Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity
Abstract
:1. Introduction
2. Results
2.1. Effect of SA and CaCl2 Seed Priming on Mineral Nutrition Status under Salinity
2.1.1. Iron
2.1.2. Calcium
2.1.3. Magnesium
2.1.4. Sodium
2.1.5. Potassium
2.1.6. Sodium/Potassium Ratio
2.2. Effect of SA and CaCl2 Seed Priming on Membrane Integrity under Salinity
2.2.1. Electrolyte Leakage
2.2.2. Lipid Peroxidation
2.3. Effect of SA and CaCl2 Seed Priming on Enzymatic Antioxydant Activities under Salinity
2.3.1. Catalase
2.3.2. Superoxide Dismutase
2.3.3. Peroxidase
2.4. Pearson’s Correlation Matrix Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions and Treatments
4.2. Nutrient Extraction and Analysis
4.3. Electrolyte Leakage
4.4. Lipid Peroxidation
4.5. Antioxidant Enzyme Determinations
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nachshon, U. Cropland Soil Salinization and Associated Hydrology: Trends, Processes and Examples. Water 2018, 10, 1030. [Google Scholar]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2021, 41, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Sorahinobar, M.; Niknam, V.; Ebrahimzadeh, H.; Soltanloo, H.; Behmanesh, M.; Enferadi, S.T. Central role of salicylic acid in resistance of wheat against Fusarium graminearum. J. Plant Growth Regul. 2016, 35, 477–491. [Google Scholar] [CrossRef]
- Hayat, Q.; Hayat, S.; Irfan, M.; Ahmad, A. Effect of exogenous salicylic acid under changing environment: A review. Environ. Exp. Bot. 2010, 68, 14–25. [Google Scholar] [CrossRef]
- Murtaza, G.; Azooz, M.; Murtaza, B.; Usman, Y.; Saqib, M. Nitrogen-use-efficiency (NUE) in plants under NaCl stress. In Salt Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 415–437. [Google Scholar]
- Rahnama, A.; James, R.A.; Poustini, K.; Munns, R. Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct. Plant Biol. 2010, 37, 255–263. [Google Scholar] [CrossRef]
- Hernández, J.A.; Corpas, F.J.; Gómez, M.; Del Río, L.A.; Sevilla, F. Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 1993, 89, 103–110. [Google Scholar] [CrossRef]
- Hernández, J.A.; Olmos, E.; Corpas, F.J.; Gómez, M.; Sevilla, F.; Del Río, L.A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 1995, 105, 151–167. [Google Scholar] [CrossRef]
- Ben Youssef, R.; Jelali, N.; Boukari, N.; Albacete, A.; Martinez, C.; Alfocea, F.P.; Abdelly, C. The Efficiency of Different Priming Agents for Improving Germination and Early Seedling Growth of Local Tunisian Barley under Salinity Stress. Plants 2021, 10, 2264. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Siddiqui, M.H.; Mohammad, F.; Naeem, M.; Khan, M.M.A. Calcium chloride and gibberellic acid protect linseed (Linum usitatissimum L.) from NaCl stress by inducing antioxidativedefence system and osmoprotectant accumulation. Acta Physiol. Plant. 2010, 32, 121–132. [Google Scholar] [CrossRef]
