LRI cal | LRI lit | VOC-Fs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | 2,4,5-trimethyl oxazole | C6H9NO | NC | 852 | 850 2 | - | - | 7.4 ±0.51 |
2 | 4-heptanone | C7H14O | KET | 871 | 872 2 | - | - | 0.6 ±0.01 |
3 | methoxy-phenyl oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 15.5 ± 0.91 |
4 | α-pinene | C10H16 | MH | 941 | 937 2 | - | - | 0.8 ± 0.04 |
5 | benzaldehyde | C7H6O | ADH | 962 | 969 1 | - | - | 0.5 ± 0.07 |
6 | β-pinene | C10H16 | MH | 982 | 980 1 | - | - | 0.8 ± 0.04 |
7 | 6-methyl- 5-hepten-2-one | C8H14O | KET | 986 | 987 * | - | - | 4.5 ± 0.06 |
8 | p-cymene | C10H14 | MH | 1028 | 1026 1 | - | - | 8.9 ± 0.05 |
9 | limonene | C10H16 | MH | 1029 | 1033 1 | - | - | 5.7 ± 0.54 |
10 | eucalyptol | C10H18O | OM | 1032 | 1033 1 | 1.6 ± 0.33 | - | 38.1 ± 0.3 |
11 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | - | - | 0.6 ± 0.01 |
12 | 1-octanol | C8H18O | ALC | 1071 | 1074 1 | - | - | 0.4 ± 0.05 |
13 | methyl benzoate | C8H8O2 | EST | 1092 | 1091 1 | - | 7.3 ± 0.20 | - |
14 | methyl ester benzoic acid (=clorius = niobe oil = methyl benzoate) | C8H8O2 | EST | 1094 | 1091 1 | 57.3 ± 3.20 | - | 4.2 ± 0.05 |
15 | nonanal | C9H18O | AD | 1104 | 1101 1 | - | - | 2.8 ± 0.06 |
16 | menthone | C10H18O | OM | 1154 | 1155 1 | - | - | 0.2 ± 0.14 |
17 | α-terpineol | C10H18O | OM | 1191 | 1198 1 | - | - | 1.2 ± 0.07 |
18 | methyl salicylate | C8H8O3 | EST | 1192 | 1190 1 | 13.0 ± 2.57 | - | - |
19 | estragol | C10H12O | OM | 1196 | 1997 1 | - | - | 0.8 ± 0.02 |
20 | decanal | C10H20O | ADH | 1206 | 1208 1 | - | - | 2.4 ± 0.06 |
21 | (E)-anethole | C10H12O2 | PP | 1286 | 1284 1 | - | - | 0.2 ± 0.13 |
22 | methyleugenol | C11H14O2 | PP | 1405 | 1404 1 | 0.6 ± 0.02 | - | 0.8 ± 0.00 |
23 | geranylacetone | C13H22O | AC | 1456 | 1457 1 | - | - | 0.2 ± 0.03 |
24 | methyl ether iso-eugenyl | C11H14O2 | PP | 1492 | 1494 1 | 5.9 ± 0.21 | - | - |
25 | methyl ether iso-eugenol | C11H14O2 | PP | 1492 | 1494 1 | - | - | 2.2 ± 0.09 |
26 | δ-decalactone | C10H18O2 | LAC | 1496 | 1497 1 | 0.6 ± 0.05 | - | - |
27 | jasminelactone | C10H16O2 | LAC | 1518 | 13.8 ± 1.80 | - | - | |
28 | precocene ii | C13H16O3 | CHR | 1658 | 1656 1 | - | 4.0 ± 0.00 | - |
29 | xanthorrhizol | C15H22O | OS | 1753 | 1754 1 | 2.9 ± 0.10 | - | |
30 | benzyl benzoate | C14H12O2 | EST | 1762 | 1765 1 | 5.5 ± 0.56 | - | - |
31 | 1-hexadecanol | C16H34O | ALC | 1880 | 1881 1 | 0.7 ± 0.06 | - | - |
32 | methyl icosanoate (=methyl arachidate) | C21H42O2 | EST | 2329 | 2324 1 | - | 24.4 ± 0.83 | - |
33 | methyl heneicosanoate | C22H44O2 | EST | 2429 | 2428 1 | 58.4 ± 0.65 | - | |
Number of Identified compounds | 9 | 5 | 22 | |||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | - | - | 16.8 ± 0.2 | |||||
Oxygenated Monoterpenes (OMs) | 1.6 ± 0.33 | - | 40.3 ± 0.50 | |||||
Apocarotenoids (ACs) | - | - | 0.2 ± 0.03 | |||||
Phenylpropanoids (PPs) | 6.5 ± 0.10 | 0,0 | 3.2 ± 0.30 | |||||
Aldehydes (ADHs) | - | - | 5.7 ± 0.06 | |||||
Alcohols (ALCs) | 0.7 ± 0.06 | - | 0.4 ± 0.05 | |||||
Esters (ESTs) | 76.5 ± 1.80 | 90.1 ± 1.20 | 4.6 ± 0.10 | |||||
Ketones (KETs) | - | - | 5.1 ± 0.03 | |||||
