Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile
Abstract
:1. Introduction
2. Results
2.1. Stabilized Nut Yield
2.2. Nut, Shell and Kernel Traits
2.3. Calcium, Mg and K Concentration in Shell Samples
2.4. Total Phenolic Compounds
2.5. Free Radical Scavenging Activity
2.6. Antioxidant Capacity:
2.7. Relationship of Mineral Content and Shell Traits
2.8. Response of Antioxidant in Shells
3. Discussion
3.1. Yield and Industrial Component of Nuts
3.2. Ca, Mg and K Concentrations in Shell Samples
3.3. Total Phenolic Compounds
3.4. Free Radical Scavenging Activity
3.5. Antioxidant Capacity
3.6. Relationships
4. Materials and Methods
4.1. Spray Treatments and Fruit Harvest
4.2. Yield Component Analyses
4.3. Chemical Analyses
4.4. Shell Sample Processing
4.5. Total Phenolic Compounds
4.6. Free Radical Scavenging Activity
4.7. Oxygen Radical Absorbance Capacity (ORAC)
4.8. Experimental Design and Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrichile Ferrero Hazelnut Company. Available online: https://agrichile.cl/noticias/agrichile-participa-en-webinar-oportunidades-de-desarrollo-de-la-agroindustria-en-la-araucania-produccion-de-avellano-europeo/ (accessed on 13 April 2022).
- CIREN and ODEPA. Catastro Frutícola y Principales Resultados, Región de la Araucanía. 2019. Available online: https://www.odepa.gob.cl/wp-content/uploads/2019/08/catastroAraucania2019.pdf (accessed on 19 November 2020).
- Ascari, L.; Siniscalco, C.; Palestini, G.; Lisperguer, M.J.; Huerta, E.S.; de Gregorio, T.; Bregaglio, S. Relationships between yield and pollen concentrations in Chilean hazelnut orchards. Eur. J. Agron. 2020, 115, 126–136. [Google Scholar] [CrossRef]
- Adiloglu, A.; Adiloglu, S. An investigation on nutritional problems of hazelnut grown on acid soils. Commun. Soil Sci. Plant Anal. 2005, 36, 2219–2226. [Google Scholar] [CrossRef]
- FAOSTAT. Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC//faostat3 (accessed on 19 November 2020).
- Köksal, A.I.; Artik, N.; Simsek, A.; Gunes, N.T. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Contini, M.; Baccelloni, S.; Massantini, R.; Anelli, G. Extraction of natural antioxidants from hazelnut (Corylus avellana L.) shell and skin wastes by long maceration at room temperature. Food Chem. 2008, 110, 659–669. [Google Scholar] [CrossRef]
- Demirbaş, Ö.; Karadağ, A. Biosorption of zinc ions onto Corylus avellana L. Desalination Water Treat. 2015, 53, 2692–2700. [Google Scholar] [CrossRef]
- Yurttas, H.C.; Schafer, H.W.; Warthesen, J.J. Antioxidant activity of nontocopherol hazelnut (Corylus spp.) phenolics. J. Food Sci. 2000, 65, 276–280. [Google Scholar] [CrossRef]
- Ozdemir, F.; Akinci, I. Physical and nutritional properties of four major commercial Turkish hazelnut varieties. J. Food Eng. 2004, 63, 341–347. [Google Scholar] [CrossRef]
- Xu, Y.; Sismour, E.N.; Parry, J.; Hanna, M.A.; Li, H. Nutritional composition and antioxidant activity in hazelnut shells from US-grown cultivars. Int. J. Food Sci. Technol. 2012, 47, 940–946. [Google Scholar] [CrossRef]
- Stévigny, C.; Rolle, L.; Valentini, N.; Zeppa, G. Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. J. Sci. Food Agric. 2007, 87, 2817–2822. [Google Scholar] [CrossRef]
