Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound
Abstract
:1. Introduction
2. Results
2.1. Feeding Assays
2.2. Chemical Analyses
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Feeding Bioassays
4.3. Chemical Analyses
4.4. Statistical Uni- and Multivariate Analyses
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lumbang, W.A.; Paul, V.J. Chemical defenses of the tropical green seaweed Neomeris annulata Dickie: Effects of multiple compounds on feeding by herbivores. J. Exp. Mar. Biol. Ecol. 1996, 201, 185–195. [Google Scholar] [CrossRef]
- Paul, V.J.; Fenical, W. Chemical defense in tropical green algae, order Caulerpales. Mar. Ecol. Prog. Ser. 1996, 34, 157–169. [Google Scholar] [CrossRef]
- Pereira, R.C.; Cavalcanti, D.N.; Teixeira, V.L. Effects of secondary metabolites from the tropical Brazilian brown alga Dictyota menstrualis on the amphipod Parhyale hawaiensis. Mar. Ecol. Prog. Ser. 2000, 205, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Hay, M.E.; Duffy, J.E.; Pfister, C.A.; Fenical, W. Chemical defense against different marine herbivores: Are amphipods insect equivalents? Ecology 1987, 68, 1567–1580. [Google Scholar] [CrossRef] [Green Version]
- Sudatti, D.B.; Oliveira, A.S.; Da Gama, B.A.P.; Fujii, M.T.; Rodrigues, S.V.; Pereira, R.C. Variability in seaweed chemical defense and growth under common garden conditions. Front. Mar. Sci. 2021, 8, 720711. [Google Scholar] [CrossRef]
- Nylund, G.M.; Enge, S.; Pavia, H. Costs and benefits of chemical defence in the red alga Bonnemaisonia hamifera. PLoS ONE 2013, 8, e61291. [Google Scholar] [CrossRef] [Green Version]
- Amsler, C.D.; Fairhead, V.A. Defensive and sensory chemical ecology of brown algae. Adv. Bot. Res. 2006, 43, 1–91. [Google Scholar] [CrossRef]
- Hay, M.E.; Piel, J.; Boland, W.; Schnitzler, I. Seaweed sex pheromones and their degradation products frequently suppress amphipod feeding but rarely suppress sea urchin feeding. Chemoecology 1998, 8, 91–98. [Google Scholar] [CrossRef]
- Hay, M.E.; Fenical, W.; Gustafson, K. Chemical defense against diverse coral-reef herbivores. Ecology 1987, 68, 1581–1591. [Google Scholar] [CrossRef]
- Wylie, C.R.; Paul, V.J. Feeding preferences of the surgeonfish Zebrasoma flavescens in relation to chemical defenses of tropical algae. Mar. Ecol. Prog. Ser. 1988, 45, 23–32. [Google Scholar] [CrossRef]
- Sakata, K.; Kato, K.; Iwase, Y.; Okada, H.; Ina, K.; Machiguchi, Y. Feeding-stimulant activity of algal glycerolipids for marine herbivorous gastropods. J. Chem. Ecol. 1991, 17, 185–193. [Google Scholar] [CrossRef]
- Awad, N.E.; Selim, M.A.; Metawe, H.M.; Matloub, A.A. Cytotoxic xenicane diterpenes from the brown alga Padina pavonia (L.) Gaill. Phytother. Res. 2008, 22, 1610–1613. [Google Scholar] [CrossRef]
- Parameswaran, P.S.; Bhat, K.L.; Das, B.; Kamat, S.Y.; Harnos, S. Halogenated terpenoids from the brown alga Padina tetrastromatica (Hauck). Indian J. Chem. Sect. B 1994, 33, 1006. [Google Scholar]
- Khadijah, K.; Soekamto, N.; Firdaus, F.; Chalid, S.; Syah, Y. Chemical composition, phytochemical constituent, and toxicity of methanol extract of brown algae (Padina sp.) from Puntondo Coast, Takalar (Indonesia). J. Food Qual. Hazards Control 2021, 8, 178–185. [Google Scholar] [CrossRef]