Nitrogenous Compounds (NCs) | - | - | 22.9 ± 0.70 | |||||
Lactones Compounds (LACs) | 14.4 ± 1.70 | - | - | |||||
Chromene Compounds (CHRs) | - | 4.0 ± 0.00 | - | |||||
Non-terpenes | 91.6 ± 1.2 | 94.1 ± 0.78 | 38.7 ± 0.28 | |||||
Total Identified | 99.7 ± 1.10 | 94.1 ± 1.20 | 99.2 ± 0.30 |
No. | Compounds | Formula | Class | LRI cal | LRI lit | VOC-Fs | EOs | VOC-Hyd |
---|---|---|---|---|---|---|---|---|
Relative Abundance (%) | ||||||||
1 | 3-hexanol | C6H14O | ALC | 797 | 801 1 | - | - | 1.20.21 |
2 | 2-hexanol | C6H14O | ALC | 801 | 800 1 | - | - | 2.1 ± 0.12 |
3 | methoxy-phenyl-oxime | C8H9NO2 | NC | 898 | 899 * | - | - | 7.5 ± 0.25 |
4 | α-thujene | C10H16 | MH | 933 | 931 1 | - | - | - |
5 | α-pinene | C10H16 | MH | 941 | 937 1 | - | 0.5 ± 0.09 | 0.6 ± 0.03 |
6 | benzaldehyde | C7H6O | ADH | 962 | 969 1 | 0.5 ± 0.10 | - | 0.3 ± 0.07 |
7 | β-pinene | C10H16 | MH | 982 | 980 1 | - | 0.6 ± 0.04 | 0.7 ± 0.03 |
8 | 6-methyl- 5-hepten-2-one | C8H14O | KET | 986 | 987 1 | - | - | 0.8 ± 0.02 |
9 | dimethyl trisulfite | C2H6S3 | SC | 993 | 982 1 | 0.3 ± 0.07 | 1.8 ± 0.22 | - |
10 | p-cymene | C10H14 | MH | 1028 | 1026 1 | - | - | 8.3 ± 0.07 |
11 | limonene | C10H16 | MH | 1029 | 1033 1 | - | - | 11.4 ± 0.31 |
12 | 2-ethyl 1-hexanol | C8H18O | ALC | 1030 | 1035 1 | 1.6 ± 0.34 | - | - |
13 | eucalyptol | C10H18O | OM | 1032 | 1033 1 | - | - | 21.4 ± 0.24 |
14 | benzyl alcohol | C7H8O | ALC | 1036 | 1037 1 | 1.2 ± 0.23 | - | - |
15 | phenylacetaldehyde (=benzeneacetald.) | C8H8O | ADH | 1045 | 1043 1 | - | 0.4 ± 0.02 | |
16 | 2-propyl-1-pentanol | C8H18O | ALC | 1052 | 1053 1 | 0.3 ± 0.08 | - | - |
17 | γ-terpinene | C10H16 | MH | 1058 | 1053 1 | - | - | 1.1 ± 0.03 |
18 | 1-octanol | C8H18O | ALC | 1071 | 1074 1 | - | - | 0.4 ± 0.08 |
19 | fenchone | C10H16O | OM | 1096 | 1097 1 | - | - | 0.4 ± 0.02 |
20 | linalool | C10H18O | OM | 1101 | 1094 1 | - | - | 0.7 ± 0.03 |
21 | thujone | C10H16O | OM | 1103 | 1102 1 | - | - | 1.9 ± 0.06 |
22 | nonanal | C9H18O | ADH | 1104 | 1101 1 | 1.3 ± 0.53 | 0.6 | 5.8 ± 0.01 |
23 | thioanisole | C7H8S | SC | 1106 | 1106 1 | 0.9 ± 0.17 | - | - |
24 | camphor | C10H16O | OM | 1142 | 1143 1 | - | - | 0.8 ± 0.04 |
25 | disulfide, methyl (methylthio) methyl | C3H8S3 | SC | 1143 | 1147 1 | 2.2 ± 0.58 | 25.8 ± 0.95 | - |
26 | benzyl nitrite | C7H7NO2 | NC | 1144 | 1143 1 | 1.1 ± 0.11 | - | - |
27 | menthone | C10H18O | OM | 1154 | 1154 1 | - | - | 0.8 ± 0.12 |
28 | p-anisyl vinyl ether | C9H10O | ETR | 1156 | 1154 1 | 0.6 ± 0.13 | - | - |
29 | benzyl acetate | C9H10O2 | EST | 1164 | 1162 1 | 10.6 ± 0.79 | - | - |
30 | borneol | C10H18O | OM | 1167 | 1168 1 | - | - | 0.3 ± 0.02 |
31 | 4-terpineol | C10H18O | OM | 1177 | 1171 1 | - | - | 0.4 ± 0.00 |
32 | estragol | C10H12O | OM | 1196 | 1997 1 | - | - | 1.1 ± 0.05 |
33 | decanal | C10H20O | ADH | 1206 | 1208 1 | 2.3 ± 0.23 | - | 9.6 ± 0.18 |
34 | pulegone | C10H16O | OM | 1240 | 1237 1 | - | 0.3 ± 0.01 | - |
35 | phenethyl acetate | C10H12O2 | EST | 1258 | 1255 1 | 7.80.91 | 1.7 ± 0.07 | - |
36 | bornyl acetate | C12H20O2 | OM | 1285 | 1284 1 | - | 1.7 ± 0.02 | - |
