Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Area of Study
4.2. Climate Data
4.3. Reproductive and Vegetative Phenological Study
4.4. Frequency of Visits by Potential Pollinators
4.5. Sample Colletion to Essential Oil Extraction
4.6. Essential Oil Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Queiroz, G.A.; Guimarães, E.F. Piper L. (Piperaceae) Do Leste Metropolitano, Rj, Brasil/Piper L. (Piperaceae) From Eastern Metropolitan, Rj, Brazil. Braz. J. Develop. 2020, 6, 93597–93634. [Google Scholar] [CrossRef]
- de Brito Machado, D.; Ramos, Y.J.; Queiroz, G.A.; Defaveri, A.C.A.; Gobatto, A.A.; Moreira, D.L. Study of volatile chemical constituents and insect-plant interaction in Piper mollicomum Kunth (Piperaceae) from Tijuca Forest, Rio de Janeiro—RJ, Brazil. Rev. Virtual Quím. 2021, 13, 1216–1225. [Google Scholar] [CrossRef]
- Ramos, Y.J.; de Brito Machado, D.; Queiroz, G.A.; Guimarães, E.F.; Defaveri, A.C.A.; Moreira, D.L. Chemical composition of the essential oils of circadian rhythm and of different vegetative parts from Piper mollicomum Kunth—A medicinal plant from Brazil. Biochem. Syst. Ecol. 2020, 92, 104116. [Google Scholar] [CrossRef]
- Guimarães, E.F.; Giordano, L.C.S. Piperaceae do Nordeste brasileiro I: Estado do Ceará. Rodriguesia 2004, 55, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, E.F.; Monteiro, D. Piperaceae na Reserva Biológica de Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguesia 2006, 57, 569–589. [Google Scholar] [CrossRef] [Green Version]
- Potrich, F.B.; Baggio, C.H.; Freitas, C.S.; Mayer, B.; Santos, A.C.; Twardowschy, A.; Guedes, A.; Marques, M.C.A. Ação de extratos de plantas medicinais sobre a motilidade do trato gastrointestinal. Rev. Bras. Plantas Med. 2014, 16, 750–754. [Google Scholar] [CrossRef]
- Reigada, J.B. Bioprospecção em Espécies de Piperaceae. Master’s Thesis, University of São Paulo, São Paulo, Brazil, 2009. Available online: https://www.teses.usp.br/teses/disponiveis/46/46135/tde-29072009-114008/?gathStatIcon=true (accessed on 6 September 2022).
- Lago, J.H.G.; Ito, A.T.; Fernandes, C.M.; Young, M.C.M.; Kato, M.J. Secondary metabolites isolated from Piper chimonantifolium and their antifungal activity. Nat. Prod. Res. 2011, 26, 770–773. [Google Scholar] [CrossRef]
- Cordova, S.M.; Benfatti, C.S.; Magina, M.D.A.; Guedes, A.; Cordova, C.M.M.D. Análise da atividade antimicrobiana de extratos isolados de plantas nativas da flora brasileira frente a Mycoplasma arginini, M. hominis e Ureaplasma urealyticum. Rev. Bras. Anál. Clín. 2010, 42, 241–244. Available online: https://scholar.google.com.br/scholar?cluster=11453533814818408210&hl=pt-BR&as_sdt=0,5 (accessed on 6 September 2022).
- Simas, N.K.; Lima, E.C.L.; Conceição, S.R.; Kuster, R.M.; Filho, A.M.O.; Lage, C.L.S. Produtos naturais para o controle da transmissão da dengue—Atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quím. Nova 2004, 27, 1678–7064. [Google Scholar] [CrossRef] [Green Version]
- Stefnia, P.S.; Simone, S.V.; Nathalia, F.C.; Andrea, S.C.; Keila, S.C.L.; Valber, S.F.; Antonio, L.S.L. Chemical composition and antinociceptive activity of the essential oil of Piper mollicomum and Piper rivinoides. J. Med. Plants Res. 2014, 8, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Medeiros, M.F.T.; Fonseca, V.S.; Andreata, R.H.P. Plantas medicinais e seus usos pelos sitiantes da Reserva Rio das Pedras. Mangaratiba. RJ. Brasil. Acta Bot. Bras. 2004, 18, 391–399. [Google Scholar] [CrossRef]
- Medeiros, T.M.F.; Senna-Vale, L.; Andreata, P.R.H.; de Fernandes, M.L.R.R. Informações estratégicas geradas através do estudo de patentes de plantas medicinais citadas pelos sitiantes da reserva Rio das Pedras, Mangaratiba, Rio de Janeiro. Rev. Biol. Neotrop. 2008, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Brito, M.R.; Senna-Valle, L. Plantas medicinais utilizadas na comunidade Caiçara da Praia do Sono. Paraty, Rio de Janeiro, Brasil. Acta Bot. Bras. 2011, 25, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Messias, M.C.T.B.; Menegatto, M.F.; Prado, A.C.C.; Santos, B.R.; Guimarães, M.F.M. Popular use of medicinal plants and the socioeconomic profile of the users: A study in the urban area of Ouro Preto, Minas Gerais, Brazil. Rev. Bras. Plantas Med. 2015, 17, 76–104. [Google Scholar] [CrossRef]
- Guedes, R.R.; Profice, S.R.; Costa, E.L.; Baumgratz, J.F.A.; Lima, H.C. Plantas utilizadas em rituais afro-brasileiros no Estado do Rio de Janeiro—Um ensaio Etnobotânico. Rodriguesia 1985, 37, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Thies, W.; Kalko, E.K.V. Phenology of neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 2004, 104, 362–376. [Google Scholar] [CrossRef]
- Maynard, L.D.; Ananda, A.; Sides, M.F.; Burk, H.; Whitehead, S.R. Dietary resource overlap among three species of frugivorous bat in Costa Rica. J. Trop. Ecol. 2019, 35, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Piper, J.K. Seasonality of Fruit Characters and Seed Removal by Birds. Oikos 1986, 46, 303. [Google Scholar] [CrossRef]