- Horváth, E.; Szalai, G.; Janda, T. Induction of Abiotic Stress Tolerance by Salicylic Acid Signaling. J. Plant Growth Regul. 2007, 26, 290–300. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Alpaslan, M.; Eraslan, F.; Bagci, E.G.; Cicek, N. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J. Plant Physiol. 2007, 164, 728–736. [Google Scholar] [CrossRef]
- Belkhadi, A.; Hediji, H.; Abbes, Z.; Nouairi, I.; Barhoumi, Z.; Zarrouk, M.; Chaïbi, W.; Djebali, W. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol. Environ. Saf. 2010, 73, 1004. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Jini, D.; Sujatha, S. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J. Crop. Sci. 2010, 2, 226–235. [Google Scholar] [CrossRef]
- Nazar, R.; Umar, S.; Khan, N.A. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal. Behav. 2015, 10, e1003751. [Google Scholar] [CrossRef]
- Al-Whaibi, M.H.; Siddiqui, M.H.; Basalah, M.O. Salicylic acid and calcium-induced protection of wheat against salinity. Protoplasma 2012, 249, 769–778. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Iqbal, N.; Masood, A.; Per, T.S.; Khan, N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal. Behav. 2013, 8, e26374. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, S.; Baghizadeh, A.; Abbassi, F. The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. Afr. J. Agric. Res. 2011, 6, 798–807. [Google Scholar]
- Shi, Q.; Zhu, Z. Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ. Exp. Bot. 2008, 63, 317–326. [Google Scholar] [CrossRef]
- Khan, N.; Syeed, S.; Masood, A.; Nazar, R.; Iqbal, N. Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int. J. Plant Biol. 2010, 1, e1. [Google Scholar] [CrossRef]
- Mutlu, S.; Karadağoğlu, O.; Atici, O.; Nalbantoğlu, B. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol. Plant. 2013, 57, 507–513. [Google Scholar] [CrossRef]
- Horváth, E.; Pál, M.; Szalai, G.; Páldi, E.; Janda, T. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plant. 2007, 51, 480–487. [Google Scholar] [CrossRef]
- Sawada, H.; Shim, I.S.; Usui, K. Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—Modulation by salt stress in rice seedlings. Plant Sci. 2006, 171, 263–270. [Google Scholar] [CrossRef]
- Delian, E.; Chira, A.; Badulescu, L.; Chira, L. Calcium alleviates stress in plants: Insight into regulatory mechanisms. AgroLife Sci. J. 2014, 3, 19–28. [Google Scholar]
- Hironari, N.; Takashi, S. Calcium signaling in plant endosymbiotic organelles: Mechanism and role in physiology. Mol. Plant. 2014, 7, 1094–1104. [Google Scholar]
- Joshi, N.; Jain, A.; Arya, K. Alleviation of Salt Stress in Cucumis sativus L. through Seed Priming with Calcium Chloride. Indian J. Appl. Res. 2013, 3, 22–25. [Google Scholar] [CrossRef]
- Aloui, H.; Souguir, M.; Latique, S.; Hannachi, C. Germination and Growth in Control and Primed Seeds of Pepper as Affected by Salt Stress. Cercet. Agron. Mold. 2014, 47, 83–95. [Google Scholar] [CrossRef]