37 | (E)-anethole | C10H12O2 | PP | 1286 | 1284 1 | - | - | 0.6 ± 0.08 |
38 | thymol | C10H14O | OM | 1291 | 1292 1 | 5.1 ± 0.41 | 16.3 ± 0.21 | 19.1 ± 0.20 |
39 | undecanal | C11H22O | ADH | 1307 | 1309 1 | - | - | 0.7 ± 0.03 |
40 | 4-acetylanisol | C9H10O2 | KET | 1350 | 1355 1 | 1.6 ± 0.35 | - | - |
41 | tetradecane | C14H30 | ALK | 1400 | 1400 1 | 2.4 ± 0.45 | - | - |
42 | β-caryophyllene | C15H24 | SH | 1419 | 1418 1 | - | 1.2 ± 0.09 | - |
43 | 5,9-undecadien-2-one, 6,10-dimethyl- (trans-geranylacetone) | C13H22O | KET | 1456 | 1453 1 | 0.3 ± 0.07 | - | - |
44 | 2,4,5,7-tetrathiaoctane | C4H10S4 | SC | 1484 | 1496 * | 2.4 ± 0.59 | 10.0 ± 0.40 | - |
45 | ethanone, 1-(3,4-dimethoxyphenyl)- (=acetoveratrone) | C10H12O3 | KET | 1569 | 1573 1 | 28.4 ± 0.67 | - | - |
46 | viridiflorol | C15H26O | OS | 1591 | 1593 1 | 1.1 ± 0.27 | 2.7 ± 0.17 | - |
47 | hedione | C13H22O3 | EST | 1649 | 1648 1 | 0.6 ± 0.25 | - | - |
48 | precocene ii | C13H16O3 | CHR | 1658 | 1656 1 | - | 6.3 ± 0.06 | - |
49 | epi-α-bisabolool | C15H26O | OS | 1684 | 1684 1 | - | 0.7 ± 0.06 | - |
50 | benzyl benzoate | C14H12O2 | EST | 1762 | 1765 1 | 14.5 ± 1.56 | 1.0 ± 0.07 | - |
51 | 2,3,5,7-tetrathioctane 3,3dioxide | C4H10O2S4 | SC | 1784 | 1783 1 | - | 0.5 ± 0.11 | - |
52 | methyl (E,E)-farnesoate | C16h26O2 | OS | 1786 | 1789 1 | 0.4 ± 0.08 | - | - |
53 | 2,4,5,6,8-pentathianonane | C4H10S5 | NC | 1853 | 1852 1 | 0.6 ± 0.30 | - | - |
54 | phenethyl benzoate | C15H14O2 | EST | 1856 | 1858 2 | 2.4 ± 0.43 | - | - |
55 | benzyl salicylate | C14H12O3 | EST | 1869 | 1863 1 | 0.80.08 | - | - |
56 | n-heneicosane | C21H44 | ALK | 2100 | 2100 1 | - | 22.9 ± 0.16 | - |
57 | dodecyl octanoate | C20H40O2 | EST | 2160 | 2160 1 | 0.5 ± 0.08 | - | - |
58 | octadecanoic acid (stearic acid) | C18H36O2 | FA | 2172 | 2177 1 | 0.2 ± 0.08 | - | - |
59 | phenyl ethyl alcohol | C8H10O | ALC | 1114 | 3.6 ± 0.89 | - | - | |
60 | Number of Identified Compounds | 29 | 18 | 25 | ||||
Class of Compounds | VOC-Fs | EOs | VOC-Hyd | |||||
Monoterpene Hydrocarbons (MHs) | - | 1.1 ± 0.10 | 22.1 ± 0.50 | |||||
Oxygenated Monoterpenes (OMs) | 5.1 ± 0.40 | 18.3 ± 0.20 | 46.9 ± 0.80 | |||||
Sesquiterpene Hydrocarbons (SHs) | - | 1.2 ± 0.09 | - | |||||
Oxygenated Sesquiterpenes (OSs) | 1.5 ± 0.22 | 3.4 ± 0.30 | - | |||||
Phenylpropanoids (PPs) | - | - | 0.6 ± 0.08 | |||||
Aldehydes (ADHs) | 4.1 ± 0.60 | 1.0 ± 0.10 | 16.4 ± 0.30 | |||||
Alcohols (ALCs) | 6.7 ± 0.70 | - | 3.7 ± 0.40 | |||||
Alkanes (ALKs) | 2.4 ± 0.45 | 22.9 ± 0.16 | - | |||||
Chromene Compounds (CHRs) | - | 6.3 ± 0.06 | - | |||||
Esters (ESTs) | 37.2 ± 1.30 | 2.7 ± 0.10 | - | |||||
Ethers (ETRs) | 0.6 ± 0.13 | - | - | |||||
Fatty Acid (FAs) | 0.2 ± 0.08 | - | - | |||||
Ketones (KETs) | 30.3 ± 0.35 | - | 0.8 ± 0.02 | |||||
Nitrogenous Compounds (NCs) | 1.7 ± 0.30 | - | 7.5 ± 0.25 | |||||
Sulfurus Compounds (SCs) | 5.8 ± 0.60 | 38.1 ± 0.43 | - | |||||
Non-terpenes | 89.0 ± 0.52 | 71.0 ± 0.17 | 28.4 ± 0.25 | |||||
Total Identified | 95.6 ± 0.40 | 95.0 ± 0.20 | 98.0 ± 0.30 |
Plant Species | MIC1 | MIC2 | MIC3 | MIC Mode | MBC1 | MBC2 | MBC3 | MBC Mode | ||