- Caglar, A.; Aydinli, B. Isothermal co-pyrolysis of hazelnut shell and ultra-high molecular weight polyethylene: The effect of temperature and composition on the amount of pyrolysis products. J. Anal. Appl. Pyrolysis 2009, 86, 304–309. [Google Scholar] [CrossRef]
- Barbu, M.C.; Reh, R.; Çavdar, A.D. Non-Wood Lignocellulosic Composites. In Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2017; pp. 947–977. [Google Scholar]
- Demirbaş, A. Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 1999, 24, 141–150. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Oxidant and antioxidant signalling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005, 28, 1056–1071. [Google Scholar] [CrossRef]
- Müller, A.K.; Helms, U.; Rohrer, C.; Möhler, M.; Hellwig, F.; Glei, M.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C. Nutrient composition of different hazelnut cultivars grown in Germany. Foods 2020, 9, 1596. [Google Scholar] [CrossRef] [PubMed]
- Özenc, N.; Özenc, D.B. Effect of magnesium fertilization on some plant nutrient interactions and nut quality properties in Turkish hazelnut (Corylus avellana L.). Sci. Res. Essays 2015, 10, 465–470. [Google Scholar]
- Contini, M.; Baccelloni, S.; Frangipane, M.T.; Merendino, N.; Massantini, R. Increasing espresso coffee brew antioxidant capacity using phenolic extract recovered from hazelnut skin waste. J. Funct. Foods 2012, 4, 137–146. [Google Scholar] [CrossRef]
- Azarenko, A.N.; McCluskey, R.L.; Hampson, C.R. Time of shading influences yield, nut quality, and flowering. Acta Hortic. 1996, 445, 179–184. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Luengo-Escobar, A.; Alarcón, D.; Reyes-Díaz, M.; Ondrasek, G.; Morina, F.; Ogass, K. Combined spraying of boron and zinc during fruit set and premature stage improves yield and fruit quality of European hazelnut cv. Tonda di Giffoni. Front. Plant Sci. 2021, 12, 984. [Google Scholar] [CrossRef]
- Mora, M.L.; Schnettler, B.; Demanet, R. Effect of liming and gypsum on soil chemistry, yield, and mineral composition of ryegrass grown in an acidic Andisol. Commun. Soil Sci. Plant Anal. 1999, 30, 1251–1266. [Google Scholar] [CrossRef]
- Mora, M.L.; Cartes, P.; Demanet, R.; Cornforth, I.S. Effects of lime and gypsum on pasture growth and composition on an acid Andisol in Chile, South America. Commun. Soil Sci. Plant. Anal. 2002, 33, 2069–2081. [Google Scholar] [CrossRef]
- Meriño-Gergichevich, C.; Alberdi, M.; Ivanov, A.G.; Reyes-Díaz, M. Al3+-Ca2+ Interaction in plants growing in acid soils: Al-phytotoxicity response to calcareous amendments. J. Soil Sci. Plant Nutr. 2010, 10, 217–243. [Google Scholar]
- Rodríguez, S.; Pinochet, T.; Matus, B. La Fertilización de los Cultivos; LOM Ediciones: Santiago, Chile, 2001. [Google Scholar]
- Rodríguez, J.; Tomic, M.T. Disponibilidad de micronutrientes en andisoles y ultisoles de la región de los Lagos. Cienc. Investig. Agrar. 1984, 11, 169–178. [Google Scholar] [CrossRef]
- Olsen, J.L.; Mehlenbacher, S.A.; Azarenko, A.N. Hazelnut Pollination. HortTechnology 2000, 10, 113–115. [Google Scholar] [CrossRef]
- Olsen, J.L. Growing Hazelnuts in the Pacific Northwest: Pollination and Nut Development; Oregon State University: Corvallis, OR, USA, 2013; pp. 1–4. [Google Scholar]