- Elphick, C.H.; Sanders, D.; Maathuis, F.J.M. Critical role of divalent cations and Na+ efflux in Arabidopsis thaliana salt tolerance. Plant Cell Environ. 2001, 24, 733–740. [Google Scholar] [CrossRef]
- Rabhi, M.; Ferchichi, S.; Jouini, J.; Hamrouni, M.H.; Koyro, H.-W.; Ranieri, A.; Abdelly, C.; Smaoui, A. Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour. Technol. 2010, 101, 6822–6828. [Google Scholar] [CrossRef] [PubMed]
- Shakirova, F.M.; Sakhabutdinova, A.R.; Bezrukova, M.V.; Fatkhutdinova, R.A.; Fatkhutdinova, D.R. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 2003, 164, 317–322. [Google Scholar] [CrossRef]
- Gordon, L.; Minibayeva, F.; Rakhmatullina, D.; Alyabyev, A.; Ogorodnikova, T.; Loseva, N.; Valitova, Y. Heat production of wheat roots induced by the disruption of proton gradient by salicylic acid. Thermochim. Acta 2004, 422, 101–104. [Google Scholar] [CrossRef]
- Al-Hakimi, A.; Hamada, A. Counteraction of Salinity Stress on Wheat Plants by Grain Soaking in Ascorbic Acid, Thiamin or Sodium Salicylate. Biol. Plant. 2001, 44, 253–261. [Google Scholar] [CrossRef]
- Drazic, G.; Mihailovic, N. Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Sci. 2005, 168, 511–517. [Google Scholar] [CrossRef]
- Miller, G.W.; Pushnik, J.C.; Welkie, G.W. Iron chlorosis, a world wide problem, the relation of chlorophyll biosynthesis to iron. J. Plant Nutr. 1984, 7, 1–22. [Google Scholar] [CrossRef]
- Siringam, K.; Juntawong, N.; Chaum, S.; Kirdmanee, C. Relationships between sodium ion accumulation and physiological characteristics in rice (Oryza sativa L. spp. indica) seedlings grown under iso-osmotic salinity stress. Pak. J. Bot. 2009, 41, 1837–1850. [Google Scholar]
- Parizi, M.D.; Kalantari, K.M.; Enteshari, S.; Baghizadeh, A. Effect of salicylic acid and salt stress on Na and K content in Ocimum basilicum L. Iran J. Plant Physiol. 2011, 1, 135–139. [Google Scholar]
- Gong, B.; Wen, D.; VandenLangenberg, K.; Wei, M.; Yang, F.; Shi, Q.; Wang, X. Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Sci. Hortic. 2013, 157, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Mu, C.; Lin, J.; Wang, Y.; Li, X. Effect of alkaline potassium and sodium salts on growth, photosynthesis, ions absorption and solutes synthesis of wheat seedlings. Exp. Agric. 2013, 50, 144–157. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Rengel, Z.; Shabala, S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J. Exp. Bot. 2013, 64, 2255–2268. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, A. Potassium transport in fungi and plants. Biochim. Biophys. Acta (BBA) Rev. Biomembr. 2000, 1469, 1–30. [Google Scholar] [CrossRef]
- Barba-Espín, G.; Clemente-Moreno, M.J.; Álvarez, S.; García-Legaz, M.F.; Hernández, J.A.; Díaz-Vivancos, P. Salicylic acid negatively affects the response to salt stress in pea plants: Effects on PR1b and MAPK expression. Plant Biol. 2011, 13, 909–917. [Google Scholar] [CrossRef]
- Hou, Q.; Bartels, D. Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann. Bot. 2014, 115, 465–479. [Google Scholar] [CrossRef]