- Agatsuma, Y.; Kawashima, A.; Li, Y.; Kurata, K.; Taniguchi, K. Feeding deterrent activity of acetone extract from three Padina species against the six species of herbivorous gastropods. Aquac. Sci. 2007, 55, 599–695. [Google Scholar]
- Kamenarska, Z.; Gasic, M.J.; Zlatovic, M.; Rasovic, A.; Sladic, D.; Klijajic, Z.; Stefanov, K.; Seizova, K.; Najdenski, H.; Kujumgiev, A.; et al. Chemical composition of the brown alga Padina pavonia (L.) Gaill. from the Adriatic Sea. Bot. Mar. 2002, 45, 339–345. [Google Scholar] [CrossRef]
- Nair, D.; Vanuopadath, M.; Balasubramanian, A.; Iyer, A.; Ganesh, S.; Anil, A.N.; Vikraman, V.; Pillai, P.; Bose, C.; Nair, B.G.; et al. Phlorotannins from Padina tetrastromatica: Structural characterization and functional studies. J. Appl. Phycol. 2019, 31, 3131–3141. [Google Scholar] [CrossRef]
- Sakata, K. Feeding attractants and stimulants for marine gastropods. In Bioorganic Marine Chemistry; Secheur, P.J., Ed.; Springer: Berlin/Heidelberg, Germany, 1989; Volume 3, pp. 115–129. [Google Scholar]
- Baliano, A.P.; Pimentel, E.F.; Buzin, A.R.; Vieira, T.Z.; Romão, W.; Tose, L.V.; Lenz, D.; Andrade, T.U.; Fronza, M.; Kondratyuk, T.P.; et al. Brown seaweed Padina gymnospora is a prominent natural wound-care product. Rev. Bras. Farmacog. 2016, 26, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, B.; Sheeja, M.D.; Sathya, S.; Pandima, D.K. Antiaggregation potential of Padina gymnospora against the toxic Alzheimer’s beta-amyloid peptide and cholinesterase inhibitory property of its bioactive compounds. PLoS ONE 2015, 10, e0141708. [Google Scholar] [CrossRef] [Green Version]
- Suresh, M.; Iyapparaj, P.; Anantharaman, P. Antifouling activity of lipidic metabolites derived from Padina tetrastromatica. Appl. Biochem. Biotechnol. 2016, 179, 805–818. [Google Scholar] [CrossRef]
- Sethupathy, S.; Shanmuganathan, B.; Pandima, D.K.; Pandian, S.K. Alpha-bisabolol from brown macroalga Padina gymnospora mitigates biofilm formation and quorum sensing controlled virulence factor production in Serratia marcescens. J. Appl. Phycol. 2016, 28, 1987–1996. [Google Scholar] [CrossRef]
- Steinberg, P.D.; Paul, V.J. Fish feeding and chemical defenses of tropical brown algae in Western Australia. Mar. Ecol. Prog. Ser. 1990, 58, 253–259. [Google Scholar] [CrossRef]
- Littler, D.S.; Littler, M.S. Relationships between macoalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. J. Exp. Mar. Biol. Ecol. 1984, 74, 13–34. [Google Scholar] [CrossRef]
- Hay, M.E. Marine terrestrial contrasts in the ecology of plant-chemical defenses against herbivores. Trends Ecol. Evol. 1991, 6, 362–365. [Google Scholar] [CrossRef]
- Lewis, S.M. Herbivory on coral reefs: Algal susceptibility to herbivorous fishes. Oecologia 1985, 65, 370–375. [Google Scholar] [CrossRef]
- Paul, V.J.; Hay, M.E. Seaweed susceptibility to herbivory: Chemical and morphological correlates. Mar. Ecol. Prog. Ser. 1986, 33, 255–264. [Google Scholar] [CrossRef]
- Pennings, S.C.; Paul, V.J. Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 1992, 73, 1606–1619. [Google Scholar] [CrossRef]
- Pennings, S.C.; Svedberg, J.M. Does CaCO3 in food deter feeding sea urchins? Mar. Ecol. Prog. Ser. 1993, 101, 163–167. [Google Scholar] [CrossRef]
