Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores
Abstract
:1. Introduction
2. Results
2.1. Photosynthetic Pigments
2.2. Proline
2.3. Polyphenolic Compounds Allocated in Damaged Poplar Leaves
2.4. Volatile Compounds Released from Poplar Leaves
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Insect Breeding
4.3. Experimental Design
4.4. Sample Collection
4.5. Spectrophotometric Measurement
4.6. Extraction Procedure for Determination of Polyphenolic Compounds
4.7. LC-MS-qTOF Analysis of Polyphenolic Compounds
4.8. GC×GC-TOF-MS Metabolomic Analysis
4.9. Statistical Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michel, W.; Seidling, A.K. Prescher Forest Condition in Europe: 2018 Technical Report of ICP Forests, Report under the UNECE Convention on Long-Range Transboundary Air Pollution (Air Convention) 2018, (No. BFW-Dokumentation 25/2018). Available online: https://www.icp-forests.org/pdf/TR2018.pdf (accessed on 3 April 2024).
- Stange, E.E.; Ayres, M.P. Climate change impacts: Insects. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar] [CrossRef]
- Zhang, X.; van Doan, C.; Arce, C.C.M.; Hu, L.; Gruenig, S.; Parisod, C.; Erb, M. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. USA 2019, 116, 23174–23181. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.A.; Hastings, A.P.; Johnson, M.T.J.; Maron, J.L.; Salminen, J.P. Insect Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations. Science 2012, 338, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Dicke, M.; van Loon, J.J.A.; Soler, R. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 2009, 5, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Popitanu, C.; Lupitu, A.; Copolovici, L.; Bungău, S.; Niinemets, Ü.; Copolovici, D.M. Induced Volatile Emissions, Photosynthetic Characteristics, and Pigment Content in Juglans regia Leaves Infected with the Erineum-Forming Mite Aceria erinea. Forests 2021, 12, 920. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Stewart, J.J.; López-Pozo, M.; Polutchko, S.K.; Adams, W.W. Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules 2020, 25, 5825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lackner, S.; Lackus, N.D.; Paetz, C.; Köllner, T.G.; Unsicker, S.B. Aboveground phytochemical responses to belowground herbivory in poplar trees and the consequence for leaf herbivore preference. Plant Cell Environ. 2019, 42, 3293–3307. [Google Scholar] [CrossRef] [PubMed]
- Caretto, S.; Linsalata, V.; Colella, G.; Mita, G.; Lattanzio, V. Carbon Fluxes between Primary Metabolism and Phenolic Pathway in Plant Tissues under Stress. Int. J. Mol. Sci. 2015, 16, 26378–26394. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Salh, P.K.; Singh, B. Role of defence enzymes and phenolics in resistance of wheat crop (Triticum aestivum L.) towards aphid complex. J. Plant Interact. 2017, 12, 304–311. [Google Scholar] [CrossRef]
- Lu, Y.H.; Li, X.H.; Xue, W.J.; Yang, H.Y.; Liu, Y.; Wang, F.; Yu, Y.S.; Yang, U.Z. Impacts of four biochemicals on population development of Aphis gossypii Glover. J.-Yangzhou Univ. Agric. Life Sci. Ed. 2005, 26, 83–87. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20053186826 (accessed on 3 April 2024).