- Lim, C.W.; Han, S.-W.; Hwang, I.S.; Kim, D.S.; Hwang, B.K.; Lee, S.C. The Pepper Lipoxygenase CaLOX1 Plays a Role in Osmotic, Drought and High Salinity Stress Response. Plant Cell Physiol. 2015, 56, 930–942. [Google Scholar] [CrossRef]
- Hernández, J.A.; Almansa, M.S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants. Physiol. Plant. 2002, 115, 251–257. [Google Scholar] [CrossRef]
- Amdouni, T.; Mrah, S.; Msilini, N.; Zaghdoud, M.; Ouerghiabidi, Z.; Lachaal, M. Physiological and biochemical responses of two maize cultivars (Corralejo and Tlaltizapon) under salt stress. J. Stress Physiol. Biochem. 2014, 10, 246–258. [Google Scholar]
- Zaoui, S.; Gautier, H.; Bancel, D.; Chaabani, G.; Wasli, H.; Lachaâl, M.; Karray-Bouraoui, N. Antioxidant pool optimization in Carthamus tinctorius L. leaves under different NaCl levels and treatment durations. Acta Physiol. Plant. 2016, 38, 1–11. [Google Scholar] [CrossRef]
- Ben-Abdallah, S.; Zorrig, W.; Amyot, L.; Renaud, J.; Hannoufa, A.; Lachâal, M.; Karray-Bouraoui, N. Potential production of polyphenols, carotenoids and glycoalkaloids in Solanum villosum Mill. under salt stress. Biologia 2018, 74, 309–324. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Rubio-Wilhelmi, M.M.; Cervilla, L.M.; Blasco, B.; Rios, J.J.; Rosales, M.A.; Romero, L.; Ruiz, J.M. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 2010, 178, 30–40. [Google Scholar] [CrossRef]
- Souid, A.; Morena, G.; Vincenzo, L.; Laura, P.; Lorenza, B.; Smaoui, A.; Abdelly, C.; Ben Hamed, K. Salt tolerance of the halophyte Limoniumdelicatulumismore associated with antioxidant enzyme activities than phenolic compounds. Funct. Plant Biol. 2016, 43, 607–619. [Google Scholar]
- Gueta-Dahan, Y.; Yaniv, Z.; Zilinskas, B.A.; Ben-Hayyim, G. Salt and oxidative stress: Similar and specificresponses and their relation to salt tolerance in Citrus. Planta 1997, 203, 460–469. [Google Scholar] [CrossRef]
- Tsugane, K.; Kobayashi, K.; Niwa, Y.; Ohba, Y.; Wada, K. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 1999, 11, 1195–1206. [Google Scholar] [CrossRef]
- López-Gómez, E.; Sanjuán, M.A.; Diaz-Vivancos, P.; Mataix-Beneyto, J.; García-Legaz, M.F.; Hernández, J.A. Effect of salinity and rootstocks on antioxidant systems of loquat plants (Eriobotrya japonica Lindl.): Response to supplementary boron addition. Environ. Exp. Bot. 2007, 160, 151–158. [Google Scholar] [CrossRef]
- Hernández, J.A.; Ferrer, M.A.; Jiménez, A.; Ros-Barceló, A.; Sevilla, F. Antioxidant systems and O2/H2O2 production in the apoplast of PisumsativumL. leaves: Its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiol. 2001, 127, 817–831. [Google Scholar] [CrossRef]
- Esfandiari, E.; Shekari, F.; Shekari, F.; Esfandiari, M. The effect of salt stress on antioxidant enzymes’ activity and lipid peroxidation on the wheat seedling. Not. Bot. Horti Agrobot. Cluj-Napoca 2007, 35, 48–56. [Google Scholar]