- Maynard, L.D.; Slinn, H.L.; Glassmire, A.E.; Matarrita-Carranza, B.; Dodson, C.D.; Nguyen, T.T.; Whitehead, S.R. Secondary metabolites in a neotropical shrub: Spatiotemporal allocation and role in fruit defense and dispersal. Ecology 2020, 101, 12. [Google Scholar] [CrossRef]
- Fleming, T.H. Fecundity, fruiting pattern, and seed dispersal in Piper amalago (Piperaceae), a bat-dispersed tropical shrub. Oecologia 1981, 51, 42–46. [Google Scholar] [CrossRef]
- Rocha, V.J.; Barbosa, G.P.; Rossi, H.R.S.; Sekiama, M.L. Chiropteran richness and diversity (Chiroptera; Mammalia) in Permanent Preservation Areas from UFSCar-Araras campus (SP). Ciênc. Tecnol. Ambiente 2018, 8, 21–29. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Schneider, G.F.; Dybzinski, R.; Nelson, A.S.; Gelambi, M.; Jos, E.; Beckman, N.G. Fruits, frugivores, and the evolution of phytochemical diversity. Oikos 2021, 2, 1. [Google Scholar] [CrossRef]
- Vieira, E.A.; Arruda, R.; Massuda, K.F.; Cardoso-Gustavson, P.; Guimarães, E.F.; Trigo, J.R. Volatiles released by damaged leaves of Piper mollicomum (Piperaceae) act as cues for predaceous wasps: Evidence using plasticine dummies as herbivore model. Arthropod-Plant Interact. 2019, 13, 593–601. [Google Scholar] [CrossRef]
- Tsahar, E.; Friedman, J.; Izhaki, I. Impact on fruit removal and seed predation of a secondary metabolite, emodin, in Rhamnus alaternus fruit pulp. Oikos 2002, 99, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.E.; Adler, L.S.; Brody, A.K. The dual role of floral traits: Pollinator attraction and plant defense. Ecology 2004, 85, 1503–1511. [Google Scholar] [CrossRef]
- Cipollini, M.L.; Paulk, E.; Mink, K.; Vaughn, K.; Fischer, T. Defense Tradeoffs in Fleshy Fruits: Effects of Resource Variation on Growth, Reproduction, and Fruit Secondary Chemistry in Solanum carolinense. J. Chem. Ecol. 2004, 30, 1–17. [Google Scholar] [CrossRef]
- Cazetta, E.; Schaefer, H.M.; Galetti, M. DEOs attraction to frugivores or defense against pathogens shape fruit pulp composition? Oecologia 2007, 155, 277–286. [Google Scholar] [CrossRef]
- Kessler, A.; Halitschke, R. Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: Predictions and case study. Funct. Ecol. 2009, 23, 901–912. [Google Scholar] [CrossRef]
- McCall, A.C.; Fordyce, J.A. Can optimal defence theory be used to predict the distribution of plant chemical defences? J. Ecol. 2010, 98, 985–992. [Google Scholar] [CrossRef]
- Iason, G.R.; Dicke, M.; Hartley, S.E. The Ecology of Plant Secondary Metabolites: From Genes to Global Processes; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Giuliani, C.; Ascrizzi, R.; Lupi, D.; Tassera, G.; Santagostini, L.; Giovanetti, M.; Flamini, G.; Fico, G. Salvia verticillata: Linking glandular trichomes, volatiles and pollinators. Phytochemistry 2018, 155, 53–60. [Google Scholar] [CrossRef]
- Nazem, V.; Sabzalian, M.R.; Saeidi, G.; Rahimmalek, M. Essential oil yield and composition and secondary metabolites in self- and open-pollinated populations of mint (Mentha spp.). Ind. Crops. Prod. 2019, 130, 332–340. [Google Scholar] [CrossRef]
- Alves, M.N.; Sartoratto, A.; Trigo, J.R. Scopolamine in Brugmansia Suaveolens (Solanaceae): Defense, Allocation, Costs, and Induced Response. J. Chem. Ecol. 2020, 33, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.D.; Tokuhisa, J.G.; Reichelt, M.; Gershenzon, J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, S.R.; Bowers, M.D. Iridoid and secoiridoid glycosides in a hybrid complex of bush honeysuckles (Lonicera spp., Caprifolicaceae): Implications for evolutionary ecology and invasion biology. Phytochemistry 2013, 86, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.C.; Toda, M.F. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Dyer, L.A.; Dodson, C.D.; Beihoffer, J.; Letourneau, D.K. Trade-offs in antiherbivore defenses in Piper cenocladum: Ant mutualists versus plant secondary metabolites. J. Chem. Ecol. 2001, 27, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Richards, L.A.; Dyer, L.A.; Smilanich, A.M.; Dodson, C.D. Synergistic Effects of Amides from Two Piper Species on Generalist and Specialist Herbivores. J. Chem. Ecol. 2010, 36, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Beckman, N.G. The Distribution of Fruit and Seed Toxicity during Development for Eleven Neotropical Trees and Vines in Central Panama. PLoS ONE 2013, 8, e66764. [Google Scholar] [CrossRef]
- Rodríguez, A.; Alquézar, B.; Peña, L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2012, 197, 36–48. [Google Scholar] [CrossRef]
- Connahs, H.; Rodríguez-Castañeda, G.; Walters, T.; Walla, T.; Dyer, L. Geographic Variation in Host-Specificity and Parasitoid Pressure of an Herbivore (Geometridae) Associated with the Tropical Genus Piper (Piperaceae). J. Insect Sci. 2009, 9, 1–11. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Li, H.; Liu, J. The lack of low temperature tolerance of tropical seagrasses strongly restricts their geographical distribution. Mar. Environ. Res. 2022, 173, 105539. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.S.; Stireman, J.O. The tri-trophic niche concept and adaptive radiation of phytophagous insects. Ecol. Lett. 2005, 8, 1247–1255. [Google Scholar] [CrossRef]