- Fernández, V.; Brown, P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013, 4, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özenç, N.; Özenç, D. Nut traits and nutritional composition of hazelnut (Corylus avellana L.) as influenced by zinc fertilization. J. Sci. Food Agric. 2015, 95, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Milošević, T.; Milošević, N. Cluster drop phenomenon in hazelnut (Corylus avellana L.). Impact on productivity, nut traits and leaf nutrients content. Sci. Hortic. 2012, 148, 131–137. [Google Scholar] [CrossRef]
- Özenç, N.; Bender Özenç, D. Effect of iron fertilization on nut traits and nutrient composition of ‘Tombul’ hazelnut (Corylus avellana L.) and its potential value for human nutrition. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 633–643. [Google Scholar]
- Silvestri, C.; Bacchetta, L.; Bellincontro, A.; Cristofori, V. Advances in cultivar choice, hazelnut orchard management and nuts storage for enhancing product quality and safety: An overview. J. Sci. Food Agric. 2020, 101, 27–43. [Google Scholar] [CrossRef]
- Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Plieth, C. Calcium: Just another regulator in the machinery of life? Ann. Bot. 2005, 96, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Huang, B. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J. Exp. Bot. 2001, 52, 341–349. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Kowalenko, C.G. Interpretation of autumn soil tests for hazelnut. Can. J. Soil Sci. 1996, 76, 195–202. [Google Scholar] [CrossRef]
- Guerrero, C.J.; Merino-Gergichevich, C.; Ogass, C.K.; Alvarado, N.C.; Sobarzo, M.V. Quality and condition features of hazelnut (Corylus avellana L.) cv. Barcelona grown in South-Central of Chile. Rev. Fac. Cienc. Agrar. 2015, 47, 1–14. [Google Scholar]
- Tekaya, M.; Mechri, B.; Cheheb, H.; Attia, F.; Chraief, I.; Ayachi, M.; Boujneh, D.; Hammami, M. Changes in the profiles of mineral elements, phenols, tocopherols and soluble carbohydrates of olive fruit following foliar nutrient fertilization. LWT Food Sci. Technol. 2014, 59, 1047–1053. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Kwee, E.M.; Niemeyer, E.D. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 2010, 123, 1235–1241. [Google Scholar] [CrossRef]
- Buenger, J.; Ackermann, H.; Jentzsch, A.; Mehling, A.; Pfitzner, I.; Reiffen, K.-A.; Schroeder, K.-R.; Wollenweber, U. An interlaboratory comparison of methods used to assess antioxidant potentials. Int. J. Cosmet. Sci. 2006, 28, 135–146. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Reyes-Díaz, M.; Meriño-Gergichevich, C.; Alarcón, E.; Alberdi, M.; Horst, W.J. Calcium sulfate ameliorates the effect of aluminum toxicity differentially in genotypes of highbush blueberry (Vaccinium corymbosum L.). J. Soil Sci. Plant Nutr. 2011, 11, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- 16PTECFS-66647; Sustainability and Efficient Use of Resources in the Production of European Hazelnut (Corylus avellana L.) in South-Central Chile. CORFO: Santiago, Chile, 2017.
- Ondrašek, G. Quality Traits and Fruit Yield in Hazelnut (Corylus Avellana L.) Associated with Boron and Zinc Levels and Phenological Stage of Application in Plantations of Southern Chile; Fondecyt 11160762; University of Zagreb Faculty of Agriculture: Zagreb, Croatia, 2016. [Google Scholar]
