Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation
Abstract
:1. Introduction
2. Results
2.1. Identification of Gene Family Members and Construction of Evolutionary Tree
2.2. Analysis of the Conserved Structural Domains of the Mustard bHLH-MYC Gene Family and the Physicochemical Properties of the Proteins
2.3. Chromosome Position Analysis of bHLH-MYC Gene Family Members in Mustard
2.4. A Conservative Analysis of the Gene Sequences and Gene Structures of the Mustard bHLH-MYC Gene Family Members
2.5. Co-Linearity Analysis of the Mustard bHLH-MYC Gene Family
2.6. Expression Analysis of bHLH-MYC Family Genes on Leaf Trichome
2.7. Three-Dimensional Structure Prediction, Sequence Logo Analysis, and Subcellular Localization of bHLH-MYC Transcription Factors
3. Discussion
3.1. The MBW Ternary Complex Plays a Pivotal Role in Regulating the Characteristics of Mustard Trichomes
3.2. bHLH Is an Integral Part of the MBW Complex and Is Important for Mustard Trichome Development
3.3. Future Research Directions for Mustard Trichomes
4. Materials and Methods
4.1. Plant Materials
4.2. Identification of the Members of the Mustard bHLH-MYC Gene Superfamily and Construction of an Evolutionary Tree
4.3. Analysis of Conserved Structural Domains of the Mustard bHLH-MYC Gene Family and Physicochemical Properties of Proteins
4.4. Chromosomal Localization of Mustard bHLH-MYC Gene Family Members
4.5. Gene Structure Analysis of the Mustard bHLH-MYC Gene Family
4.6. Analysis of Conserved Motifs of the Mustard bHLH-MYC Protein and Phylogenetic Tree Analysis
4.7. Covariance Analysis of the Mustard bHLH-MYC Gene Family
4.8. RNA-Seq Analysis
4.9. Three-Dimensional (3D) Structure and Sequence Identity Analysis of the bHLH Protein
4.10. Subcellular Localization
4.10.1. Subcellular Localization Prediction
4.10.2. Vector Construction of Subcellular Localization
4.10.3. Cultivation and Infestation of N. benthamiana
- 1.
- N. benthamiana, originating from Australia, was propagated in trays containing sterilized peat soil and subsequently incubated in a constant-temperature incubator until the plants reached the 5–6-leaf stage, at which point infestation occurred.
- 2.
- Utilizing the vector derived from strain GV3101 as described in Section 4.10.2, the target gene was expressed in fusion with a reporter gene (eGFP). The subcellular localization of the target gene was then determined by observing the expression pattern of the reporter gene [63].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, S.; Tang, Y.; Zhang, C.; Yin, N.; Mao, Y.; Sun, F.; Chen, S.; Hu, R.; Liu, X.; Shang, G.; et al. Metabolite Profiling and Transcriptome Analysis Provide Insight into Seed Coat Color in Brassica juncea. Int. J. Mol. Sci. 2021, 22, 7215. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.L.; Zhou, G.F.; Fan, Y.H.; Zhou, Y.; Chen, X.Q. Discussion on the origin of mustard (Brassica juncea) in china. Acta Horticulturae 1995, 402, 317–320. [Google Scholar]