- Dyer, L.A.; Singer, M.S.; Lill, J.T.; Stireman, J.O.; Gentry, G.L.; Marquis, R.J.; Ricklefs, R.E.; Greeney, H.F.; Wagner, D.L.; Morais, H.C.; et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature 2007, 448, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Fincher, R.M.; Dyer, L.A.; Dodson, C.D.; Richards, J.L.; Tobler, M.A.; Searcy, J.; Mather, J.E.; Reid, A.J.; Rolig, J.S.; Pidcock, W. Inter- and Intraspecific Comparisons of Antiherbivore Defenses in Three Species of Rainforest Understory Shrubs. J. Chem. Ecol. 2008, 34, 558–574. [Google Scholar] [CrossRef] [Green Version]
- Glassmire, A.E.; Philbin, C.; Richards, L.A.; Jeffrey, C.S.; Snook, J.S.; Dyer, L.A. Proximity to canopy mediates changes in the defensive chemistry and herbivore loads of an understory tropical shrub, Piper kelleyi. Ecol. Lett. 2018, 22, 332–341. [Google Scholar] [CrossRef]
- Cosmo, L.G.; Nascimento, A.R.; Cogni, R.; Freitas, A.V.L. Temporal distribution in a tri-trophic system associated with Piper amalago L. in a tropical seasonal forest. Arthropod Plant Interact. 2019, 13, 647–652. [Google Scholar] [CrossRef]
- Strauss, S.Y.; Rudgers, J.A.; Lau, J.A.; Irwin, R.E. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 2002, 17, 278–285. [Google Scholar] [CrossRef]
- Heil, M. Indirect defence via tritrophic interactions. New Phytol. 2008, 178, 41–61. [Google Scholar] [CrossRef]
- Bedoya-Pérez, M.A.; Isler, I.; Banks, P.B.; McArthur, C. Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: A foraging odor cue as well as a toxin? Oecologia 2013, 174, 827–837. [Google Scholar] [CrossRef]
- Togashi, K.; Goto, M.; Rim, H.; Hattori, S.; Ozawa, R.; Arimura, G. Mint companion plants attract the predatory mite Phytoseiulus persimilis. Sci. Rep. 2019, 9, 1. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Dewick, P.M. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed.; John Wiley & Sons LTDA: Chinchester, UK, 2002; Available online: https://imtk.ui.ac.id/wp-content/uploads/2014/02/Medicinal-Natural-Products-KOBAL.pdf (accessed on 6 September 2022).
- Ramos, Y.J.; Costa-Oliveira, C.D.; Candido-Fonseca, I.; Queiroz, G.A.D.; Guimarães, E.F.; Defaveri, A.C.A.; Sadgrove, N.J.; Moreira, D.L. Advanced Chemophenetic Analysis of Essential Oil from Leaves of Piper gaudichaudianum Kunth (Piperaceae) Using a New Reduction-Oxidation Index to Explore Seasonal and Circadian Rhythms. Plants 2021, 10, 2116. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Hieu, L.D.; Thang, T.D.; Hoi, T.M.; Ogunwande, I.A. Chemical Composition of Essential Oils from Four Vietnamese Species of Piper (Piperaceae). J. Oleo Sci. 2014, 63, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Regnault-Roger, C. The potential of botanical essential oils for insect pest control. J. Integr. Pest Manag. 1997, 2, 25–34. [Google Scholar] [CrossRef]
- Prashar, A.; Hili, P.; Veness, R.G.; Evans, C.S. Antimicrobial action of palmarosa oil (Cymbopogon martinii) on Saccharomyces cerevisiae. Phytochemistry 2003, 63, 569–575. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides. deterrents. and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Barros, F.; Zambarda, E.; Heinzmann, B. Variabilidade sazonal e biossíntese de terpenóides presentes no óleo essencial de Lippia alba (Mill.) n.e. brown (Verbenaceae). Quim. Nova 2009, 32, 861–867. [Google Scholar] [CrossRef]
- Knaak, N.; Fiuza, L.M. Potential of essential plant oils to control insects and microorganisms. Neotrop. Biol. Conserv. 2010, 5, 120–132. [Google Scholar] [CrossRef]
- Olawore, N.O.; Ololade, Z.S. Eucalyptus camaldulensis var. nancy and Eucalyptus camaldulensis var. petford Seed Essential Oils: Phytochemicals and Therapeutic Potentials. Chem. Sci. J. 2017, 8, 1. [Google Scholar]
- Harish, A.C.; Alok, M.A. Essential Oil Profile of Wild and Cultivated Accession of Cymbopogon schoenanthus (L.) from Uttarakhand Region. Med. Chem. 2018, 8, 1. [Google Scholar]
- Ootani, M.A.; Aguiar, R.W.; Ramos, A.C.C.; Brito, D.R.; Silva, J.B.; Cajazeira, J.P. Use of Essential Oils in Agriculture. J. Biotechnol. Biodivers. 2019, 4, 162–174. Available online: https://www.semanticscholar.org/paper/Use-of-Essential-Oils-in-Agriculture-Ootani-Aguiar/6ffe3996088f0f77c8bf092aa4b1355d5395ed64-related-papers (accessed on 6 September 2022). [CrossRef] [Green Version]
- Wheeler, D.A.; Isman, M.B. Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol. Exp. Appl. 2001, 98, 9–16. [Google Scholar] [CrossRef]
- Zhao, B.; Grant, G.G.; Langevin, D.; MacDonald, L. Deterring and Inhibiting Effects of Quinolizidine Alkaloids on Spruce Budworm (Lepidoptera: Tortricidae) Oviposition. Environ. Entomol. 1998, 27, 984–992. [Google Scholar] [CrossRef]
