Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics
Abstract
:1. Introduction
2. Results
2.1. Effects on Germination In Vitro and Seedling Emergence in Soil
2.2. Effects on Morphometric Parameters
2.3. Effects on Concentrations of Steviol Glycosides
2.4. Effects on Total Phenolic Content, Flavonoid Content, and Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material and Experiment Duration
4.3. Seed Treatment with DBD Cold Plasma
4.4. Seed Treatment with Low-Pressure Cold Plasma
4.5. Seed Germination Test In Vitro and Measurement of Seedling Emergence in Soil
4.6. Plant Cultivation in Soil
4.7. Plant Cultivation in Aeroponics
4.8. Morphometric Measurements
4.9. Plant Material Preparation for Extraction
4.10. Extract Preparation
4.11. HPLC Analysis of Steviol Glycosides
4.12. Determination of Total Phenolic Content
4.13. Determination of Total Flavonoid Content
4.14. Determination of Antioxidant Activity
4.15. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Wheaton, E.; Kulshreshtha, S. Environmental Sustainability of Agriculture Stressed by Changing Extremes of Drought and Excess Moisture: A Conceptual Review. Sustainability 2017, 9, 970. [Google Scholar] [CrossRef]
- Bilea, F.; Garcia-Vaquero, M.; Magureanu, M.; Mihaila, I.; Mildažienė, V.; Mozetič, M.; Pawlat, J.; Primc, G.; Puač, N.; Robert, E.; et al. Non-Thermal Plasma as Environmentally-Friendly Technology for Agriculture: A Review and Roadmap. Crit. Rev. Plant Sci. 2024, 42, 428–486. [Google Scholar] [CrossRef]
- Ishikawa, K.; Koga, K.; Ohno, N. Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries. Plasma 2024, 7, 160–177. [Google Scholar] [CrossRef]
- Pánka, D.; Jeske, M.; Łukanowski, A.; Baturo-Ciésniewska, A.; Prus, P.; Maitah, M.; Maitah, K.; Malec, K.; Rymarz, D.; Muhire, J.D.D.; et al. Can Cold Plasma Be Used for Boosting Plant Growth and Plant Protection in Sustainable Plant Production? Agronomy 2022, 12, 841. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Sera, B.; Baniulis, D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. Plants 2022, 11, 856. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.; Schlutter, O.; Cullen, P. Plasma in Food and Agriculture. In Cold Plasma in Food and Agriculture: Fundamentals and Applications; Misra, N.N., Schlutter, O., Cullen, P.J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–16. [Google Scholar]
- Roy, N.C.; Hasan, M.M.; Talukder, M.R.; Hossain, M.D.; Chowdhury, A.N. Prospective Applications of Low Frequency Glow Discharge Plasmas on Enhanced Germination, Growth and Yield of Wheat. Plasma Chem. Plasma Process. 2018, 38, 13–28. [Google Scholar] [CrossRef]