- Mostefaoui, H.; Allal-Benfekih, L.; Djazouli, Z.E.; Petit, D.; Saladin, G. Why the aphid Aphis spiraecola is more abundant on clementine tree than Aphis gossypii? C. R. Biol. 2014, 337, 123–133. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defence against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid Pathway Engineering: An Emerging Approach towards Plant Defense. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, C.J.; Tschaplinski, T.J.; Zhao, N. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments. Crit. Rev. Plant Sci. 2009, 28, 375–392. [Google Scholar] [CrossRef]
- Wang, Z.; Nur, F.A.; Ma, J.; Wang, J.; Cao, C. Effects of poplar secondary metabolites performance and detoxification enzyme activity of Lymantria dispar. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 225, 108587. [Google Scholar] [CrossRef] [PubMed]
- Lämke, J.S.; Unsicker, S.B. Phytochemical variation in treetops: Causes and consequences for tree-insect herbivore interactions. Oecologia 2018, 187, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Barbehenn, R.V.; Kochmanski, J. Searching for synergism: Effects of combinations of phenolic compounds and other toxins on oxidative stress in Lymantria dispar caterpillars. Chemoecology 2013, 23, 219–231. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Rubert-Nason, K.F.; Couture, J.J.; Major, I.T.; Constabel, C.P.; Lindroth, R.L. Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides). J. Chem. Ecol. 2015, 41, 651–661. [Google Scholar] [CrossRef]
- Adamová, T.; Hradecký, J.; Pánek, M. Volatile Organic Compounds (VOCs) from Wood and Wood-Based Panels: Methods for Evaluation, Potential Health Risks, and Mitigation. Polymers 2020, 12, 2289. [Google Scholar] [CrossRef]
- Arimura, G.; Matsui, K.; Takabayashi, J. Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant Cell Phys. 2009, 50, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, I.T.; Halitschke, R.; Paschold, A.; von Dahl, C.C.; Preston, C.A. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 2006, 311, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Blande, J.D.; Becard, G. (Eds.) Chapter eleven—Plant communication with herbivores. In Advances in Botanical Research, How Plants Communicate with Their Biotic Environment; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Junker, R.R. Multifunctional and diverse floral scents mediate biotic interactions embedded in communities. In Deciphering Chemical Language of Plant Communication; Blande, J.D., Glinwood, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 257–282. [Google Scholar] [CrossRef]
- Moreira, X.; Nell, C.S.; Meza-Lopez, M.M.; Rasmann, S.; Mooney, K.A. Specificity of plant–plant communication for Baccharis salicifolia sexes but not genotypes. Ecology 2018, 99, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Schiestl, F.P.; Johnson, S.D. Pollinator-mediated evolution of floral signals. Trends Ecol. Evol. 2013, 28, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Faiola, C.; Taipale, D. Impact of insect herbivory on plant stress volatile emissions from trees: A synthesis of quantitative measurements and recommendations for future research. Atmos. Environ. X 2020, 5, 100060, ISSN 2590-1621. [Google Scholar] [CrossRef]
- Blande, J.D.; Holopainen, J.K.; Li, T. Air pollution impedes plant-to-plant communication by volatiles. Ecol. Lett. 2010, 13, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant Volatiles: Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Schwery, O.; Sipley, B.N.; Braga, M.P.; Yang, Y.; Rebollo, R.; Zu, P. Plant scent and plant–insect interactions—Review and outlook from a macroevolutionary perspective. J. Syst. Evol. 2023, 61, 465–486. [Google Scholar] [CrossRef]
- Golawska, S.; Krzyzanowski, R.; Lukasik, I. Relationship between aphid infestation and chlorophyll content in Fabacea species. Acta Biol. Cracoviensia Ser. Bot. 2010, 52, 76–80. [Google Scholar] [CrossRef]
- Kmieć, K.; Rubinowska, K.; Michałek, W.; Sytykiewicz, H. The effect of galling aphids feeding on photosynthesis photochemistry of elm trees (Ulmus sp.). Photosynthetica 2018, 56, 989–997. [Google Scholar] [CrossRef]
- Movahedi, A.; Almasi, Z.Y.A.; Wei, H.; Rutland, P.; Sun, W.; Mousavi, M.; Li, D.; Zhuge, Q. Plant Secondary Metabolites with an Overview of Populus. Int. J. Mol. Sci. 2021, 22, 6890. [Google Scholar] [CrossRef] [PubMed]