- Muthukrishnan, J.; Pushpalatha, E. Effects of plant extracts on fecundity and fertility of mosquitEOs. J. Appl. Entomol. 2008, 125, 31–35. [Google Scholar] [CrossRef]
- Figueiredo, R. Pollination Biology of Piperaceae Species in Southeastern Brazil. Ann. Bot. 2000, 85, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Thomazini, M.J.; Thomazini, A.P.B.W. Diversidade de abelhas (Hymenoptera: Apoidea) em inflorescências de Piper hispidinervum (C.DC.). Neotrop. Entomol. 2002, 31, 27–34. [Google Scholar] [CrossRef]
- Valentin-Silva, A.; Coelho, V.P.M.; Ventrella, M.C.; Vieira, M.F. Timing of pollen release and stigma receptivity period of Piper vicosanum: New insights into sexual reproduction of the genus. Am. J. Bot. 2015, 102, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Vargas, R.D.L.; Vieira, M.F. Sex expression, breeding system and pollinators of Piper caldense (Piperaceae) in the brazilian tlantic forest. Acta. Biol. Colomb. 2017, 22, 370–376. [Google Scholar] [CrossRef]
- Burkle, L.A.; Runyon, J.B. Drought and leaf herbivory influence floral volatiles and pollinator attraction. Glob. Chang. Biol. 2016, 22, 1644–1654. [Google Scholar] [CrossRef] [PubMed]
- Dörsam, B.; Wu, C.-F.; Efferth, T.; Kaina, B.; Fahrer, J. The eucalyptus oil ingredient 1,8-cineole induces oxidative DNA damage. Arch. Toxicol. 2014, 89, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, A.K.; Fonseca, I.V.L. Flight Activity and Responses to Climatic Conditions of two Subspecies of Melipona marginata Lepeletier (Apidae. Meliponinae). J. Apic. Res. 1986, 25, 3–8. [Google Scholar] [CrossRef]
- Antonini, Y.; Souza, H.G.; Jacobi, M.C.; Fábio, E.B. Behavior and bionomy Diversidade e Comportamento dos Insetos Visitantes Florais de Stachytarpheta glabra Cham, (Verbenaceae), em uma Área de Campo Ferruginoso, Ouro Preto MG. Neotrop. Entomol. 2005, 34, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Harder, L.D.; Wang, A.; Zhang, D.; Liao, W. Habitat effects on reproductive phenotype, pollinator behavior, fecundity, and mating outcomes of a bumble bee–pollinated herb. Am. J. Bot. 2022, 109, 470–485. [Google Scholar] [CrossRef] [PubMed]
- Mc Cabe, S.I.; Farina, W.M. Olfactory learning in the stingless bee Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). J. Comp. Physiol. 2010, 196, 481–490. [Google Scholar] [CrossRef]
- Shanahan, M.; Spivak, M. Resin Use by Stingless Bees: A Review. Insects 2021, 12, 719. [Google Scholar] [CrossRef]
- Rodriguez-Morrison, V.; Llewellyn, D.; Zheng, Y. Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment. Front. Plant Sci. 2021, 12, 646020. [Google Scholar] [CrossRef]
- Meena, R.K.; Jangra, S.; Wadhwa, Z.; Leela, W.M. Role of Plant Volatiles in Defense and Communication. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 300–313. [Google Scholar] [CrossRef]
- Zheng, L.; Jingrui, L.I.; Yan, D.; Wen, Z.; Hongtong, B.; Shu, L.; Su, W.; Hui, L.; Lei, S. Gene co-expression modulating terpene metabolism is associated with plant anti-herbivore defence during initial flowering stages. Authorea 2020. Available online: https://d197for5662m48.cloudfront.net/documents/publicationstatus/30707/preprint_pdf/fb0a8ed33e04b09f420918c7ad4680fa.pdf (accessed on 6 September 2022). [CrossRef]
- Fujita, Y.; Koeduka, T.; Aida, M.; Suzuki, H.; Iijima, Y.; Matsui, K. Biosynthesis of volatile terpenes that accumulate in the secretory cavities of young leaves of japanese-pepper (Zanthoxylum Piperitum): Isolation and functional characterization of monoterpene and sesquiterpene synthase genes. Plant Biotechnol. J. 2017, 34, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boachon, B.; Junker, R.R.; Miesch, L.; Bassard, J.-E.; Höfer, R.; Caillieaudeaux, R.; Seidel, D.E.; Lesot, A.; Heinrich, C.; Ginglinger, J.F.; et al. CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists. Plant Cell. 2015, 27, 2972–2990. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Park, K.C. Methyl Salicylate, a Soybean Aphid-Induced Plant Volatile Attractive to the Predator Coccinella septempunctata. J. Chem. Ecol. 2005, 31, 1733–1746. [Google Scholar] [CrossRef] [PubMed]
- Picard, I.; Hollingsworth, R.G.; Salmieri, S.; Lacroix, M. Repellency of Essential Oils to Frankliniella occidentalis (Thysanoptera: Thripidae) as Affected by Type of Oil and Polymer Release. J. Econ. Entomol. 2012, 105, 1238–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.H.; Roberts, J.M.; Pope, T.W. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. J. Crop Prot. 2018, 110, 125–130. [Google Scholar] [CrossRef]
- Rodríguez, A.; San Andrés, V.; Cervera, M.; Redondo, A.; Alquézar, B.; Shimada, T.; Gadea, J.; Rodrigo, M.J.; Zacarías, L.; Palou, L.; et al. Terpene Down-Regulation in Orange Reveals the Role of Fruit Aromas in Mediating Interactions with Insect Herbivores and Pathogens. Plant Physiol. 2011, 156, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Rossi, Y.E.; Palacios, S.M. Fumigant toxicity of Citrus sinensis essential oil on Musca domestica L, adults in the absence and presence of a P450 inhibitor. Acta Trop. 2013, 127, 33–37. [Google Scholar] [CrossRef]