- Sadzawka, A.; Carrasco, M.; Demanet, R.; Flores, H.; Grez, R.; Mora, M.L.; Neaman, A. Métodos de análisis de tejidos vegetales. Ser. Actas INIA 2007, 40, 140. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
Nut | Shell | Kernel | |||||
---|---|---|---|---|---|---|---|
Orchard | Treatment | Weight (g) | Length | Width | Weight (g) | Thickness (mm) | Yield (%) |
(mm) | |||||||
Cunco | Control | 2.60 ± 0.15 b | 17.91 ± 0.27 c | 17.86 ± 0.25 a | 1.76 ± 0.09 a | 1.82 ± 0.20 a | 27.94 ± 2.20 b |
300+K | 3.17 ± 0.13 a | 21.23 ± 0.51 a | 17.93 ± 0.55 a | 1.83 ± 0.05 a | 1.68 ± 0.04 a | 42.31 ± 0.70 a | |
600+K | 2.69 ± 0.18 b | 20.38 ± 0.28 b | 16.52 ± 0.51 a | 1.60 ± 0.09 a | 1.57 ± 0.06 a | 40.45 ± 1.09 a | |
300 | 2.38 ± 0.14 b | 18.97 ± 0.85 c | 17.22 ± 0.28 a | 1.57 ± 0.03 a | 1.72 ± 0.10 a | 37.46 ± 0.10 a | |
600 | 2.69 ± 0.21 b | 21.23 ± 0.51 b | 17.91 ± 0.27 a | 1.73 ± 0.13 a | 1.69 ± 0.04 a | 40.91 ± 0.88 a | |
Mean | 2.71 ± 0.13 | 19.94 ± 0.66 | 17.49 ± 0.28 | 1.70 ± 0.07 | 1.70 ± 0.04 | 37.81 ± 0.34 a | |
Gorbea | Control | 2.56 ± 0.13 a | 20.17 ± 0.49 c | 17.84 ± 0.33 a | 1.50 ± 0.03 a | 1.84 ± 0.03 a | 41.21 ± 1.70 a |
300+K | 2.69 ± 0.81 a | 20.36 ± 0.11 a | 18.14 ± 0.36 a | 1.58 ± 0.49 a | 1.99 ± 0.60 a | 41.37 ± 1.28 a | |
600+K | 2.69 ± 0.84 a | 20.33 ± 0.30 a | 17.78 ± 0.59 a | 1.49 ± 0.46 a | 1.69 ± 0.51 a | 44.38 ± 1.45 a | |
300 | 2.48 ± 0.06 a | 20.27 ± 0.14 b | 17.38 ± 0.11 a | 1.45 ± 0.09 a | 1.72 ± 0.06 a | 41.83 ± 2.27 a | |
600 | 2.66 ± 0.19 a | 20.30 ± 0.06 a | 18.07 ± 0.18 a | 1.55 ± 0.07 a | 1.85 ± 0.09 a | 41.27 ± 2.82 a | |
Mean | 2.66 ± 0.04 | 20.29 ± 0.03 | 17.84 ± 0.13 | 1.51 ± 0.02 | 1.82 ± 0.05 | 42.01 ± 0.28 | |
Perquenco | Control | 2.53 ± 0.24 a | 19.20 ± 0.77 a | 17.27 ± 0.62 a | 1.39 ± 0.13 a | 1.54 ± 0.08 a | 44.96 ± 1.67 a |
300+K | 2.47 ± 0.12 a | 18.71 ± 0.28 a | 17.49 ± 0.24 a | 1.38 ± 0.01 a | 1.75 ± 0.07 a | 43.84 ± 2.08 a | |
600+K | 2.37 ± 0.06 a | 19.09 ± 0.15 a | 16.92 ± 0.12 a | 1.42 ± 0.11 a | 1.69 ± 0.13 a | 40.28 ± 3.65 a | |
300 | 2.23 ± 0.08 a | 18.34 ± 0.38 a | 16.69 ± 0.04 a | 1.21 ± 0.07 a | 1.61 ± 0.10 a | 45.53 ± 3.01 a | |
600 | 2.43 ± 0.04 a | 18.57 ± 0.19 a | 17.53 ± 0.30 a | 1.36 ± 0.09 a | 1.58 ± 0.07 a | 44.19 ± 3.34 a | |
Mean | 2.41 ± 0.05 | 18.78 ± 0.16 | 17.18 ± 0.16 | 1.35 ± 0.04 | 1.63 ± 0.04 | 43.76 ± 0.38 | |
Radal | Control | 2.63 ± 0.16 a | 18.61 ± 0.23 a | 17.48 ± 0.45 a | 1.55 ± 0.07 a | 1.78 ± 0.05 a | 40.98 ± 1.10 a |
300+K | 2.39 ± 0.22 a | 18.86 ± 0.44 a | 16.69 ± 0.57 a | 1.39 ± 0.08 a | 1.72 ± 0.09 a | 41.19 ± 2.34 a | |
600+K | 2.50 ± 0.22 a | 18.99 ± 0.23 a | 17.55 ± 0.41 a | 1.52 ± 0.10 a | 1.72 ± 0.04 a | 39.16 ± 1.10 a | |
300 | 2.37 ± 0.04 a | 18.61 ± 0.12 a | 17.44 ± 0.54 a | 1.64 ± 0.09 a | 1.78 ± 0.07 a | 30.69 ± 4.29 a | |
600 | 2.41 ± 0.11 a | 18.96 ± 0.07 a | 17.06 ± 0.27 a | 1.48 ± 0.10 a | 1.73 ± 0.01 a | 38.68 ± 3.22 a | |
Mean | 2.46 ± 0.05 | 18.81 ± 0.08 | 17.24 ± 0.16 | 1.52 ± 0.04 | 1.75 ± 0.01 | 38.14 ± 0.62 | |
Significance | |||||||
L | ** | *** | ** | *** | *** | *** | |
T | NS | *** | NS | NS | NS | NS | |
L × T | NS | *** | NS | NS | NS | ** |
Shell Traits | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ca | Mg | K | Weight | Thickness | Kernel Yield | TPC | RSA | AC | |