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Rodrıguez-Rosales, M.P.; Kerkeb, L.; Bueno, P.; Donaire, J.P. Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+ -ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill) calli. Plant Sci. 1999, 143, 143–150. [Google Scholar] [CrossRef]
- Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Siddiqui, M.N.; Sohag, A.A.M.; Sakil, M.A.; Rahman, M.M.; Polash, M.A.S.; Mostofa, M.G.; Tran, L.-S.P. Salicylic acid-mediated enhancement ofphotosynthesis attributes and antioxidant capacity contributes to yield improvement of maizeplants under salt stress. J. Plant Growth Regul. 2018, 37, 1318–1330. [Google Scholar] [CrossRef]
- Kang, G.; Li, G.; Guo, T. Molecular mechanism of salicylic acid-inducedabiotic stress tolerance in higher plants. Acta Physiol. Plant. 2014, 36, 2287–2297. [Google Scholar] [CrossRef]
- Noreen, S.; Ashraf, M.; Hussain, M.; Jamil, A. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pak. J. Bot. 2009, 41, 473–479. [Google Scholar]
- Patel, P.K.; Hemantaranjan, A. Salicylic acid induced alteration in dry matter partitioning, antioxidant defence system and yield in chickpea (Cicer arietinum L.) under drought stress. Asian J. Crop Sci. 2012, 4, 86–102. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, W.; Liu, F.; Wan, Y. Effects of exogenous salicylic acid and nitric oxide on peanut seedlings growth under iron deficiency. Commun. Soil Sci. Plant Anal. 2016, 47, 2490–2505. [Google Scholar] [CrossRef]
- Ali, B. Salicylic acid induced antioxidant system enhances the tolerencetoaluminium in mung bean (Vignaradiata L. Wilczek) plants. Indian J. Plant Physiol. 2017, 22, 178–189. [Google Scholar] [CrossRef]
- Islam, F.; Yasmeen, T.; Arif, M.S.; Riaz, M.; Shahzad, S.M.; Imran, Q.; Ali, I. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) andsalicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem. 2016, 108, 456–467. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Elansary, H.O.; El-Shanhorey, N.A.; Abdel-Hamid, A.M.E.; Ali, H.M.; Elshikh, M.S. Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions. Front. Physiol. 2017, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Imran, M.; Yaseen, M.; Haq, T.U.; Jamshaid, M.U.; Rukh, S.; Ikram, R.M.; Ali, M.; Ali, A.; Maqbool, M.; et al. Role of salicylic acid in regulating ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet pepper. PeerJ 2020, 8, e8475. [Google Scholar] [CrossRef] [PubMed]
- Barba-Espín, G.; Diaz-Vivancos, P.; Clemente-Moreno, M.J.; Albacete, A.; Faize, L.; Faize, M.; Perez-Alfocea, F.; Hernandez, J.A. Interaction between hydrogen peroxide and plant hormonesduring germination and the early growth of pea seedlings. Plant Cell Environ. 2010, 33, 981–994. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. NaCl-induced physiological and biochemical adaptative mechanisms in the ornamental Myrtus communis L. plants. J. Plant Physiol. 