- Bergström, G.; Tengö, J. Linalool in mandibular gland secretion of Colletes bees (Hymenoptera: Apoidea). J. Chem. Ecol. 1978, 4, 437–449. [Google Scholar] [CrossRef]
- Borg-Karlson, A.K.; Tengö, J.; Valterová, I.; Unelius, C.R.; Taghizadeh, T.; Tolasch, T.; Francke, W. (+)-Linalol, a Mate Attractant Pheromone Component in the Bee Colletes cunicularius. J. Chem. Ecol. 2003, 29, 1–14. [Google Scholar] [CrossRef]
- Glinwood, R.; Blande, J.D. Deciphering Chemical Language of Plant Communication: Synthesis and Future Research Directions. Plant Signal. Behav. 2016, 1, 319–326. [Google Scholar] [CrossRef]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Stahl, B. Diversity and distribution of floral scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Borg-Karlson, A.K.; Unelius, C.R.; Valterová, I.; Anders, N.L. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry 1996, 41, 1477–1483. [Google Scholar] [CrossRef]
- Raguso, R.A.; Pichersky, E. New Perspectives in Pollination Biology: Floral Fragrances. A day in the life of a linalool molecule: Chemical communication in a plant-pollinator system. Part 1: Linalool biosynthesis in flowering plants. Plant Species Biol. 1999, 14, 95–120. [Google Scholar] [CrossRef] [Green Version]
- Reisenman, C.E.; Riffell, J.A.; Bernays, E.A.; Hildebrand, J.G. Antagonistic effects of floral scent in an insect–plant interaction. Proc. R. Soc. B Biol. Sci. 2010, 277, 2371–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichersky, E.; Raguso, R.A.; Lewinsohn, E.; Croteau, R. Floral Scent Production in Clarkia (Onagraceae) (I. Localization and Developmental Modulation of Monoterpene Emission and Linalool Synthase Activity). Plant Physiol. 1994, 106, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, N.; Cseke, L.; Blanc, V.M.; Pichersky, E. Evolution of floral scent in Clarkia: Novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell. 1996, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lücker, J.; Bouwmeester, H.J.; Schwab, W.; Blaas, J.; Van Der Plas, L.H.W.; Verhoeven, H.A. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-d-glucopyranoside. Plant J. 2001, 27, 315–324. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, R.; Su, P.; Jin, B.; Guo, J.; Tang, J.; Chen, T.; Zeng, W.; Lai, C.; Ling, F.; et al. Elucidation of the essential oil biosynthetic pathways in Cinnamomum burmannii through identification of six terpene synthases. Plant Sci. 2022, 317, 111203. [Google Scholar] [CrossRef] [PubMed]
- Junker, R.R.; Gershenzon, J.; Unsicker, S.B. Floral Odor Bouquet Loses its Ant Repellent Properties After Inhibition of Terpene Biosynthesis. J. Chem. Ecol. 2011, 37, 1323–1331. [Google Scholar] [CrossRef]
- McCallum, E.J.; Cunningham, J.P.; Lücker, J.; Zalucki, M.P.; De Voss, J.J.; Botella, J.R. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera. J. Exp. Biol. 2011, 214, 3672–3677. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Wang, Q.; Erb, M.; Turlings, T.C.J.; Ge, L.; Hu, L.; Li, J.; Han, X.; Zhang, T.; Lu, J.; et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol. Lett. 2012, 15, 1130–1139. [Google Scholar] [CrossRef]
- Wang, Q.; Hillwig, M.L.; Okada, K.; Yamazaki, K.; Wu, Y.; Swaminathan, S.; Yamane, H.; Peters, R.J. Characterization of CYP76M5–8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster. J. Biol. Chem. 2012, 287, 6159–6168. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Q.; Hillwig, M.L.; Peters, R.J. Picking sides: Distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis. Biochem. J. 2013, 454, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilpashree, H.B.; Sudharshan, S.J.; Shasany, A.K.; Nagegowda, D.A. Molecular characterization of three CYP450 genes reveals their role in withanolides formation and defense in Withania somnifera, the Indian Ginseng. Sci. Rep. 2022, 12, 1602. [Google Scholar] [CrossRef] [PubMed]
- Bianconi, G.V.; Suckow, U.M.S.; Cruz-Neto, A.P.; Mikich, S.B. Use of Fruit Essential Oils to Assist Forest Regeneration by Bats. Restor. Ecol. 2010, 20, 211–217. [Google Scholar] [CrossRef]
- Siebertz, R.; Proksch, P.; Witte, L. Accumulation and biosynthesis of the chromenes precocene I and II in Ageratum houstonianum. Phytochemistry 1990, 29, 2135–2138. [Google Scholar] [CrossRef]
- Metlen, K.L.; Aschehoug, E.T.; Callaway, R.M. Plant behavioural ecology: Dynamic plasticity in secondary metabolites. Plant Cell Environ. 2009, 32, 641–653. [Google Scholar] [CrossRef]
- Miehe-Steier, A.; Roscher, C.; Reichelt, M.; Gershenzon, J.; Unsicker, S.B. Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands. PLoS ONE 2015, 10, e0136073. [Google Scholar] [CrossRef] [PubMed]
- Nafea, H.M.; Kawaz, A.M.N.A. Synthesis, Characterization, Antimicrobial, DNA Cleavage and Fluorescent Activity of Metal ion (II) Coordinate with 2H-Chromene Azo novel ligand. Scopeindex.org. Available online: http://scopeindex.org/handle/sc/1839 (accessed on 19 April 2022).