- Massad, T.J.; Dyer, L.A.; Vega, G.C. Costs of Defence and a Test of the Carbon-Nutrient Balance and Growth-Differentiation Balance Hypotheses for Two Co-Occurring Classes of Plant Defence. PLoS ONE 2012, 7, e47554. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.L., Jr. Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens, Environ. Health Perspect. 78 171–175 in an olfactory system. Chem. Senses 1988, 28, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Cantero, J.L.; Sancha, J.M.; Flores, A.; Rodgriguez, T.G. Histopathological changes in the reproductive organs of Manchengo ewes grazing on lucerne. J. Vet. Med. Ser. A 1996, 43, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Schilmiller, A.L.; Miner, D.P.; Larson, M.; McDowell, E.; Gang, D.R.; Wilkerson, C.; Last, R.L. Studies of a biochemical factory: Tomato trichome deep expressed sequence tag sequencing and proteomics. Plant Physiol. 2010, 153, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Stamp, Y.Y. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 1996, 77, 1088–1102. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.B.; Ramos Neto, J.A.; Oliveira, M.C.; Oliveira, L.J. Detrimental effect of rutina on Anticarsia gemmatalis. Pesqui. Agropecuária Bras. 2006, 41, 1453–1459. [Google Scholar] [CrossRef]
- Piubelli, G.C.; Hoffmann-Campo, C.B.; Moscardi, F.; Miyakubo, S.H.; Oliveira, M.C.N. Baculovirus resistant Anticarsia gemmatalis responds differently to dietary rutin. Entomol. Exp. Appl. 2006, 119, 53–60. [Google Scholar] [CrossRef]
- Leiss, K.A.; Cristofori, G.; Steenis, R.; Verpoorte, R.; Klinkhamer, P.G. An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Phytochemistry 2013, 93, 63–70, ISSN 0031-9422. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.K.; de Abreu, I.N.; Albrectsen, B.R. Compensatory phenolic induction dynamics in aspen after aphid infestation. Sci. Rep. 2022, 12, 9582. [Google Scholar] [CrossRef] [PubMed]
- Papazian, S.; Girdwood, T.; Wessels, B.A. Leaf metabolic signatures induced by real and simulated herbivory in black mustard (Brassica nigra). Metabolomics 2019, 15, 130. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.M.; Ingvarsson, P.K.; Jansson, S.; Albrectsen, B.R. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.). PLoS ONE 2012, 7, e37679. [Google Scholar] [CrossRef]
- Bandau, F.; Albrectsen, B.R.; Robinson, K.M.; Gundale, M.J. European aspen with high compared to low constitutive tannin defenses grow taller in response to anthropogenic nitrogen enrichment. For. Ecol. Manag. 2021, 487, 118985, ISSN 0378-1127. [Google Scholar] [CrossRef]
- Santner, A.; Calderon-Villalobos, L.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C.M. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef] [PubMed]
- Ullah, C.; Tsai, C.; Unsicker, S.B.; Xue, L.; Reichelt, M.; Gershenzon, J.; Hammerbacher, A. Salicylic acid activates poplar defence against the biotrophic rust fungus Melampsora larici-populina via increased biosynthesis of catechin and proanthocyanidins. New Phytol. 2019, 221, 960–975. [Google Scholar] [CrossRef] [PubMed]
- Ullah, C.; Unsicker, S.B.; Fellenberg, C.; Constabel, C.P.; Schmidt, A.; Gershenzon, J.; Hammerbacher, A. Flavan-3-ols are an effective chemical defence against rustinfection. Plant Physiol. 2017, 175, 1560–1578. [Google Scholar] [CrossRef] [PubMed]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Gypsy moth caterpillar feeding has only a marginal impact on phenolic compounds in old-growth black poplar. J. Chem. Ecol. 2013, 39, 1301–1312. [Google Scholar] [CrossRef]
- Dussourd, D.E. Behavioral sabotage of plant defenses by insect folivores. Annu. Rev. Entomol. 2017, 62, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Helmus, M.R.; Dussord, D.E. Glues or poisons: Which triggers vein cutting by monarch caterpillars? Chemoecology 2005, 15, 45–49. [Google Scholar] [CrossRef]
- Mescher, M.C. Manipulation of plant phenotypes by insects and insect-borne pathogens. In Host Manipulation by Parasites; Oxford Academic: Oxford, UK, 2012; pp. 73–92. [Google Scholar]
- Herms, D.A.; Mattson, W.J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 1992, 67, 283–335. Available online: https://www.jstor.org/stable/2830650 (accessed on 3 April 2024).