---|---|---|---|---|---|---|---|---|---|---|
A. majus | Gram-positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | 1:2 | >1:2 | 1:2 | 1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Gram-negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
B cucullata | Gram-positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | 1:2 | >1:2 | 1:4 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
Gram-negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:2 | >1:2 | >1:2 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
C. officinalis | Gram-positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | 1:2 | >1:2 | 1:4 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
Gram-negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:2 | >1:2 | >1:2 | >1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
D. hortensis | Gram-positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | 1:2 | >1:2 | 1:4 | >1:2 | 1:2 | >1:2 | 1:2 | >1:2 | ||
Gram-negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:2 | >1:2 | >1:2 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
P. tuberosa | Gram- positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | 1:2 | >1:2 | 1:4 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
Gram- negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:2 | >1:2 | >1:2 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
T. cominsii | Gram- positive | Enterococcus faecalis ATCC VAN B V583 E | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 |
Listeria monocytogenes ATCC 7644 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Staphylococcus aureus ATCC 6538 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | 1:2 | >1:2 | >1:2 | ||
Gram- negative | Escherichia coli ATCC 15325 | >1:2 | >1:2 | 1:2 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 | |
Pseudomonas aeruginosa ATCC 27853 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | >1:2 | ||
Salmonella enterica ser. Typhimurium ATCC 14028 | 1:2 | >1:2 | >1:2 | 1:2 | >1:2 | 1:2 | >1:2 | >1:2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Pieracci, Y.; Fratini, F.; Pistelli, L.; Turchi, B.; Varriale, D.; Pistelli, L.; Bozzini, M.F.; Marchioni, I. Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry. Plants 2024, 13, 1145. https://doi.org/10.3390/plants13081145
Najar B, Pieracci Y, Fratini F, Pistelli L, Turchi B, Varriale D, Pistelli L, Bozzini MF, Marchioni I. Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry. Plants. 2024; 13(8):1145. https://doi.org/10.3390/plants13081145
Chicago/Turabian StyleNajar, Basma, Ylenia Pieracci, Filippo Fratini, Laura Pistelli, Barbara Turchi, Dario Varriale, Luisa Pistelli, Maria Francesca Bozzini, and Ilaria Marchioni. 2024. "Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry" Plants 13, no. 8: 1145. https://doi.org/10.3390/plants13081145
APA StyleNajar, B., Pieracci, Y., Fratini, F., Pistelli, L., Turchi, B., Varriale, D., Pistelli, L., Bozzini, M. F., & Marchioni, I. (2024). Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry. Plants, 13(8), 1145. https://doi.org/10.3390/plants13081145