2015, 183, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Diaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. Physiological and biochemicalmechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 2015, 242, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Zorrig, W.; Cornu, J.-Y.; Maisonneuve, B.; Rouached, A.; Sarrobert, C.; Shahzad, Z.; Abdelly, C.; Davidian, J.-C.; Berthomieu, P. Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiol. 2019, 136, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Dionisio-Sese, M.L.; Tobita, S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J. Plant Physiol. 2000, 157, 54–58. [Google Scholar] [CrossRef]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; pp. 302–310. [Google Scholar]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 6, pp. 105–121. [Google Scholar]
- McCord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049. [Google Scholar] [CrossRef]
- RosBarcelo, A. The generation of H2O2 in the xylem of zinnia elegans is mediated by an NADPH oxidase like enzyme. Planta 1998, 207, 207–216. [Google Scholar]
Treatments | Control | 100 mM NaCl | 200 mM NaCl | 100 mM NaCl+ SA | 200 mM NaCl+ SA | 100 mM NaCl+ CaCl2 | 200 mM NaCl+ CaCl2 | |
---|---|---|---|---|---|---|---|---|
Parameters | ||||||||
H. vulgare | ||||||||
Shoot Fe (mg/gDW) | 1468 a | 898 d | 608 e | 1264 b | 916 d | 1117 c | 782 d | |
Root Fe (mg/g DW) | 1174 a | 777 c | 515 e | 1063 b | 780 c | 1049 b | 651 d | |
Shoot Ca2+ (mg/g DW) | 0.421 a | 0.286 c | 0.162 e | 0.354 b | 0.294 c | 0.343 b | 0.230 d | |
Root Ca2+ (mg/g DW) | 0.339 a | 0.220 d | 0.120 f | 0.311 b | 0.191 e | 0.272 c | 0.185 e | |
ShootMg2+ (mg/gDW) | 0.238 a | 0.163 d | 0.101 e | 0.205 c | 0.162 d | 0.223 b | 0.160 d | |
Root Mg2+ (mg/gDW) | 0.263 a | 0.205 c | 0.152 e | 0.244 a | 0.195 d | 0.271 a | 0.229 b | |
H. marinum | ||||||||
Shoot Fe (mg/gDW) | 2206 a | 2141 b | 1758 e | 2159 b | 2084 c | 1862 d | 1848 d | |
Root Fe (mg/gDW) | 2421 a | 2263 b | 1919 e | 2310 b | 2199 c | 2195 c | 2012 d | |
Shoot Ca2+ (mg/gDW) | 0.863 a | 0.804 b | 0.671 c | 0.854 a | 0.793 bc | 0.842 ab | 0.684 c | |
Root Ca2+ (mg/gDW) | 0.883 a | 0.724 d | 0.638 f | 0.810 b | 0.690 e | 0.771 c | 0.684 e | |
ShootMg2+ (mg/gDW) | 0.372 a | 0.353 ab | 0.260 c | 0.370 ab | 0.344 ab | 0.334 b | 0.384 a | |
RootMg2+ (mg/gDW) | 0.354 a | 0.323 b | 0.275 d | 0.355 a | 0.337 b | 0.331 b | 0.303 c |
Treatments | Control | 100 mM NaCl | 200 mM NaCl | 100 mM NaCl+ SA | 200 mM NaCl+ SA | 100 mM NaCl+ CaCl2 | 200 mM NaCl+ CaCl2 | |
---|---|---|---|---|---|---|---|---|
Parameters | ||||||||
H. vulgare | ||||||||
Shoot Na+(mg/gDW) | 0.078 g | 0.911 d | 1.485 a | 0.683 f | 0.961 c | 0.843 e | 1.024 b | |
Root Na+ (mg/g DW) | 0.065 f | 0.751 c | 1.129 a | 0.420 e | 0.778 c | 0.486 d | 0.937 b | |
Shoot K+ (mg/g DW) | 0.876 a | 0.727 b | 0.549 e | 0.786 b | 0.714 c | 0.732 c | 0.616 d | |
Root K+(mg/g DW) | 0.837 a | 0.647 c | 0.404 f | 0.817 a | 0.591 d | 0.730 b | 0.498 e | |