Cunco | |||||||||
Ca | -- | 0.12 | 0.79 *** | −0.63 ** | −0.18 | 0.15 | 0.24 | 0.28 | −0.11 |
Mg | 0.12 | -- | −0.10 | 0.54 * | 0.17 | 0.19 | 0.08 | 0.23 | 0.14 |
K | 0.79 *** | −0.10 | -- | −0.50 | −0.06 | 0.08 | 0.31 | 0.35 | −0.18 |
Gorbea | |||||||||
Ca | -- | 0.44 | 0.13 | −0.07 | 0.27 | −0.44 | −0.42 | −0.31 | −0.50 |
Mg | 0.44 | -- | −0.01 | −0.28 | 0.57 * | −0.32 | 0.15 | 0.18 | −0.35 |
K | 0.13 | −0.01 | -- | 0.03 | −0.07 | 0.38 | −0.11 | −0.07 | 0.03 |
Perquenco | |||||||||
Ca | -- | 0.47 | 0.75 ** | −0.32 | −0.50 * | 0.42 | 0.29 | −0.42 | −0.03 |
Mg | 0.47 | -- | 0.19 | 0.31 | 0.09 | −0.37 | −0.05 | −0.08 | 0.05 |
K | 0.75 ** | 0.19 | -- | −0.27 | −0.35 | 0.35 | 0.47 | −0.45 | −0.18 |
Radal | |||||||||
Ca | -- | 0.93 *** | 0.75 ** | −0.37 | −0.30 | −0.09 | 0.22 | −0.27 | 0.25 |
Mg | 0.93 *** | -- | 0.71 ** | −0.44 | −0.35 | −0.04 | 0.26 | −019 | 0.23 |
K | 0.75 ** | 0.71 ** | -- | −0.78 *** | −0.48 | 0.08 | 0.43 | 0.10 | 0.01 |
Treatment (mg L−1) | Treatment Code | ||
---|---|---|---|
Ca | Mg | K | |
0 | 0 | 0 | Control |
300 | 300 | 300 | 300+K |
600 | 600 | 600 | 600+K |
300 | 300 | -- | 300 |
600 | 600 | -- | 600 |
Chemical Parameter (mg L−1) | Cunco | Gorbea | Perquenco | Radal |
---|---|---|---|---|
Ammonia | - | <0.014 | <0.014 | - |
Calcium | - | 0.83 | 14.02 | - |
Magnesium | - | 3.78 | 6.10 | - |
Potassium | - | 2.34 | 0.47 | - |
Chemical Property | Cunco | Gorbea | Perquenco | Radal | |
---|---|---|---|---|---|
N | (mg kg−1) | 14.33 ± 0.33 | 15.33 ± 0.66 | 19.00 ± 0.81 | 17.66± 0.51 |
P | 5.33 ± 0.33 | 4.66 ± 0.33 | 24.5 ± 0.40 | 4.66 ± 0.33 | |
K | 56 ± 10.11 | 123 ± 20.38 | 355 ± 19.18 | 163 ± 13.11 | |
pH (H2O) | 5.55 ± 0.06 | 5.58 ± 0.08 | 5.38 ± 0.07 | 5.66 ± 0.09 | |
OM | (%) | 14.33 ± 0.33 | 17.66 ± 0.66 | 14.50 ± 0.40 | 20.66 ± 0.30 |
Na | (cmol+/kg) | 0.14 ± 0.01 | 0.12 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 |
Ca | 1.88 ± 0.55 | 2.38 ± 0.82 | 6.29 ± 0.80 | 4.32 ± 0.92 | |
Mg | 0.44 ± 0.12 | 0.65 ± 0.21 | 0.60 ± 0.07 | 1.46 ± 0.38 | |
Al | 0.14 ± 0.03 | 0.19 ± 0.06 | 1.16 ± 0.18 | 0.11 ± 0.05 | |
CICE | 2.68 ± 0.64 | 3.66 ± 0.98 | 9.02 ± 0.65 | 6.38 ± 1.28 | |
Σ basis | 5.08 ± 0.67 | 3.47 ± 1.03 | 7.64 ± 0.84 | 6.27 ± 1.32 | |
Al sat. | (%) | 7.21 ± 3.73 | 6.98 ± 3.85 | 13.18 ± 3.04 | 2.72 ± 2.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manterola-Barroso, C.; Godoy, K.; Alarcón, D.; Padilla, D.; Meriño-Gergichevich, C. Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile. Plants 2022, 11, 3536. https://doi.org/10.3390/plants11243536
Manterola-Barroso C, Godoy K, Alarcón D, Padilla D, Meriño-Gergichevich C. Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile. Plants. 2022; 11(24):3536. https://doi.org/10.3390/plants11243536
Chicago/Turabian StyleManterola-Barroso, Carlos, Karina Godoy, David Alarcón, Daniela Padilla, and Cristian Meriño-Gergichevich. 2022. "Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile" Plants 11, no. 24: 3536. https://doi.org/10.3390/plants11243536
APA StyleManterola-Barroso, C., Godoy, K., Alarcón, D., Padilla, D., & Meriño-Gergichevich, C. (2022). Antioxidants in Shell and Nut Yield Components after Ca, Mg and K Preharvest Spraying on Hazelnut Plantations in Southern Chile. Plants, 11(24), 3536. https://doi.org/10.3390/plants11243536