- Duffy, J.E.; Paul, V.J. Prey nutritional quality and the effectiveness of chemical defenses against tropical reef fishes. Oecologia 1992, 90, 333–339. [Google Scholar] [CrossRef]
- Hutchings, P.A. Biological destruction of coral reefs: A review. Coral Reefs 1986, 4, 239–252. [Google Scholar] [CrossRef]
- Bilan, M.I.; Usov, A.I. Polysaccharides of calcareous algae and their effect on the calcification process. Russ. J. Bioorg. Chem. 2001, 27, 2–16. [Google Scholar] [CrossRef]
- Nelson, W.A. Calcified macroalgae—Critical to coastal ecosystems and vulnerable to change: A review. Mar. Fresh. Res. 2009, 60, 787–801. [Google Scholar] [CrossRef]
- Padilla, D.K. Algal structure defenses: Form and calcification in resistance to tropical limpets. Ecology 1989, 70, 835–842. [Google Scholar] [CrossRef]
- Carvalho, R.T.; Rocha, G.M.; Paradas, W.C.; Sant’anna, C.; Soares, A.R.; Ank, G.; Passos, R.M.F.; Farina, M.; Amado Filho, G.M.; Salgado, L.T. Cell wall physical properties determine the thallus biomineralization pattern in Padina gymnospora. J. Phycol. 2017, 53, 1294–1304. [Google Scholar] [CrossRef]
- Youngblood, W.W.; Blumer, M. Alkanes and alkenes in marine benthic algae. Mar. Biol. 1973, 21, 163–172. [Google Scholar] [CrossRef]
- Youngblood, W.W.; Blumer, M.; Guillard, R.L.F.; Fiore, S. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. 1971, 8, 190–201. [Google Scholar] [CrossRef]
- Huang, W.; Pulaski, S.P.; Meinwald, J. Synthesis of highly unsaturated insect pheromones: (Z,Z,Z)-1,3,6,9-heneicosatetraene and (Z,Z,Z)-1,3,6,9-nonadeca-tetraene. J. Org. Chem. 1983, 48, 13–16. [Google Scholar] [CrossRef]
- Jain, S.C.; Dussourd, D.E.; Canner, W.E.; Eisner, T.; Guerrero, A.; Meinwald, J. Polyene pheromone components from an arctiid moth (Utetheisa ornatrix): Characterization and synthesis. J. Org. Chem. 1983, 48, 17–20. [Google Scholar] [CrossRef]
- Broekhof, N.L.J.M.; Witteveen, J.G.; Van der Weerdt, A.J.A. Characteristic odoriferous compounds of brown algae: Syntheses of possible oxidation products of (6Z, 9Z, 12Z, 15Z)-1,6,9,12,15-heneicosapentaene and (6Z, 9Z, 12Z, 15Z, 18Z)-1,6,9,12,15,18-heneicosahexaene. Recl. Trav. Chim. Pays-Bas 1986, 105, 347–464. [Google Scholar] [CrossRef]
- Golovnya, R.V.; Kuzmenko, T.E. Thermodynamic evaluation of the interaction of fatty acid methyl esters with polar and non-polar stationary phases, based on their retention indices. Chromatographia 1977, 10, 545–548. [Google Scholar] [CrossRef]
- Schnitzler, I.; Boland, W.; Hay, M.E. Organic sulfur compounds from Dictyopteris spp. (Phaeophyceae) deter feeding by an herbivorous amphipod (Ampithoe longimana) but not by an herbivorous sea urchin (Arbacia punctulata). J. Chem. Ecol. 1998, 24, 1715–1732. [Google Scholar] [CrossRef]
- Miralto, A.; Barone, G.; Romano, G.; Poulet, S.A.; Ianora, A.; Russo, G.L.; Buttino, I.; Mazzarella, G.; Laabir, M.; Cabrini, M.; et al. The insidious effect of diatoms on copepod reproduction. Nature 1999, 402, 173–176. [Google Scholar] [CrossRef]
- Pohnert, G.; Boland, W. The oxylipin chemistry of attraction and defense in brown algae and diatoms. Nat. Prod. Rep. 2002, 19, 108–122. [Google Scholar] [PubMed] [Green Version]