- Tak, Y.; Kumar, M. Phenolics: A key defence secondary metabolite to counter biotic stress. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A.N., Eds.; Springer: Singapore, 2020; pp. 309–329. [Google Scholar] [CrossRef]
- Hammerbacher, A.; Kandasamy, D.; Ullah, C.; Schmidt, A.; Wright, L.P.; Gershenzon, J. Flavanone-3-Hydroxylase Plays an Important Role in the Biosynthesis of Spruce Phenolic Defenses Against Bark Beetles and Their Fungal Associates. Front. Plant Sci. 2019, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, K. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 315–347. [Google Scholar] [CrossRef] [PubMed]
- Maazoun, A.M.; Hlel, T.B.; Hamdi, S.H.; Belhadj, F.; Jemâa, J.M.B.; Marzouki, M.N. Screening for insecticidal potential and acetylcholinesterase activity inhibition of Urginea maritima bulbs extract for the control of Sitophilus oryzae (L.). J. Asia-Pac. Entomol. 2017, 20, 752–760. [Google Scholar] [CrossRef]
- Barbehenn, R.V.; Jaros, A.; Lee, G.; Mozola, C.; Weir, Q.; Salminen, J.P. Hydrolyzable tannins as “quantitative defenses”: Limited impact against Lymantria dispar caterpillars on hybrid poplar. J. Insect Physiol. 2009, 55, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Danner, H.; Boeckler, G.A.; Irmisch, S.; Yuan, J.S.; Chen, F.; Gershenzon, J.; Unsicker, S.B.; Köllner, T.G. Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry 2011, 72, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.J.; Poppy, G.M.; Powell, W.; Pickett, J.A.; Wadhams, L.J.; Woodcock, C.M. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 1998, 24, 1355–1368. [Google Scholar] [CrossRef]
- Scutareanu, P.; Bruin, J.; Posthumus, M.A.; Drukker, B. Constitutive and herbivore-induced volatiles in pear, alder and hawthorn trees. Chemoecology 2003, 13, 63–74. [Google Scholar] [CrossRef]
- James, D.G.; Grasswitz, T.R. Synthetic Herbivore-induced Plant Volatiles Increase Field Captures of Parasitic Wa. Biocontrol 2005, 50, 871–880. [Google Scholar] [CrossRef]
- Beale, M.H.; Birkett, M.A.; Bruce, T.J.A. Aphid alarm pheromone produced by Transgenic plants affects aphid and parasitoid behavior. Proc. Natl Acad. Sci. USA 2006, 103, 10509–10513. [Google Scholar] [CrossRef]
- Chappell, J.; Coates, R.M. 1.16—Sesquiterpenes. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 609–641. ISBN 9780080453828. [Google Scholar]
- Angioy, A.M.; Desogus, A.; Barbarossa, I.T.; Anderson, P.; Hansson, B.S. Extreme sensitivity in an olfactory system. Chem. Senses 2003, 28, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C.J. Plant volatiles and the environment. Plant Cell Environ. 2014, 37, 1905–1908. [Google Scholar] [CrossRef]
- Douma, J.C.; Ganzeveld, L.N.; Unsicker, S.B.; Boeckler, G.A.; Dicke, M. What makes a volatile organic compound a reliable indicator of insect herbivory? Plant Cell Environ. 2019, 42, 3308–3325. [Google Scholar] [CrossRef]