- Kwon, H.Y.; Choi, S.I.; Park, H.I.; Choi, S.H.; Sim, W.S.; Yeo, J.H.; Cho, J.H.; Lee, O.H. Comparative Analysis of the Nutritional Components and Antioxidant Activities of Different Brassica juncea Cultivars. Foods 2020, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2015, 81, 215S–217S. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Choi, J.Y.; Yu, M.R.; Kim, M.Y.; Lee, S.H.; Lee, B.H. Total polyphenols, total flavonoid contents, and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 2012, 44, 337–342. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, L.; Liu, S.J.; Yao, P.J.; Wang, Z.J. Identification and evaluation of resistance to Turnip mosaic virus in germplasm resources of mustard (Brassica juncea). J. Huazhong Agric. Univ. 2019, 38, 65–72. [Google Scholar]
- Pattanaik, S.; Patra, B.; Singh, S.K.; Yuan, L. An overview of the gene regulatory network controlling trichome development in the model plant. Arabidopsis. Front Plant Sci. 2014, 5, 259. [Google Scholar] [CrossRef]
- Xie, G.; Wang, Y.; Zhao, J.; Liu, B. Comparative Observation of the Development of Gametophytes of Three Species in Cyclosorus Link. Nat. Sci. J. Harbin Norm. Univ. 2008, 24, 91–96. [Google Scholar]
- Llorente, B.E.; Alasia, M.A.; Larraburu, E.E. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. N. Biotechnol. 2016, 33, 32–40. [Google Scholar] [CrossRef]
- Gianoli, E.; González-Teuber, M. Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus Chilensis (Convolvulaceae). Evol. Ecol. 2005, 19, 603–613. [Google Scholar] [CrossRef]
- Schreuder, M.D.; Brewer, C.A.; Heine, C. Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. J. Theor. Biol. 2001, 210, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, N.A.; Glover, B.J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 2005, 10, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhao, C.; Wang, S.; Gao, N.; Wang, X.; Na, X.; Wang, X.; Bi, Y. PIF4-PAP1 interaction affects MYB-bHLH-WD40 complex formation and anthocyanin accumulation in Arabidopsis. J Plant Physiol. 2022, 268, 153558. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Tao, R.; Feng, Y.; Xiao, Z.; Zhang, D.; Peng, Y.; Wen, X.; Wang, Y.; Guo, H. EIN3 and RSL4 interfere with an MYB-bHLH-WD40 complex to mediate ethylene-induced ectopic root hair formation in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2110004118. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, X.; Chen, W.; Xia, X.; Zhang, Z.; Qing, D.; Nong, B.; Li, J.; Liang, S.; Luo, S.; et al. WD40 protein OsTTG1 promotes anthocyanin accumulation and CBF transcription factor-dependent pathways for rice cold tolerance. Plant Physiol. 2024, 26, kiae604. [Google Scholar] [CrossRef]
- Payne, C.T.; Zhang, F.; Lloyd, A.M. GL3 Encodes a bHLH Protein That Regulates Trichome Development in Arabidopsis Through Interaction With GL1 and TTG1. Genetics 2000, 156, 1349–1362. [Google Scholar] [CrossRef]
- Gan, L.; Xia, K.; Chen, J.G.; Wang, S. Functional characterization of TRICHOMELESS2, a new single-repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis. BMC Plant Biol. 2011, 11, 176. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, J.G. Arabidopsis Transient Expression Analysis Reveals that Activation of GLABRA2 May Require Concurrent Binding of GLABRA1 and GLABRA3 to the Promoter of GLABRA2. Plant Cell Physiol. 2008, 49, 1792–1804. [Google Scholar] [CrossRef]
- Bernhardt, C.; Zhao, M.; Gonzalez, A.; Lloyd, A.; Schiefelbein, J. The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 2005, 132, 291–298. [Google Scholar] [CrossRef]
- Wu, N.; Lu, B.; Muhammad, Y.; Cao, Y.; Rong, J. Characterization and expression analysis of GLABRA3 (GL3) genes in cotton: Insights into trichome development and hormonal regulation. Mol. Biol. Rep. 2024, 51, 479. [Google Scholar] [CrossRef]