- Merrill, G.B. Eupatoriochromene and encecalin, plant growth regulators from yellow starthistle (Centaurea solstitialis L.). J. Chem. Ecol. 1989, 15, 2073–2087. [Google Scholar] [CrossRef]
- Moraes, M.M.; Kato, M.J. Biosynthesis of Pellucidin A in Peperomia pellucida (L.) HBK. Front. Plant Sci. 2021, 12, 1602. [Google Scholar] [CrossRef]
- Gaia, A.M.; Yamaguchi, L.F.; Guerrero-Perilla, C.; Kato, M.J. Ontogenetic Changes in the Chemical Profiles of Piper Species. Plants 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Proksch, P.; Palmer, J.; Hartmann, T. Metabolism and bioconversion of chromene derivatives in Ageratina adenophora (Asteraceae). Planta 1986, 169, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Proksch, P.; Wray, V.; Isman, M.B.; Rahaus, I. Ontogenetic variation of biologically active natural products in Ageratina adenophora. Phytochemistry. 1990, 29, 453–457. [Google Scholar] [CrossRef]
- Hernández-Altamirano, J.M.; Ugidos, I.F.; Palazón, J.; Bonfill, M.; García-Ângulo, P.; Álvarez, J.; Acebes, J.L.; Bye, R.; Encina, A. Production of Encecalin in Cell Cultures and Hairy Roots of Helianthella quinquenervis (Hook.) A. Gray. Molecules 2020, 25, 3231. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.R.D.; Moreira, D.L.; Guimarães, E.F.; Kaplan, M.A.C. Essential oil analysis of 10 Piperaceae species from the Brazilian Atlantic forest. Phytochemistry 2001, 58, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.S.; Vieira, T.E.S.; Paula, J.R.; Oliveira-Neto, J.R.; Cunha, L.C.; Santos, A.H.; Romano, C.A. Influence of drying on the chemical composition and bioactivity of Piper aduncum (Piperaceae) essential oil against Aedes aegypti (Diptera: Culicidae). Res. Soc. Dev. 2021, 10, 46810817397. [Google Scholar] [CrossRef]
- Wisdom, C.S.; Rodriguez, E. Seasonal age-specific measurements of the sesquiterpene lactones and chromenes of Encelia farinosa. Biochem. Syst. Ecol. 1983, 11, 345–352. [Google Scholar] [CrossRef]
- Padalia, R.C.; Verma, R.S.; Sundaresan, V. Volatile Constituents of Three Invasive Weeds of Himalayan Region. Rec. Nat. Prod. 2010, 4, 109–114. Available online: https://acgpubs.org/RNP/2010/Volume%204/Issue%201/13_RNP-0911-156.pdf (accessed on 20 April 2022).
- Bianconi, G.V.; Mikich, S.B.; Teixeira, S.D.; Maia, B.H.L.N.S. Attraction of Fruit-Eating Bats with Essential Oils of Fruits: A Potential Tool for Forest Restoration. Biotropica 2007, 39, 136–140. [Google Scholar] [CrossRef]
- Silber, A.; Goldberg, T.; Shapira, O.; Hochberg, U. “Nitrogen Uptake and Macronutrients Distribution in Mango (Mangifera Indica L. Cv. Keitt) Trees. Plant Physiol. Biochem. 2022, 181, 23–32. [Google Scholar] [CrossRef]
- Slik, J.W.; Arroy-Rodriguez, V.; Aiba, S.I.; Venticinque, E.M. An Estimate of the Number of Tropical Tree Species. Proc. Natl. Acad. Sci. USA 2015, 112, 7472–7477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggins, N.L.; McArthur, C.; McLean, S.; Boyle, R. Effects of Two Plant Secondary Metabolites. Cineole and Gallic Acid, on Nightly Feeding Patterns of the Common Brushtail Possum. J. Chem. Ecol. 2003, 29, 1447–1464. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.J.; Wallis, I.R.; Mclean, S.; Sorensen, J.S.; Foley, W.J. Conflicting demands on detoxification pathways influence how common brushtail possums choose their diets. Ecology 2006, 87, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.J.; Milne, J.A. Effects of oral administration of brassica secondary metabolites, allyl cyanide, allyl isothiocyanate and dimethyl disulphide, on the voluntary food intake and metabolism of sheep. Br. J. Nutr. 1993, 70, 631–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyriazakis, I.; Anderson, D.H.; Duncan, A.J. Conditioned flavour aversions in sheep: The relationship between the dose rate of a secondary plant compound and the acquisition and persistence of aversions. Br. J. Nutr. 1998, 79, 55–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yearsley, J.M.; Villalba, J.J.; Gordon, I.J.; Kyriazakis, I.; Speakman, J.R.; Tolkamp, B.J.; Illius, A.W.; Duncan, A.J. A Theory of Associating Food Types with Their Postingestive Consequences. Am. Nat. 2006, 167, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Boyle, R.; McLean, S.; Foley, W.; Davies, N.W.; Peacock, E.J.; Moore, B. Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 129, 385–395. [Google Scholar] [CrossRef]
- Bates, T.H.; Best, J.V.F.; Williams, T.F. The radiation chemistry of β-pinene. J. Chem. Soc. 1962, 1531–1540. [Google Scholar] [CrossRef]
- Schrader, W.; Geiger, J.; Klockow, D.; Korte, E.H. Degradation of α-Pinene on Tenax during Sample Storage: Effects of Daylight Radiation and Temperature. Environ. Sci. Technol. 2001, 35, 2717–2720. [Google Scholar] [CrossRef]