- Saberi, M.; Modarres-Sanavy, S.A.M.; Zare, R.; Ghomi, H. Amelioration of Photosynthesis and Quality of Wheat Under Non-Thermal Radio Frequency Plasma Treatment. Sci. Rep. 2018, 8, 11655. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Katsenios, N.; Efthimiadou, A.; Stergiou, P.; Xanthou, Z.-M.; Giannoglou, M.; Dimitrakellis, P.; Gogolides, E.; Katsaros, G. Pre-Sowing Treatment of Maize Seeds by Cold Atmospheric Plasma and Pulsed Electromagnetic Fields: Effect on Plant and Kernels Characteristics. Aust. J. Crop Sci. 2021, 15, 251–259. [Google Scholar] [CrossRef]
- Recek, N.; Zaplotnik, R.; Vesel, A.; Primc, G.; Gselman, P.; Mozetič, M.; Holc, M. Germination and Growth of Plasma-Treated Maize Seeds Planted in Fields and Exposed to Realistic Environmental Conditions. Int. J. Mol. Sci. 2023, 24, 6868. [Google Scholar] [CrossRef]
- Šerá, B.; Scholtz, V.; Jirešová, J.; Khun, J.; Julák, J.; Šerý, M. Effects of Non-Thermal Plasma Treatment on Seed Germination and Early Growth of Leguminous Plants—A Review. Plants 2021, 10, 1616. [Google Scholar] [CrossRef]
- Mildaziene, V.; Paužaitė, G.; Naučienė, Z.; Zukiene, R.; Malakauskienė, A.; Norkeviciene, E.; Slepetiene, A.; Stukonis, V.; Olšauskaite, V.; Padarauskas, A.; et al. Effect of Seed Treatment with Cold Plasma and Electromagnetic Field on Red Clover Germination, Growth and Content of Major Isoflavones. J. Phys. D Appl. Phys. 2020, 53, 264001. [Google Scholar] [CrossRef]
- Filatova, I.; Lyushkevich, V.; Goncharik, S.; Zhukovsky, A.; Krupenko, N.; Kalatskaja, J. The Effect of Low-Pressure Plasma Treatment of Seeds on the Plant Resistance to Pathogens and Crop Yields. J. Phys. D Appl. Phys. 2020, 53, 244001. [Google Scholar] [CrossRef]
- Mildaziene, V.; Pauzaite, G.; Malakauskiene, A.; Zukiene, R.; Nauciene, Z.; Filatova, I.; Azharonok, V.; Lyushkevich, V. Response of Perennial Woody Plants to Seed Treatment by Electromagnetic Field and Low-Temperature Plasma. Bioelectromagnetics 2016, 37, 536–548. [Google Scholar] [CrossRef]
- Pauzaite, G.; Malakauskiene, A.; Nauciene, Z.; Zukiene, R.; Filatova, I.; Lyushkevich, V.; Azarko, I.; Mildaziene, V. Changes in Norway Spruce Germination and Growth Induced by Pre-Sowing Seed Treatment with Cold Plasma and Electromagnetic Field: Short-Term Versus Long-Term Effects. Plasma Process. Polym. 2018, 15, 1700068. [Google Scholar] [CrossRef]
- Šerá, B.; Šerý, M.; Zahoranová, A.; Tomeková, J. Germination Improvement of Three Pine Species (Pinus) After Diffuse Coplanar Surface Barrier Discharge Plasma Treatment. Plasma Chem. Plasma Process. 2021, 41, 211–226. [Google Scholar] [CrossRef]
- Mildaziene, V.; Pauzaite, G.; Naucienė, Z.; Malakauskiene, A.; Zukiene, R.; Januskaitiene, I.; Jakstas, V.; Ivanauskas, L.; Filatova, I.; Lyushkevich, V. Pre-Sowing Seed Treatment with Cold Plasma and Electromagnetic Field Increases Secondary Metabolite Content in Purple Coneflower (Echinacea purpurea) Leaves. Plasma Process. Polym. 2018, 15, 1700059. [Google Scholar] [CrossRef]