- Xu, J.; Herwijnen, Z.O.; Drager, D.B.; Sui, C.; Haring, M.A.; Schuurink, R.C. SlMYC1 Regulates Type VI Glandular Trichome Formation and Terpene Biosynthesis in Tomato Glandular Cells. Plant Cell 2018, 30, 2988–3005. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Ran, L.; Hu, J.; Ye, X.; Xu, D.; Li, J.; Su, H.; Wang, X.; Ren, S.; Luo, K. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in Populus tomentosa. New Phytol. 2020, 227, 867–883. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Shiu, S.H.; Grotewold, E. Evolution and diversification of the ACT-like domain associated with plant basic helix–loop–helix transcription factors. Proc. Natl. Acad. Sci. USA 2023, 120, e2219469120. [Google Scholar] [CrossRef] [PubMed]
- Yue, M. Regulation of flavonoids in strawberry fruits by R2R3-FaMYB5/10 dominatedMYB-bHLH-WD40 ternary complexes. Front. Plant Sci. 2023, 14, 1145670. [Google Scholar] [CrossRef]
- Kazan, K.; Manners, J.M. MYC2: The Master in Action. Mol. Plant 2013, 6, 686–703. [Google Scholar] [CrossRef]
- Li, H.; Gao, W.; Xue, C.; Zhang, Y.; Liu, Z.; Zhang, Y.; Meng, X.; Liu, M.; Zhao, J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genom. 2019, 20, 568. [Google Scholar] [CrossRef]
- Zhang, T.; Lv, W.; Zhang, H.; Ma, L.; Li, P.; Ge, L.; Li, G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 2018, 18, 235. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, H.; Lai, D.; He, A.; Xue, G.; Feng, L.; Chen, L.; Cheng, X.; Ruan, J.; Yan, J.; et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genom. 2021, 22, 415. [Google Scholar] [CrossRef]
- Song, X.M.; Huang, Z.N.; Duan, W.K.; Ren, J.; Liu, T.K.; Li, Y.; Hou, X.L. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol. Genet. Genom. 2014, 289, 77–91. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Chai, X.; Lv, J.; Hu, L.; Wang, J.; Li, Z.; Yu, J.; Liu, Z. Genome-wide identification and expression analysis of the MYC transcription factor family and its response to sulfur stress in cabbage (Brassica oleracea L.). Gene 2022, 814, 146116. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, L.; Shan, X.; Wen, Z.; Zhang, X.; Yao, X.; Niu, G.; Shan, C.; Sun, D. Genome-wide identification and expression analysis of the bHLH gene family in cauliflower (Brassica oleracea L.). Physiol. Mol. Biol. Plants 2022, 28, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.Z.; Wu, Y.W.; Zhou, H.J.; Chen, P.; Wang, M.M.; Liu, M.M.; Li, P.F.; Yang, J.; Li, J.N.; Du, H. Genome-wide survey of the bHLH super gene family in Brassica napus. BMC Plant Biol. 2020, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.; Fang, Y.; Gong, C.; Mai, P.; Sun, B.; Li, Z.; Li, T.; Sun, G. Genome-Wide ldentification and Expression Analysis in Oxidative Stress of TCP Transcription Factor Family in Eggplant (Solanum melongena L.). Guangdong Agric. Sci. 2022, 49, 20–33. [Google Scholar]
- Duan, Z. Study on MaUGT79 Involving in Scopolin Biosynthesis and Drought Stress in Melilotus albus. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2023. [Google Scholar]
- Grebe, M. The patterning of epidermal hairs in Arabidopsis-updated. Curr. Opin. Plant Biol. 2012, 15, 31–37. [Google Scholar] [CrossRef]