- Presto, A.A.; Huff-Hartz, K.E.; Donahue, N.M. Secondary Organic Aerosol Production from Terpene Ozonolysis. Effect of UV Radiation. Environ. Sci. Technol. 2005, 39, 7036–7045. [Google Scholar] [CrossRef]
- Babar, Z.B.; Park, J.H.; Lim, H.J. Influence of NH3 on secondary organic aerosols from the ozonolysis and photooxidation of α-pinene in a flow reactor. Atmos. Environ. 2017, 164, 71–84. [Google Scholar] [CrossRef]
- Gil, M.; Bottini, R.; Berli, F.; Pontin, M.; Silva, M.F.; Piccoli, P. Volatile organic compounds characterized from grapevine (Vitis vinifera L. cv. Malbec) berries increase at pre-harvest and in response to UV-B radiation. Phytochemistry 2013, 96, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Alderson, P.G.; Wright, C.J. Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils. Environ. Exp. Bot. 2008, 63, 216–223. [Google Scholar] [CrossRef]
- Silva, F.G.; Carolina, B.A.; Oliveira, J.; Eduardo, B.P.; Pinto, V.E.N.; Suzana, C.S.; José, C.S.; Pedro, H.F. Seasonal variability in the essential oils of wild and cultivated Baccharis trimera. J. Braz. Chem. Soc. 2007, 18, 990–997. Available online: https://www.scielo.br/j/jbchs/a/cCWS3K8qwVDP5MpMv5dVHWP/?format=pdf&lang=en (accessed on 21 April 2022). [CrossRef]
- Aissi, O.; Boussaid, M.; Messaoud, C. Essential oil composition in natural populations of Pistacia lentiscus L. from Tunisia: Effect of ecological factors and incidence on antioxidant and antiacetylcholinesterase activities. Ind. Crops Prod. 2016, 91, 56–65. [Google Scholar] [CrossRef]
- Younsi, F.; Mehdi, S.; Aissi, O.; Rahali, N.; Jaouadi, R.; Boussaid, M.; Messaoud, C. Essential Oil Variability in Natural Populations of Artemisia campestris (L.) and Artemisia herbalba (Asso) and Incidence on Antiacetylcholinesterase and Antioxidant Activities. Chem. Biodivers. 2017, 14, 1700017. [Google Scholar] [CrossRef]
- Suffredini, I.B.; Sousa, S.R.N.; Frana, S.A.; Suffredini, H.B.; Díaz, I.E.C.; Paciencia, M.L.B. Multivariate Analysis of the Terpene Composition of Osteophloeum platyspermum Warb. (Myristicaceae) and Its Relationship to Seasonal Variation Over a Two-Year Period. J. Essent. Oil. Bear. Plants 2016, 19, 1380–1393. [Google Scholar] [CrossRef]
- Koundal, R.; Kumar, A.; Thakur, S.; Agnihotri, V.K.; Chand, G.; Singh, R.D. Seasonal variation in phytochemicals of essential oil from Juniperus communisneedles in western Himalaya. J. Essent. Oil Res. 2015, 27, 406–411. [Google Scholar] [CrossRef]
- Räsänen, J.V.; Leskinen, J.T.T.; Holopainen, T.; Joutsensaari, J.; Pasanen, P.; Kivimäenpää, M. Titanium dioxide (TiO2) fine particle capture and BVOC emissions of Betula pendula and Betula pubescens at different wind speeds. Atmos. Environ. 2017, 152, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Vicens, N.; Bosch, J. Weather-Dependent Pollinator Activity in an Apple Orchard, with Special Reference to Osmia cornutaand and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 2000, 29, 413–420. [Google Scholar] [CrossRef]
- Stone, G.N.; Willmer, P.G. Warm-up rates and body temperature in bees: The importance of body size, thermal regime and phylogeny. J. Exp. Biol. 1989, 147, 303–328. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.4301&rep=rep1&type=pdf (accessed on 21 April 2022). [CrossRef]
- Passos, J.M.O.; Gimenes, M. Pollination of Turnera subulata: Exotic or native bees? Iheringia Ser. Zool. 2022, 112, 01. [Google Scholar] [CrossRef]
- Corbet, S.A.; Fussell, M.; Ake, R.; Fraser, A.; Gunson, C.; Savage, A.; Smith, K. Temperature and the pollinating activity of social bees. Ecol. Entomol. 1993, 18, 17–30. [Google Scholar] [CrossRef]
- Abrol, D.P. Diversity of pollinating insects visiting litchi flowers (Litchi chinensis Sonn.) and path analysis of environmental factors influencing foraging behaviour of four honeybee species. J. Apic. Res. 2006, 45, 180–187. [Google Scholar] [CrossRef]
- Keasar, T.; Sadeh, A.; Shmida, A. Variability in nectar production and standing crop. and their relation to pollinator visits in a Mediterranean shrub. Arthropod Plant Interact. 2008, 2, 117–123. [Google Scholar] [CrossRef]
- McCabe, L.M.; Aslan, C.E.; Cobb, N.S. Decreased bee emergence along an elevation gradient: Implications for climate change revealed by a transplant experiment. Ecology 2021, 103, e03598. [Google Scholar] [CrossRef]
- Arroyo, M.T.K.; Armesto, J.J.; Primack, R.B. Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst. Evol. 1985, 149, 187–203. [Google Scholar] [CrossRef]
- Abrol, D.P. Foraging behaviour of Apis florea F., an important pollinator of Allium cepa L. J. Apic. Res. 2010, 49, 318–325. [Google Scholar] [CrossRef]