- Perigo, C.V.; Torres, R.B.; Bernacci, L.C. The chemical composition and antibacterial activity of eleven Piper species from distinct rainforest areas in Southeastern Brazil. Ind. Crops Prod. 2016, 94, 528–539. [Google Scholar] [CrossRef]
- Sá, S.; Chaul, L.T.; Alves, V.F. Phytochemistry and antimicrobial activity of Campomanesia adamantium. Braz. J. Pharmacogn. 2018, 28, 303–311. [Google Scholar] [CrossRef]
- Othmen, S.B.; Boussaa, F.; Hajji-Hedfi, L. Effects of nymphal density (Bactericera trigonica) and feeding on photosynthetic pigments, proline content and phenolic compounds in carrot plants. Eur. J. Plant. Pathol. 2022, 163, 51–59. [Google Scholar] [CrossRef]
- Golan, K.; Rubinowska, K.; Kmieć, K.; Kot, I.; Górska-Drabik, E.; Łagowska, B.; Michałek, W. Impact of scale insect infestation on the content of photosynthetic pigments and chlorophyll fluorescence in two host plant species. Arthropod-Plant Interact. 2015, 9, 55–65. [Google Scholar] [CrossRef]
- Huang, M.Y.; Huang, W.D.; Chou, H.M.; Chen, C.C.; Chang, Y.T.; Yang, C.M. Herbivorous insects alter the chlorophyll metabolism of galls on host plants. J. Asia-Pac. Entomol. 2014, 17, 431–434. [Google Scholar] [CrossRef]
- Foyer, C.H.; Graham, N. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 2003, 119, 355–364. [Google Scholar] [CrossRef]
- Foyer, C.H.; Shigeru, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Nabity, P.D.; Jorge, A.Z.; Evan, H.D. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann. Bot. 2009, 103, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Kerchev, P.I.; Fenton, B.; Foyer, C.H.; Hancock, R.D. Plant responses to insect herbivory: Interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ. 2012, 35, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Enein, H.Y.; Kruk, I.; Kładna, A.; Lichszteld, K.; Michalska, T. Scavenging effects of phenolic compounds on reactive oxygen species. Biopolym. Orig. Res. Biomol. 2007, 86, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Kmieć, K.; Kot, I.; Rubinowska, K.; Łagowska, B.; Golan, K.; Górska-Drabik, E. Physiological reaction of Phalaenopsis× hybridum ‘Innocence’on Pseudococcus longispinus (Targoni Tozetti) feeding. Acta Sci. Pol. Hortorum Cultus 2014, 13, 85–96. [Google Scholar]
- Zandi, P.; Schnug, E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology 2022, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Ximénez-Embún, M.G.; Ortego, F.; Castañera, P. Drought-Stressed Tomato Plants Trigger Bottom–Up Effects on the Invasive Tetranychus evansi. PLoS ONE 2016, 11, e0145275. [Google Scholar] [CrossRef]
- Yamada, M.; Morishita, H.; Urano, K.; Shiozaki, N.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Yoshiba, Y. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 2005, 56, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Delauney, A.J.; Verma, D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993, 4, 215–223. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectro-photometers of Different Resolution. J. Plant Physiol. 1944, 144, 307–313. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