- Szymanski, D.B.; Lloyd, A.M.; Marks, M.D. Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci. 2000, 5, 214–219. [Google Scholar] [CrossRef]
- Gao, F.; Dubos, C. The arabidopsis bHLH transcription factor family. Trends Plant Sci. 2024, 29, 668–680. [Google Scholar] [CrossRef]
- Cultrone, A.; Cotroneo, P.S.; Recupero, G.R. Cloning and molecular characterization of R2R3-MYB and bHLH-MYC transcription factors from Citrus sinensis. Tree Genet. Genomes 2010, 6, 101–112. [Google Scholar] [CrossRef]
- Ye, Y.; Li, H.; Yi, Y.; Qiu, G.; Wen, Y.; Yang, J.; Zhao, Y.; Han, Q.; Qin, Y. Cloning and Expression Analysis of Strawberry (Fragaria × ananassa) MYC2-like Gene Under Abiotic Stress. Genom. Appl. Biol. 2024, 43, 416–427. [Google Scholar]
- Gao, L.H.; Liu, B.X.; Li, J.B.; Wu, Y.M.; Tang, Y.X. Cloning and Function Analysis of bHLH Transcription Factor Gene GhMYC4 from Gossypium hirsutism L. J. Agric. Sci. Technol. 2016, 18, 33–41. [Google Scholar]
- Liu, X.Y.; Wang, W.S.; Fu, B.Y. Research Progress of Plant bHLH Transcription Factor Family. Curr. Biotechnol. 2011, 1, 391–397. [Google Scholar]
- Wang, Y.; Yao, Q.; Chen, K.P. Progress of studies on family members and functions of animal bHLH transcription factors. Hereditas 2010, 32, 307–330. [Google Scholar] [CrossRef] [PubMed]
- Kurt, F.; Filiz, E. Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: Insights into iron (Fe) homeostasis. Biometals 2018, 31, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Patra, B.; Schluttenhofer, C.; Wu, Y.; Pattanaik, S.; Yuan, L. A Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochim. BioPhys. Acta 2013, 1829, 1236–1247. [Google Scholar] [CrossRef] [PubMed]
- Li, S.F.; Milliken, O.N.; Pham, H.; Seyit, R.; Napoli, R.; Preston, J.; Koltunow, A.M.; Parish, R.W. The Arabidopsis MYB5 Transcription Factor Regulates Mucilage Synthesis, Seed Coat Development, and Trichome Morphogenesis. Plant Cell 2009, 21, 72–89. [Google Scholar] [CrossRef]
- Fambrini, M.; Pugliesi, C. The Dynamic Genetic-hormonal Regulatory Network Controlling the Trichome Development in Leaves. Plants 2019, 8, 253. [Google Scholar] [CrossRef]
- Jacob, A.; Lancaster, J.; Buhler, J.; Harris, B.; Chamberlain, R.D. Mercury BLASTP: Accelerating Protein Sequence Alignment. ACM. Trans. Reconfig. Techn. Syst. 2008, 1, 9. [Google Scholar] [CrossRef]
- Marchin, M.; Kelly, P.T.; Fang, J. Tracker: Continuous HMMER and BLAST searching. Bioinformatics 2005, 21, 388–389. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic. Acids. Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, Z.; Wang, A.; Zheng, T.; Huang, L.; Sun, W.; Zhang, Y.; Jin, W.; Zhan, J.; Cai, Y.; et al. Genome-Wide Investigation of the Auxin Response Factor Gene Family in Tartary Buckwheat (Fagopyrum tataricum). Int. J. Mol. Sci. 2018, 19, 3526. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Huang, W.; Wang, S.; Zhang, S.; Li, F.; Zhang, H.; Sun, R.; Li, G. Genome-Wide Identification and Expression Analysis of eIF Family Genes from Brassica rapa in Response to TuMV Resistance. Plants 2022, 11, 2248. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Chou, K.C.; Shen, H.B. Large-scale plant protein subcellular location prediction. J. Cell. Biochem. 2007, 100, 665–678. [Google Scholar] [CrossRef]