- Nylund, G.M.; Weinberger, F.; Rempt, M.; Pohnert, G. Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS ONE 2011, 6, e29359. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.C.; Valentin, Y.Y.; Teixeira, V.L.; Kelecom, A. Phlorotannins in Brazilian brown algae: Quantitative study and ecological implications. Planta Med. 1990, 56, 557–558. [Google Scholar] [CrossRef]
- Pereira, R.C.; Yoneshigue-Valentin, Y. The role of polyphenols from the tropical brown alga Sargassum furcatum on the feeding by amphipod herbivores. Bot. Mar. 1999, 42, 441–448. [Google Scholar] [CrossRef]
- Deal, M.S.; Hay, M.E.; Wilson, D.; Fenical, W. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 2003, 136, 107–114. [Google Scholar] [CrossRef]
- Kubanek, J.; Lester, S.E.; Fenical, W.; Hay, M.E. Ambiguous role of phlorotannins as chemical defenses in the brown alga Fucus vesiculosus. Mar. Ecol. Prog. Ser. 2004, 277, 79–93. [Google Scholar] [CrossRef]
- Sakata, K.; Sakura, T.; Ina, K. Algal phagostimulants for marine herbivorous gastropods. J. Chem. Ecol. 1988, 14, 1405–1416. [Google Scholar] [CrossRef]
- Orhan, I.; Sener, B.; Atici, T. Fatty acid distribution in the lipoid extracts of various algae. Chem. Nat. Compd. 2003, 39, 167–170. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Kumari, P.; Bijo, A.J.; Mantri, V.A.; Reddy, C.R.K.; Jha, B. Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 2013, 86, 44–56. [Google Scholar] [CrossRef]
- Tabarsa, M.; Rezaei, M.; Ramezanpour, Z.; Waaland, J.R.; Rabiei, R. Fatty acids, amino acids, mineral contents, and proximate composition of some brown seaweeds. J. Phycol. 2012, 48, 285–292. [Google Scholar] [CrossRef]
- Jüttner, F. Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J. Phycol. 2001, 37, 744–755. [Google Scholar] [CrossRef]
- Sawai, Y.; Fujita, Y.; Sakata, K.; Tamashiro, E. 20-Hydroxy-4,8,13,17-tetramethyl-4,8,12,16-eicosatetraenoic acid, a new feeding deterrent against herbivorous gastropods, from the subtropical brown alga Turbinaria ornata. Fish. Sci. 1994, 60, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Desbois, A.P.; Mearns-Spragg, A.; Smith, V.J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52. [Google Scholar] [CrossRef]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [Green Version]
- Desbois, A.P.; Lebl, T.; Yan, L.; Smith, V.J. Isolation and structural characterization of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 2008, 81, 755–764. [Google Scholar] [CrossRef]
- Freese, E.; Shew, C.W.; Galliers, E. Function of lipophilic acids as antimicrobial food additives. Nature 1973, 241, 321–325. [Google Scholar] [CrossRef]
- Greenway, D.L.A.; Dyke, K.G.H. Mechanism of the inhibitory action of linoleic acid on the growth of Staphylococcus aureus. J. Gen. Microbiol. 1979, 115, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Martone, P.T.; Schipper, S.R.; Froese, T.; Bretner, J.; DeMong, A.; Eastham, T.M. Calcification does not necessarily protect articulated coralline algae from urchin grazing. J. Exp. Mar. Biol. Ecol. 2021, 537, 151513. [Google Scholar] [CrossRef]
- Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae; Watanabe, A., Hattori, A., Eds.; Japanese Society Plant Physiology: Hakone, Kyoto, Japan, 1968; pp. 63–75. [Google Scholar]