- Ghasempour, M.; Iranbakhsh, A.; Ebadi, M.O.; Ardebili, Z. Seed Priming with Cold Plasma Improved Seedling Performance, Secondary Metabolism, and Expression of Deacetylvindoline O-Acetyltransferase Gene in Catharanthus roseus. Contrib. Plasma Phys. 2020, 60, e201900159. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the Game-Changing Technologies of Agriculture 4.0: How Do We Manage Diversity and Responsibility in Food System Transition Pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern Plant Cultivation Technologies in Agriculture Under Controlled Environment: A Review on Aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.M.; Syed, T.N.; Chandio, F.A.; Tunio, M.H.; Ahmad, F.; Solangi, K.A. Overview of the Aeroponic Agriculture—An Emerging Technology for Global Food Security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Teng, Z.; Yaguang Luo, Y.; Pearlstein, D.J.; Wheeler, R.M.; Johnson, C.M.; Wang, Q.; Fonseca, J.M. Microgreens for Home, Commercial, and Space Farming: A Comprehensive Update of the Most Recent Developments. Ann. Rev. Food Sci. Technol. 2023, 14, 539–562. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium- and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Xu, X.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Effects of Various Aeroponic Atomizers (Droplet Sizes) on Growth, Polyphenol Content, and Antioxidant Activity of Leaf Lettuce (Lactuca sativa L.). Trans. ASABE 2019, 62, 1475–1487. [Google Scholar] [CrossRef]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the Roots of Aeroponic Indoor Farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Mangaiyarkarasi, R. Aeroponics System for Production of Horticultural Crops. Madras Agric. J. 2020, 107, 1–7. [Google Scholar] [CrossRef]
- Gurley, T.W. Aeroponics; CRC Press: Boca Raton, FL, US, 2020. [Google Scholar]
- Ferrini, F.; Donati Zeppa, S.; Fraternale, D.; Carrabs, V.; Annibalini, G.; Verardo, G.; Gorassini, A.; Albertini, M.C.; Ismail, T.; Fimognari, C.; et al. Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants 2022, 11, 860. [Google Scholar] [CrossRef]
- Xu, Y.M.; Wijeratne, E.K.; Brooks, A.D.; Tewary, P.; Xuan, L.J.; Wang, W.Q.; Sayers, T.J.; Gunatilaka, A.L. Cytotoxic and Other Withanolides from Aeroponically Grown Physalis philadelphica. Phytochemistry 2018, 152, 174–181. [Google Scholar] [CrossRef]
- Sainz, P.; Andrés, M.F.; Martínez-Díaz, R.A.; Bailén, M.; Navarro-Rocha, J.; Díaz, C.E.; González-Coloma, A. Chemical Composition and Biological Activities of Artemisia pedemontana subsp. assoana Essential Oils and Hydrolate. Biomolecules 2019, 9, 558. [Google Scholar] [CrossRef]