- Horton, P.; Park, K.J.; Obayashi, T.; Fujita, N.; Harada, H.; Adams-Collier, C.J.; Nakai, K. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 2007, 35, W585–W587. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, X.; Zhao, Z.; Du, D.; Li, K. Fine Mapping and Functional Verification of the Brdt1 Gene Controlling Determinate Inflorescence in Brassica rapa L. Agronomy 2024, 14, 281. [Google Scholar] [CrossRef]
- Bally, J.; Jung, H.; Mortimer, C.; Naim, F.; Philips, J.G.; Hellens, R.; Bombarely, A.; Goodin, M.M.; Waterhouse, P.M. The Rise and Rise of Nicotiana benthamiana: A Plant for All Reasons. Annu. Rev. Phytopathol. 2018, 56, 405–426. [Google Scholar] [CrossRef]
Gene | PI | MW/kDa | Gene | PI | MW/kDa |
---|---|---|---|---|---|
BjuVA01G10120 | 5.30 | 62,473.40 | BjuVB01G11470 | 4.92 | 52,058.65 |
BjuVA01G21700 | 6.69 | 50,298.94 | BjuVB01G20870 | 5.99 | 70,011.92 |
BjuVA03G45600 | 5.15 | 63,848.04 | BjuVB02G09970 | 5.24 | 59,529.26 |
BjuVA03G49150 | 6.14 | 51,060.68 | BjuVB02G49380 | 5.14 | 64,050.93 |
BjuVA04G14880 | 6.14 | 69,968.95 | BjuVB02G59870 | 6.20 | 51,924.52 |
BjuVA04G24090 | 4.75 | 50,446.84 | BjuVB03G15700 | 5.32 | 65,953.75 |
BjuVA04G34240 | 5.34 | 51,262.59 | BjuVB03G32300 | 5.22 | 65,999.69 |
BjuVA05G01310 | 5.44 | 54,312.47 | BjuVB03G33510 | 6.24 | 65,008.89 |
BjuVA05G14150 | 5.45 | 48,266.04 | BjuVB03G55030 | 4.97 | 63,948.32 |
BjuVA05G24810 | 5.21 | 65,777.46 | BjuVB04G14560 | 5.37 | 56,625.21 |
BjuVA06G07220 | 5.72 | 46,181.86 | BjuVB04G14570 | 5.61 | 55,457.99 |
BjuVA06G44760 | 7.03 | 42,633.33 | BjuVB04G14630 | 5.19 | 62,049.94 |
BjuVA06G44820 | 5.08 | 63,478.29 | BjuVB04G20680 | 5.48 | 67,676.33 |
BjuVA07G03980 | 5.02 | 64,364.66 | BjuVB04G22370 | 5.54 | 67,082.36 |
BjuVA09G00260 | 5.82 | 66,992.63 | BjuVB04G42830 | 5.31 | 65,717.57 |
BjuVA09G13750 | 5.47 | 66,340.49 | BjuVB05G18190 | 5.02 | 65,125.24 |
BjuVA09G15440 | 5.23 | 67,879.28 | BjuVB05G19640 | 6.02 | 52,633.44 |
BjuVA09G22490 | 5.05 | 61,843.65 | BjuVB06G01060 | 5.57 | 53,093.87 |
BjuVA09G22530 | 5.64 | 56,259.17 | BjuVB06G20290 | 5.40 | 51,484.77 |
BjuVA09G22560 | 5.50 | 56,312.12 | BjuVB08G25010 | 5.80 | 54,713.74 |
BjuVA09G28640 | 5.50 | 59,989.01 | BjuVB08G34970 | 5.65 | 62,234.17 |
BjuVA10G00560 | 6.06 | 64,164.85 | BjuVB08G42530 | 5.90 | 59,225.44 |
BjuVB01G00790 | 5.33 | 53,306.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, G.; Zhu, C.; Wang, S.; Zhang, S.; Li, F.; Zhang, H.; Sun, R.; Yuan, L.; Chen, G.; et al. Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation. Plants 2025, 14, 268. https://doi.org/10.3390/plants14020268
Li J, Li G, Zhu C, Wang S, Zhang S, Li F, Zhang H, Sun R, Yuan L, Chen G, et al. Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation. Plants. 2025; 14(2):268. https://doi.org/10.3390/plants14020268
Chicago/Turabian StyleLi, Jianzhong, Guoliang Li, Caishuo Zhu, Shaoxing Wang, Shifan Zhang, Fei Li, Hui Zhang, Rifei Sun, Lingyun Yuan, Guohu Chen, and et al. 2025. "Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation" Plants 14, no. 2: 268. https://doi.org/10.3390/plants14020268
APA StyleLi, J., Li, G., Zhu, C., Wang, S., Zhang, S., Li, F., Zhang, H., Sun, R., Yuan, L., Chen, G., Tang, X., Wang, C., & Zhang, S. (2025). Genome-Wide Identification and Expression Analysis of bHLH-MYC Family Genes from Mustard That May Be Important in Trichome Formation. Plants, 14(2), 268. https://doi.org/10.3390/plants14020268