Compound | Mean ± Standard Error (μg g−1 of DW) | ||
---|---|---|---|
Control Poplar Leaves | Moth-Infested Leaves | Aphid-Infested Leaves | |
4-coumaric acid | 21.4 ± 2.4 | 20.1 ± 3.7 | 30.5 ± 5.7 |
Rutin | 29.6 ± 1.6 | 31.6 ± 2.1 | 29.1 ± 1.4 |
Catechin | 37.6 ± 4.2 | 9.6 ± 1.5 * | 41.0 ± 6.6 * |
Taxifolin | 2.6 ± 0.7 | 0.32 ± 0.03 | 1.5 ± 0.3 |
Procyanidin B1 | 23.4 ± 2.6 | 10.5 ± 1.3 * | 45.6 ± 10.3 * |
Chlorogenic acid | 1231.6 ± 62.2 | 1569.7 ± 83.7 | 1231.0 ± 84.5 |
Ferulic acid | 20.1 ± 3.6 | 25.1 ± 3.3 | 14.3 ± 1.9 |
Kaempferol | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.8 ± 0.1 |
Quercetin | 2.4 ± 0.5 | 2.3 ± 0.3 | 2.2 ± 0.4 |
Compound | VIP | VIP cvSE * 2.44693 | Spectral Similarity (%) | RI (calc) | RI (NIST) |
---|---|---|---|---|---|
3-Hexenal | 2.80 | 0.82 | 93 | 800 | 800 |
5-Ethyl-2(5H)-furanone | 2.74 | 1.01 | 81 | 962 | 963 |
Unknown (RI 1358) | 2.59 | 0.46 | - | 1358 | - |
2-Hexenal | 2.33 | 0.69 | 89 | 848 | 847 |
trans-α-Farnesene | 2.31 | 1.47 | 84 | 1514 | 1511 |
Dendrasaline | 2.30 | 1.06 | 78 | 1586 | 1579 |
trans-2,4-Hexadienal | 2.30 | 0.83 | 92 | 919 | 913 |
Hexyl acetate | 2.26 | 0.45 | 71 | 1010 | 1013 |
Unknown (RI 962) | 2.14 | 0.81 | - | 962 | - |
Ethyl 2-oxopropionate | 2.11 | 0.84 | 71 | 770 | 774 |
Compound | VIP | VIP cvSE * 2.44693 | Spectral Similarity (%) | RI (calc) | RI (NIST) |
---|---|---|---|---|---|
trans-α-Farnesene | 2.76 | 1.38 | 84 | 1514 | 1511 |
4-Cyanocyclohexene | 2.60 | 0.82 | 78 | 1024 | 1027 |
Indole | 2.50 | 1.83 | 80 | 1306 | 1300 |
2-Hexenyl acetate | 2.43 | 1.45 | 90 | 1014 | 1017 |
Dendrasaline | 2.43 | 1.00 | 78 | 1586 | 1579 |
Hexyl acetate | 2.32 | 1.35 | 71 | 1010 | 1013 |
Dihydromyrcenol | 2.17 | 1.19 | 74 | 1079 | 1072 |
Germacrene D | 1.99 | 1.63 | 83 | 1500 | 1489 |
3-Hexen-1-ol | 1.85 | 1.22 | 95 | 852 | 856 |
2-Pentanone | 1.75 | 1.82 | 88 | 686 | 689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastierovič, F.; Kalyniukova, A.; Hradecký, J.; Dvořák, O.; Vítámvás, J.; Mogilicherla, K.; Tomášková, I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. Plants 2024, 13, 1243. https://doi.org/10.3390/plants13091243
Pastierovič F, Kalyniukova A, Hradecký J, Dvořák O, Vítámvás J, Mogilicherla K, Tomášková I. Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. Plants. 2024; 13(9):1243. https://doi.org/10.3390/plants13091243
Chicago/Turabian StylePastierovič, Filip, Alina Kalyniukova, Jaromír Hradecký, Ondřej Dvořák, Jan Vítámvás, Kanakachari Mogilicherla, and Ivana Tomášková. 2024. "Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores" Plants 13, no. 9: 1243. https://doi.org/10.3390/plants13091243
APA StylePastierovič, F., Kalyniukova, A., Hradecký, J., Dvořák, O., Vítámvás, J., Mogilicherla, K., & Tomášková, I. (2024). Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores. Plants, 13(9), 1243. https://doi.org/10.3390/plants13091243