- Gantait, S.; Das, A.; Banerjee, J. Geographical Distribution, Botanical Description and Self-Incompatibility Mechanism of Genus Stevia. Sugar Tech. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Vega-Galvez, A.; Zura-Bravo, L.; Ah-Hen, K. Stevia rebaudiana Bertoni, Source of a High-Potency Natural Sweetener: A Comprehensive Review on the Biochemical, Nutritional and Functional Aspects. Food Chem. 2012, 132, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Mordor Intelligence. Stevia Market Size & Share Analysis—Growth Trends & Forecasts (2024–2029). Available online: https://www.mordorintelligence.com/industry-reports/stevia-market (accessed on 25 November 2024).
- Myint, K.Z.; Chen, J.-M.; Zhou, Z.-Y.; Xia, Y.-M.; Lin, J.; Zhang, J. Structural Dependence of Antidiabetic Effect of Steviol Glycosides and Their Metabolites on Streptozotocin-Induced Diabetic Mice. J. Sci. Food Agric. 2020, 100, 3841–3849. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.K.; Singh, S.; Dhyani, D.; Ahuja, P. A Review on the Improvement of Stevia [Stevia rebaudiana (Bertoni)]. Can. J. Plant Sci. 2011, 91, 1–27. [Google Scholar] [CrossRef]
- Testai, L.; Calderone, V. Stevia rebaudiana Bertoni. In Steviol Glycosides: Cultivation, Processing, Analysis and Applications in Food, 2nd ed.; Wölwer-Rieck, U., Ed.; Royal Society of Chemistry: Cambridge, UK, 2019; pp. 148–161. [Google Scholar] [CrossRef]
- Judickaitė, A.; Lyushkevich, V.; Filatova, I.; Mildažienė, V.; Žūkienė. The Potential of Cold Plasma and Electromagnetic Field as Stimulators of Natural Sweeteners Biosynthesis in Stevia rebaudiana Bertoni. Plants 2022, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Judickaitė, A.; Venckus, J.; Koga, K.; Shiratani, M.; Mildažienė, V.; Žūkienė, R. Cold Plasma-Induced Changes in Stevia rebaudiana Morphometric and Biochemical Parameter Correlations. Plants 2023, 12, 1585. [Google Scholar] [CrossRef] [PubMed]
- Partap, M.; Rattan, S.; Kainika; Ashrita; Sood, A.; Kumar, P.; Warghat, A.R. Hydroponic and Aeroponic Cultivation of Economically Important Crops for Production of Quality Biomass. In Agricultural Biotechnology: Latest Research and Trends; Srivastava, D.K., Thakur, A.K., Kumar, P., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Goettemoeller, J.; Ching, A. Seed Germination in Stevia rebaudiana. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 510–511. [Google Scholar]
- Ivankov, A.; Nauciene, Z.; Zukiene, R.; Degutyte-Fomins, L.; Malakauskiene, A.; Kraujalis, P.; Venskutonis, P.R.; Filatova, I.; Lyushkevich, V.; Mildaziene, V. Changes in Growth and Production of Non-Psychotropic Cannabinoids Induced by Pre-Sowing Treatment of Hemp Seeds with Cold Plasma, Vacuum and Electromagnetic Field. Appl. Sci. 2020, 10, 8519. [Google Scholar] [CrossRef]
- Mildaziene, V.; Ivankov, A.; Pauzaite, G.; Naucienė, Z.; Zukiene, R.; Degutyte-Fomins, L.; Pukalskas, A.; Venskutonis, P.R.; Filatova, I.; Lyushkevich, V. Seed Treatment with Cold Plasma and Electromagnetic Field Induces Changes in Red Clover Root Growth Dynamics, Flavonoid Exudation, and Activates Nodulation. Plasma Process. Polym. 2020, 18, 2000160. [Google Scholar] [CrossRef]