- Lawrence, J.M. On the relationship between marine plants and sea urchins. Oceanogr. Mar. Biol. Ann. Rev. 1975, 132, 135–286. [Google Scholar]
- Souza, C.F.; Oliveira, A.S.; Pereira, R.C. Feeding preference of the sea urchin Lytechinus variegatus (Lamarck, 1816) on seaweeds. Braz. J. Oceanogr. 2008, 56, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Hay, M.E.; Kappel, Q.E.; Fenical, W. Synergisms in plant defenses against herbivores: Interactions of chemistry, calcification, and plant-quality. Ecology 1994, 75, 1714–1726. [Google Scholar] [CrossRef] [Green Version]
- Paradas, W.C.; Salgado, L.T.; Pereira, R.C.; Hellio, C.; Atella, G.C.; Moreira, D.L.; Carmo, A.P.C.; Soares, A.R.; Amado-Filho, G.M. A Novel Antifouling defense strategy from red seaweed: Exocytosis and deposition of fatty acid derivatives at the cell wall surface. Plant Cell Physiol. 2016, 57, 1008–1019. [Google Scholar] [CrossRef] [Green Version]
- Ank, G.; Paradas, W.C.; Amado-Filho, G.M.; Pereira, R.C.; Da Gama, B.A.P. Within-thallus variation on polyphenol contents and physodes amount in Stypopodium zonale. Pan-Am. J. Aquat. Sci. 2014, 9, 1–7. [Google Scholar]
- Plouguerné, E.; Souza, L.M.; Sassaki, G.L.; Cavalcanti, J.F.; Villela Romanos, M.T.; Da Gama, B.A.P. Antiviral sulfoquinovosyldiacylglycerols (SQDGs) from the Brazilian brown seaweed Sargassum vulgare. Marine Drugs 2013, 11, 4628–4640. [Google Scholar] [CrossRef] [Green Version]
Peak | Compound (FA and HC) | RIc | RIL | Molecular Formula | Lipid | FA3 | |
---|---|---|---|---|---|---|---|
RT | % | ||||||
1 | Myristic acid | 1723 | 1713 a | C14H23O2 | 14:0 | 14.6 | 1.14 ± 0.10 |
2 | Pentadecanoic acid | 1825 | 1813 a | C15H30O2 | 15:0 | 18.4 | 0.71 ± 0.05 |
3 | Palmitoleic acid | 1902 | 1888 a | C16H30O2 | 16:1 | 21.9 | 1.79 ± 0.12 |
4 | Palmitic acid | 1926 | 1913 a | C16H32O2 | 16:0 | 23.2 | 9.80 ± 1.10 |
5 | 5Z,8Z,11Z,14Z-Heneicosatetraene | 2041 | 2021 b | C21H36 | 21:4 | 29.7 | 76.60 ± 5.10 |
6 | Oleic acid | 2099 | 2081 a | C18H34O2 | 18:1 (n-9) | 33.4 | 3.02 ± 0.15 |
7 | Stearic acid | 2127 | 2113 a | C18H36O2 | 18:0 | 35.3 | 6.87 ± 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, R.C.; Paradas, W.C.; de Carvalho, R.T.; de Lima Moreira, D.; Kelecom, A.; Passos, R.M.F.; Atella, G.C.; Salgado, L.T. Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound. Plants 2023, 12, 1073. https://doi.org/10.3390/plants12051073
Pereira RC, Paradas WC, de Carvalho RT, de Lima Moreira D, Kelecom A, Passos RMF, Atella GC, Salgado LT. Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound. Plants. 2023; 12(5):1073. https://doi.org/10.3390/plants12051073
Chicago/Turabian StylePereira, Renato Crespo, Wladimir Costa Paradas, Rodrigo Tomazetto de Carvalho, Davyson de Lima Moreira, Alphonse Kelecom, Raoni Moreira Ferreira Passos, Georgia Correa Atella, and Leonardo Tavares Salgado. 2023. "Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound" Plants 12, no. 5: 1073. https://doi.org/10.3390/plants12051073
APA StylePereira, R. C., Paradas, W. C., de Carvalho, R. T., de Lima Moreira, D., Kelecom, A., Passos, R. M. F., Atella, G. C., & Salgado, L. T. (2023). Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound. Plants, 12(5), 1073. https://doi.org/10.3390/plants12051073