- Herrera, C.M. Floral Biology, Microclimate, and Pollination by Ectothermic Bees in an Early-Blooming Herb. Ecology 1995, 76, 218–228. [Google Scholar] [CrossRef]
- Torres, A.; Hoffmann, W.; Lamprecht, I. Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochim. Acta 2007, 458, 118–123. [Google Scholar] [CrossRef]
- Rader, R.; Reilly, J.; Bartomeus, I.; Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. Bioenergy 2013, 19, 3103–3110. [Google Scholar] [CrossRef] [PubMed]
- Cooper, P.D.; Schaffer, W.M.; Buchmann, S.L. Temperature Regulation of Honey Bees (Apis Mellifera) Foraging in the Sonoran Desert. J. Exp. Biol. 1985, 114, 1–15. [Google Scholar] [CrossRef]
- Maekawa, S.; Torisu, Y.; Inagaki, N.; Terabun, M. Leaf Injury Caused by Drop in Leaf Temperature of Saintpaulia ionantha. J. Jpn. Soc. Hortic. Sci. 1987, 55, 484–489. [Google Scholar] [CrossRef]
- Yun, J.G.; Hayashi, T.; Yazawa, S.; Katoh, T.; Yasuda, Y. Acute morphological changes of palisade cells of Saintpaulia leaves induced by a rapid temperature drop. J. Plant Res. 1996, 109, 339–342. [Google Scholar] [CrossRef]
- Wright, S.J.; van Schaik, C.P. Light and the Phenology of Tropical Trees. Am. Nat. 1994, 143, 192–199. [Google Scholar] [CrossRef]
- Zi, X.; Zhou, S.; Wu, B. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize (Zea mays L.) at Seedling and Flowering Stages. Molecules 2022, 27, 771. [Google Scholar] [CrossRef]
- Koppen, W.; Geiger, G.C. Das geographisca System der Klimate, Borntraeger: Handbuch der Klimatologie. 1936. Available online: http://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1936.pdf (accessed on 6 September 2022).
- Valentin-Silva, A.; Staggemeier, V.G.; Batalha, M.A.; Guimarães, E. What factors can influence the reproductive phenology of Neotropical Piper species (Piperaceae) in a semi-deciduous seasonal forest? Botany 2018, 96, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Fournier, L.A. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 1974, 24, 422–423. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1202016 (accessed on 6 September 2022).
- Sakagami, S.F.; Laroca, S.; Moure, J.S. Wild bee biocoenotics in São José dos Pinhais (PR), South Brazil. J. Fac. Sci. Hokkaido Univ. Serie VI Zool. 1967, 16, 253–291. Available online: https://eprints.lib.hokudai.ac.jp/dspace/handle/2115/27447 (accessed on 6 September 2022).
- Campos, G.P.A.; Barros, C.T.; Carneiro, L.T.; Santa-Martinez, E.; de Oliveira-Milfont, M.; Castro, C.C. Pollinator efficiency in openly grown eggplants: Can non-vibrating bees produce high-quality fruits? Arthropod-Plant Interact. 2022, 16, 159–170. [Google Scholar] [CrossRef]
- Polizel, A.L.; Nanka, S.; Conte, H. Insetos dípteras como polinizadores em Orchidaceae. Rev. Uningá. 2015, 46, 1. Available online: https://revista.uninga.br/uninga/article/view/1249 (accessed on 6 September 2022).
- Oliveira, G.L.; Moreira, D.L.; Mendes, A.D.R.; Guimarães, E.F.; Figueiredo, L.S.; Kaplan, M.A.C.; Martins, E.R. Growth study and essential oil analysis of Piper aduncum from two sites of Cerrado biome of Minas Gerais State, Brazil. Rev. Bras. Farmacogn. 2013, 23, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Dool, H.V.D.; Kratz, P.D.A. Generalization of retention index system including linear temperature programmed Gas-Liquid Partition Chromatogaphy. J. Chromatogr. A. 1963, 11, 463. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publishing: Carol Stream, IL, USA, 2009. [Google Scholar]
- Sadgrove, N.J.; Jones, G.L. Cytogeography of essential oil chemotypes of Eremophila longifolia F. Muell (Scrophulariaceae). Phytochemistry 2014, 105, 43–51. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Brito-Machado, D.; Ramos, Y.J.; Defaveri, A.C.A.e.; de Queiroz, G.A.; Guimarães, E.F.; de Lima Moreira, D. Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study. Plants 2022, 11, 3535. https://doi.org/10.3390/plants11243535
de Brito-Machado D, Ramos YJ, Defaveri ACAe, de Queiroz GA, Guimarães EF, de Lima Moreira D. Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study. Plants. 2022; 11(24):3535. https://doi.org/10.3390/plants11243535
Chicago/Turabian Stylede Brito-Machado, Daniel, Ygor Jessé Ramos, Anna Carina Antunes e Defaveri, George Azevedo de Queiroz, Elsie Franklin Guimarães, and Davyson de Lima Moreira. 2022. "Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study" Plants 11, no. 24: 3535. https://doi.org/10.3390/plants11243535
APA Stylede Brito-Machado, D., Ramos, Y. J., Defaveri, A. C. A. e., de Queiroz, G. A., Guimarães, E. F., & de Lima Moreira, D. (2022). Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study. Plants, 11(24), 3535. https://doi.org/10.3390/plants11243535