- Ivankov, A.; Naučienė, Z.; Degutytė-Fomins, L.; Žūkienė, R.; Januškaitienė, I.; Malakauskienė, A.; Jakštas, V.; Ivanauskas, L.; Romanovskaja, D.; Šlepetienė, A.; et al. Changes in Agricultural Performance of Common Buckwheat Induced by Seed Treatment with Cold Plasma and Electromagnetic Field. Appl. Sci. 2021, 11, 4391. [Google Scholar] [CrossRef]
- Gao, H.; Wang, G.; Huang, Z.; Nie, L.; Liu, D.; Lu, X.; He, G.; Ostrikov, K.K. Plasma-Activated Mist: Continuous-Flow, Scalable Nitrogen Fixation, and Aeroponics. ACS Sustain. Chem. Eng. 2023, 11, 4420–4429. [Google Scholar] [CrossRef]
- Song, J.S.; Jung, S.; Jee, S.; Yoon, J.W.; Byeon, Y.S.; Park, S.; Kim, S.B. Growth and Bioactive Phytochemicals of Panax Ginseng Sprouts Grown in an Aeroponic System Using Plasma-Treated Water as the Nitrogen Source. Sci. Rep. 2021, 11, 2924. [Google Scholar] [CrossRef]
- Maruyama-Nakashita, A.; Ishibashi, Y.; Yamamoto, K.; Liu Zhang, L.; Morikawa-Ichinose, T.; Sun-Ju Kim, S.-J.; Hayashi, N. Oxygen Plasma Modulates Glucosinolate Levels Without Affecting Lipid Contents and Composition in Brassica napus Seeds. Biosci. Biotechnol. Biochem. 2021, 85, 2434–2441. [Google Scholar] [CrossRef]
- Sirgedaitė-Šėžienė, V.; Lučinskaitė, I.; Mildažienė, V.; Ivankov, A.; Koga, K.; Shiratani, M.; Laužikė, K.; Baliuckas, V. Changes in Content of Bioactive Compounds and Antioxidant Activity Induced in Needles of Different Half-Sib Families of Norway Spruce (Picea abies (L.) H. Karst) by Seed Treatment with Cold Plasma. Antioxidants 2022, 11, 1558. [Google Scholar] [CrossRef]
- Čėsnienė, I.; Čėsna, V.; Miškelytė, D.; Novickij, V.; Mildažienė, V.; Sirgedaitė-Šežienė, V. Seed Treatment with Cold Plasma and Electromagnetic Field: Changes in Antioxidant Capacity of Seedlings in Different Picea abies (L.) H. Karst Half-Sib Families. Plants 2024, 13, 2021. [Google Scholar] [CrossRef] [PubMed]
- Ivankov, A.; Zukiene, R.; Nauciene, Z.; Degutyte-Fomins, L.; Filatova, I.; Lyushkevich, V.; Mildaziene, V. The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent On Seed Color. Appl. Sci. 2021, 11, 4676. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Types of Seeds and Kinds of Seed Dormancy. In Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Baskin, C.C., Baskin, J.M., Eds.; Academic Press: London, UK, 2014; pp. 37–77. [Google Scholar] [CrossRef]
- Degutytė-Fomins, L.; Paužaitė, G.; Žukienė, R.; Mildažienė, V.; Koga, K.; Shiratani, M. Relationship Between Cold Plasma Treatment-Induced Changes in Radish Seed Germination and Phytohormone Balance. Jpn. J. Appl. Phys. 2020, 59, SH1001. [Google Scholar] [CrossRef]