Shoot Na+/K+ | 0.093 f | 1.254 c | 2.733 a | 0.873 e | 1.349 c | 1.152 d | 1.668 b | |
Root Na+/K+ | 0.078 g | 1.167 d | 2.8 a | 0.517 f | 1.316 c | 0.668 e | 1.884 b | |
H. marinum | ||||||||
ShootNa+(mg/gDW) | 0.095 f | 0.421 c | 0.515 a | 0.344 e | 0.459 b | 0.397 d | 0.479 b | |
Root Na+ (mg/g DW) | 0.101 g | 0.835 c | 1.060 a | 0.655 f | 0.716 e | 0.756 d | 0.893 b | |
Shoot K+ (mg/g DW) | 1.531 a | 1.269 b | 1.143 e | 1.303 b | 1.220 c | 1.243 b | 1.173 d | |
Root K+ (mg/g DW) | 1.484 a | 1.215 e | 1.084 f | 1.431 b | 1.260 d | 1.354 c | 1.189 e | |
Shoot Na+/K+ | 0.062 e | 0.332 c | 0.451 a | 0.264 d | 0.376 b | 0.319 c | 0.421 a | |
Root Na+/K+ | 0.068 f | 0.687 c | 0.978 a | 0.458 e | 0.568 d | 0.558 d | 0.752 b |
Treatments | Control | 100 mM NaCl | 200 mM NaCl | 100 mM NaCl + SA | 200 mM NaCl + SA | 100 mM NaCl + CaCl2 | 200 mM NaCl + CaCl2 | |
---|---|---|---|---|---|---|---|---|
Parameters | ||||||||
H. vulgare | ||||||||
CAT Leaves | 5.7 f | 6.2 f | 9.3 e | 75.7 b | 97.2 a | 20.4 d | 52.6 c | |
CAT Roots | 5.2 f | 5.3 f | 8.2 e | 86.4 b | 136.5 a | 18.9 d | 63.8 c | |
SOD Leaves | 43.2 g | 52.8 f | 68.8 e | 123.8 c | 248.9 b | 107.4 d | 383.8 a | |
SOD Roots | 47.3 e | 48.9 e | 78.1 d | 120.3 c | 290.7 b | 118.9 c | 356.7 a | |
POX Leaves | 899 f | 1131.2 e | 1300.9 d | 41,287 c | 67,268 a | 38,263 c | 49,287 b | |
POX Roots | 1005 d | 999 e | 1330 d | 49,721 b | 58,055 a | 42,720 c | 50,223 b | |
H. marinum | ||||||||
CAT Leaves | 14.3 e | 51.7 b | 64.5 a | 23.9 c | 37.1 b | 7.1 d | 48.6 b | |
CAT Roots | 13.6 d | 48.2 b | 62.2 a | 33.1 c | 36.6 c | 31.5 c | 42.4 b | |
SOD Leaves | 68.6 d | 369.9 b | 849.3 a | 72.9 d | 369.2 b | 79.9 d | 277.1 c | |
SOD Roots | 78.9 d | 344.5 c | 824.7 a | 72.1 d | 406.4 b | 89.8 d | 344.2 c | |
POX Leaves | 1105 f | 26,720 b | 40,028 a | 14,055 d | 17,793 c | 1416 f | 12,289 e | |
POX Roots | 1277 d | 25,985 b | 41,204 a | 12,299 c | 22,436 b | 1359 d | 12,326 c |
C+100 mM NaCl | C+200 mM NaCl | SA+100 mM NaCl | SA+200 mM NaCl | CaCl2+100 mM NaCl | CaCl2+200 mM NaCl | |
---|---|---|---|---|---|---|
Sh Fe | −0.096 | −0.704 | 0.669 | −0.058 | 0.361 | −0.171 |
R Fe | −0.064 | −0.637 | 0.564 | −0.056 | 0.532 | −0.339 |
Sh Ca2+ | 0.048 | −0.752 | 0.495 | 0.103 | 0.420 | −0.315 |
R Ca2+ | 0.024 | −0.680 | 0.667 | −0.179 | 0.392 | −0.224 |
Sh Mg2+ | −0.066 | −0.760 | 0.401 | −0.075 | 0.603 | −0.102 |
R Mg2+ | −0.101 | −0.580 | 0.258 | −0.189 | 0.499 | 0.113 |
Sh K+ | 0.196 | −0.680 | 0.486 | 0.131 | 0.219 | −0.352 |
R K+ | 0.101 | −0.662 | 0.635 | −0.073 | 0.364 | −0.366 |
Sh Na+ | −0.130 | 0.887 | −0.534 | −0.041 | −0.251 | 0.069 |
R Na+ | 0.001 | 0.680 | −0.593 | 0.050 | −0.474 | 0.334 |
Sh Na+/K+ | −0.182 | 0.890 | −0.457 | −0.113 | −0.255 | 0.118 |
R Na+/K+ | −0.129 | 0.808 | −0.503 | −0.043 | −0.416 | 0.282 |
Sh EL | 0.023 | 0.779 | −0.546 | −0.204 | −0.355 | 0.304 |
R EL | 0.089 | 0.842 | −0.590 | −0.280 | −0.159 | 0.098 |