- Zukiene, R.; Nauciene, Z.; Januskaitiene, I.; Pauzaite, G.; Mildaziene, V.; Koga, K.; Shiratani, M. Dielectric Barrier Discharge Plasma Treatment Induced Changes in Sunflower Seed Germination, Phytohormone Balance, and Seedling Growth. Appl. Phys. Ex. 2019, 12, 126003. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M.; Mildaziene, M. Impact of Seed Color and Storage Time on the Radish Seed Germination and Sprout Growth in Plasma Agriculture. Sci. Rep. 2021, 11, 2539. [Google Scholar] [CrossRef] [PubMed]
- Ahmadirad, S.; Tavakoli, A.; Mokhtassi-Bidgoli, A.; Mostashari, M.M. Optimizing Biomass and Steviol Glycoside Yield in Hydroponically Grown Stevia (Stevia rebaudiana Bertoni) with Ammonium Nitrate and 6-Benzylaminopurine Concentrations. Sugar Tech. 2024, 26, 595–607. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Javed, R.; Adeel, M.; Rizwan, M.; Yang, Y. PEG 6000-Stimulated Drought Stress Improves the Attributes of In Vitro Growth, Steviol Glycosides Production, and Antioxidant Activities in Stevia rebaudiana Bertoni. Plants 2020, 9, 1552. [Google Scholar] [CrossRef]
- Song, J.-S.; Kim, S.B.; Ryu, S.; Oh, J.; Kim, D.-S. Emerging Plasma Technology that Alleviates Crop Stress During the Early Growth Stages of Plants: A Review. Front. Plant Sci. 2020, 11, 988. [Google Scholar] [CrossRef] [PubMed]
- Yodpitak, S.; Mahatheeranont, S.; Boonyawan, D.; Sookwong, P.; Roytrakul, S.; Norkaew, O. Cold Plasma Treatment to Improve Germination and Enhance the Bioactive Phytochemical Content of Germinated Brown Rice. Food Chem. 2019, 289, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Sera, B.; Spatenka, P.; Sery, M.; Vrchotova, N.; Hruskova, I. Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Transact. Plasma Sci. 2010, 38, 2963–2968. [Google Scholar] [CrossRef]
- Ji, S.H.; Choi, K.H.; Pengkit, A.; Im, J.S.; Kim, J.S.; Kim, Y.H.; Park, Y.; Hong, J.E.; Jung, S.K.; Choi, E.-H.; et al. Effects of High Voltage Nanosecond Pulsed Plasma and Micro DBD Plasma on Seed Germination, Growth Development and Physiological Activities in Spinach. Arch. Biochem. Biophys. 2016, 605, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.; Partap, M.; Kumar, D.; Warghat, A.R. Enhancement of Picrosides Content in Picrorhiza kurroa Royle ex Benth. Mediated Through Nutrient Feeding Approach Under Aeroponic and Hydroponic System. Ind. Crop. Prod. 2019, 133, 160–167. [Google Scholar] [CrossRef]
- Richards, F.J. A Flexible Growth Function for Empirical Use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Hara, Y. Calculation of Population Parameters Using Richards Function and Application of Indices of Growth and Seed Vigor to Rice Plants. Plant Prod. Sci. 1999, 2, 129–135. [Google Scholar] [CrossRef]
- Blinstrubienė, A.; Burbulis, N.; Juškevičiūtė, N.; Vaitkevičienė, N.; Žūkienė, R. Effect of Growth Regulators on Stevia rebaudiana Bertoni Callus Genesis and Influence of Auxin and Proline to Steviol Glycosides, Phenols, Flavonoids Accumulation, and Antioxidant Activity in Vitro. Molecules 2020, 25, 2759. [Google Scholar] [CrossRef]
Group | Vi, % | Me, Days | Qu, Days |
---|---|---|---|
Control | 17.33 ± 2.67 a | 4.57 ± 1.13 a,b | 1.31 ± 0.70 a |
V5 | 15.33 ± 2.40 a | 5.08 ± 0.46 a,b | 1.57 ± 0.21 a |
CP2 | 18.00 ± 2.00 a | 5.17 ± 0.34 a,b | 1.98 ± 0.51 a |
CP5 | 15.33 ± 5.80 a | 4.00 ± 0.54 b | 1.32 ± 0.65 a |
CP7 | 16.00 ± 4.00 a | 6.03 ± 0.90 a | 1.78 ± 0.44 a |
DBD2 | 16.67 ± 3.71 a | 4.54 ± 0.47 a,b | 1.23 ± 0.84 a |
DBD5 | 22.67 ± 3.71 a | 3.44 ± 0.42 b | 0.79 ± 0.27 a |
DBD7 | 16.00 ± 3.06 a | 4.25 ± 0.47 a,b | 1.09 ± 0.32 a |
Group | Vi, % | Me, Days | Qu, Days |
---|---|---|---|
Control | 12.00 ± 3.06 a | 3.55 ± 0.34 a,b | 0.71 ± 0.24 a |
V5 | 10.67 ± 3.53 a | 3.33 ± 0.32 b | 0.60 ± 0.23 a |
CP2 | 13.33 ± 6.36 a | 4.28 ± 0.22 a,b | 0.64 ± 0.24 a |
CP5 | 8.67 ± 7.26 a | 4.74 ± 0.10 a | 0.64 ± 0.33 a |
CP7 | 8.00 ± 2.0 a | 4.15 ± 0.57 a,b | 0.83 ± 0.26 a |
DBD2 | 5.33 ± 0.67 a | 3.46 ± 0.28 a,b | 0.90 ± 0.50 a |
DBD5 | 5.33 ± 0.67 a | 4.26 ± 0.69 a,b | 0.64 ± 0.46 a |
DBD7 | 6.00 ± 3.74 a | 4.21 ± 0.05 a,b | 1.11 ± 0.56 a |
Soil | Aeroponics | ||||||
---|---|---|---|---|---|---|---|
Plant Height, cm | Node Number | Leaf Number | Root Length, cm | Plant Height, cm | Node Number | Leaf Number | |
Control | 12.03 ± 0.62 a | 6.55 ± 0.20 a,b,c | 13.09 ± 0.62 a,b,c | 34.30 ± 5.27 a | 8.80 ± 0.69 a* | 9.20 ± 0.58 a,b* | 17.20 ± 0.80 a,b* |
V5 | 11.93 ± 0.60 a | 7.25 ± 0.4 a | 14.50 ± 0.82 a | 26.65 ± 0.62 a,b,c | 10.35 ± 1.75 a | 10.17 ± 1.25 a* | 20.33 ± 2.50 a* |
CP2 | 9.93 ± 0.76 a | 5.93 ± 0.20 c | 11.86 ± 0.39 c | 25.70 ± 2.49 b,c | 10.58 ± 1.74 a | 7.80 ± 1.39 a,b* | 15.60 ± 2.79 a,b* |
CP5 | 11.47 ± 0.59 a | 6.86 ± 0.34 a,b,c | 13.71 ± 0.68 a,b,c | 32.40 ± 1.97 a,b | 9.30 ± 1.15 a | 7.40 ± 0.40 b* | 14.80 ± 0.80 b* |
CP7 | 12.19 ± 1.28 a | 6.90 ± 0.38 a,b | 13.80 ± 0.76 a,b | 23.70 ± 2.76 c | 7.74 ± 0.79 a* | 8.00 ± 0.84 a,b | 16.00 ± 1.68 a,b |
DBD2 | 10.93 ± 1.55 a | 6.75 ± 0.48 a,b,c | 13.50 ± 0.96 a,b,c | 29.58 ± 3.70 a,b,c | 10.17 ± 0.97 a | 7.50 ± 0.50 b | 15.00 ± 1.01 b |
DBD5 | 10.33 ± 1.03 a | 6.00 ± 0.65 b,c | 12.00 ± 1.29 b,c | 30.00 ± 1.79 a,b,c | 10.75 ± 1.5 a | 9.00 ± 0.52 a,b* | 18.00 ± 1.03 a,b* |
DBD7 | 12.29 ± 1.07 a | 6.57 ± 0.53 a,b,c | 13.14 ± 1.06 a,b,c | 32.33 ± 3.30 a,b | 10.80 ± 1.24 a | 9.00 ± 0.73 a,b* | 18.00 ± 1.46 a,b* |
Stem FW, g | Stem DW, g | Leaf FW, g | Leaf DW, g | Leaf DM, % | Leaf/Stem (DW) | |
---|---|---|---|---|---|---|
Control | 0.20 ± 0.03 a | 0.022 ± 0.004 a | 0.74 ± 0.15 a | 0.072 ± 0.015 a | 9.86 ± 0.26 a,b | 3.24 ± 0.16 a |
V5 | 0.19 ± 0.03 a | 0.020 ± 0.003 a,b | 0.65 ± 0.12 a,b | 0.065 ± 0.012 a,b | 10.00 ± 0.27 a,b | 3.28 ± 0.18 a |
CP2 | 0.13 ± 0.02 a | 0.015 ± 0.002 a,b | 0.46 ± 0.07 a,b | 0.046 ± 0.007 a,b | 10.36 ± 0.43 a | 3.86 ± 0.83 a |