Sh MDA | 0.152 | 0.818 | −0.491 | −0.152 | −0.432 | 0.105 |
R MDA | 0.054 | 0.829 | −0.525 | −0.082 | −0.435 | 0.159 |
Sh CAT | −0.486 | −0.446 | 0.418 | 0.697 | −0.301 | 0.117 |
R CAT | −0.449 | −0.421 | 0.312 | 0.782 | −0.321 | 0.098 |
Sh SOD | −0.321 | −0.290 | −0.180 | 0.070 | 0.384 | 0.337 |
R SOD | −0.469 | −0.355 | −0.192 | 0.468 | −0.199 | 0.747 |
Sh POX | −0.586 | −0.583 | 0.153 | 0.634 | 0.097 | 0.285 |
R POX | −0.624 | −0.618 | 0.298 | 0.465 | 0.169 | 0.310 |
C+100 mMNaCl | C+200 mMNaCl | SA+100 mMNaCl | SA+200 mMNaCl | CaCl2+100 mMNaCl | CaCl2+200 mMNaCl | |
---|---|---|---|---|---|---|
Sh Fe | 0.443 | −0.580 | 0.490 | 0.290 | −0.302 | −0.341 |
R Fe | 0.329 | −0.668 | 0.464 | 0.142 | 0.131 | −0.398 |
Sh Ca2+ | 0.159 | −0.560 | 0.427 | 0.100 | 0.365 | −0.492 |
RCa2+ | 0.033 | −0.609 | 0.678 | −0.220 | 0.386 | −0.268 |
Sh Mg2+ | 0.083 | −0.565 | 0.205 | 0.020 | −0.049 | 0.305 |
R Mg2+ | 0.040 | −0.690 | 0.516 | 0.245 | 0.160 | −0.273 |
Sh K+ | 0.204 | −0.382 | 0.358 | −0.022 | 0.083 | −0.240 |
R K+ | −0.152 | −0.647 | 0.661 | 0.017 | 0.373 | −0.253 |
Sh Na+ | −0.105 | 0.576 | −0.669 | 0.168 | −0.282 | 0.312 |
R Na+ | 0.053 | 0.788 | −0.539 | −0.337 | −0.208 | 0.243 |
Sh Na+/K+ | −0.166 | 0.525 | −0.560 | 0.090 | −0.242 | 0.353 |
R Na+/K+ | 0.054 | 0.813 | −0.547 | −0.258 | −0.283 | 0.221 |
Sh EL | 0.109 | 0.643 | −0.711 | −0.342 | 0.156 | 0.145 |
R EL | −0.057 | 0.652 | −0.538 | 0.029 | −0.479 | 0.393 |
Sh MDA | −0.117 | 0.621 | −0.671 | 0.141 | −0.338 | 0.363 |
R MDA | 0.186 | 0.614 | −0.643 | −0.043 | −0.414 | 0.300 |
Sh CAT | 0.317 | 0.595 | −0.362 | −0.035 | −0.747 | 0.232 |
R CAT | 0.249 | 0.835 | −0.391 | −0.250 | −0.466 | 0.023 |
Sh SOD | 0.058 | 0.884 | −0.454 | 0.056 | −0.442 | −0.102 |
R SOD | −0.003 | 0.855 | −0.493 | 0.108 | −0.463 | −0.004 |
Sh POX | 0.291 | 0.795 | −0.172 | −0.050 | −0.626 | −0.238 |
R POX | 0.224 | 0.784 | −0.243 | 0.114 | −0.634 | −0.246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Youssef, R.; Jelali, N.; Martínez-Andújar, C.; Abdelly, C.; Hernández, J.A. Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity. Plants 2024, 13, 1268. https://doi.org/10.3390/plants13091268
Ben Youssef R, Jelali N, Martínez-Andújar C, Abdelly C, Hernández JA. Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity. Plants. 2024; 13(9):1268. https://doi.org/10.3390/plants13091268
Chicago/Turabian StyleBen Youssef, Rim, Nahida Jelali, Cristina Martínez-Andújar, Chedly Abdelly, and José Antonio Hernández. 2024. "Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity" Plants 13, no. 9: 1268. https://doi.org/10.3390/plants13091268
APA StyleBen Youssef, R., Jelali, N., Martínez-Andújar, C., Abdelly, C., & Hernández, J. A. (2024). Salicylic Acid and Calcium Chloride Seed Priming: A Prominent Frontier in Inducing Mineral Nutrition Balance and Antioxidant System Capacity to Enhance the Tolerance of Barley Plants to Salinity. Plants, 13(9), 1268. https://doi.org/10.3390/plants13091268