CP5 | 0.13 ± 0.02 a | 0.014 ± 0.002 a,b | 0.39 ± 0.08 b | 0.037± 0.007 b | 9.75 ± 0.55 a,b,c | 2.63 ± 0.32 a |
CP7 | 0.17 ± 0.03 a | 0.017 ± 0.003 a,b | 0.61 ± 0.13 a,b | 0.053 ± 0.012 a,b | 8.67 ± 0.33 c | 3.02 ± 0.34 a |
DBD2 | 0.15 ± 0.04 a | 0.014 ± 0.005 a,b | 0.56 ± 0.10 a,b | 0.052 ± 0.010 a,b | 9.32 ± 0.31 a,b,c | 4.11 ± 0.41 a |
DBD5 | 0.13 ± 0.03 a | 0.011 ± 0.003 b | 0.41 ± 0.10 a,b | 0.037 ± 0.009 b | 8.97 ± 0.17 b,c | 4.51 ± 1.38 a |
DBD7 | 0.19 ± 0.04 a | 0.020 ± 0.004 a,b | 0.57 ± 0.11 a,b | 0.051 ± 0.008 a,b | 9.44 ± 0.65 a,b,c | 2.74 ± 0.26 a |
Root FW, g | Root DW, g | Stem FW, g | Stem DW, g | Leaf FW, g | Leaf DW, g | Leaf DM, % | Leaf/Stem (DW) | |
---|---|---|---|---|---|---|---|---|
Control | 7.91 ± 2.05 a,b,c | 0.79 ± 0.19 a,b,c | 1.90 ± 0.81 a,b,c | 0.27 ± 0.81 a,b | 10.13 ± 3.29 b,c | 1.50 ± 0.42 a,b,c | 16.00 ± 1.19 a,b | 5.89 ± 0.32 a |
V5 | 5.44 ±0.70 c,d | 0.50 ± 0.13 b,c | 1.31 ± 0.42 b,c | 0.19 ± 0.07 b | 6.10 ± 1.19 c | 1.07 ± 0.33 c | 16.13 ± 1.53 a,b | 7.02 ± 1.78 a |
CP2 | 6.24 ± 2.19 b,c,d | 0.73 ± 0.25 a,b,c | 1.19 ± 0.24 b,c | 0.24 ± 0.07 a,b | 5.77 ± 1.10 c | 1.02 ± 0.21 c | 17.43 ± 0.47 a,b | 4.80 ± 1.02 a |
CP5 | 7.14 ± 1.39 b,c,d | 0.70 ± 0.10 a,b,c | 1.19 ± 0.20 b,c | 0.17 ± 0.03 b | 7.07 ± 1.91 c | 1.32 ± 0.32 b,c | 19.34 ± 1.20 a | 7.65 ± 1.20 a |
CP7 | 3.42 ± 0.85 d | 0.42 ± 0.07 c | 0.64 ± 0.21 c | 0.24 ± 0.12 a,b | 3.69 ± 1.06 c | 0.65 ± 0.23 c | 17.01 ± 0.81 a,b | 4.21 ± 1.18 a |
DBD2 | 9.10 ± 1.48 a,b,c | 0.88 ± 0.14 a,b | 2.43 ± 0.31 a,b | 0.37 ± 0.05 a,b | 14.14 ± 2.48 a,b | 1.94 ± 0.31 a,b | 14.16 ± 0.84 b | 5.42 ± 0.69 a |
DBD5 | 11.56 ± 1.22 a | 1.09 ± 0.12 a | 2.54 ± 0.49 a,b | 0.37 ± 0.08 a,b | 16.01± 2.16 a,b | 2.26 ± 0.45 a,b | 13.77 ± 0.84 b | 6.48 ± 0.69 a |
DBD7 | 10.02 ± 1.21 a,b | 0.88 ± 0.13 a,b | 3.47 ± 1.20 a | 0.43 ± 0.13 a | 16.90 ± 2.79 a | 2.47 ± 0.35 a | 15.70 ± 2.14 a,b | 7.38 ± 1.83 a |
Soil | Aeroponics | |||||
---|---|---|---|---|---|---|
RebA/Stev | RebA/(RebA+Stev) | Stev/(RebA+Stev) | RebA/Stev | RebA/(RebA+Stev) | Stev/(RebA+Stev) | |
Control | 0.85 ± 0.024 a | 0.46 ± 007 a | 0.54 ± 0.007 d | 0.53 ± 0.15 a | 0.31 ± 0.08 a,b | 0.69 ± 0.08 a,b |
V5 | 0.57 ± 0.073 b | 0.37 ± 0.026 b | 0.63 ± 0.026 c | 0.71 ± 0.20 a | 0.37 ± 0.07 a,b | 0.63 ± 0.07 a,b |
CP2 | 0.46 ± 0.001 c | 0.31 ± 0.001 c | 0.67 ± 0.001 b | 0.62 ± 0.14 a | 0.37 ± 0.05 a,b | 0.64 ± 0.05 a,b |
CP5 | 0.58 ± 0.003 b | 0.37 ± 0.001 b | 0.63 ± 0.001 c | 0.62 ± 0.20 a | 0.34 ± 0.08 a,b | 0.66 ± 0.08 a,b |
CP7 | 0.58 ± 0.003 b | 0.37 ± 0.001 b | 0.63 ± 0.001 c | 0.69 ± 0.34 a | 0.46 ± 0.07 a | 0.54 ± 0.07 b |
DBD2 | 0.25 ± 0.006 d | 0.20 ± 0.004 d | 0.80 ± 0.004 a | 0.38 ± 0.09 a | 0.26 ± 0.05 a,b | 0.74 ± 0.05 a,b |
DBD5 | 0.46 ± 0.009 c | 0.32 ± 0.004 c | 0.68 ± 0.004 b | 0.38 ± 0.16 a | 0.23 ± 0.08 b | 0.77 ± 0.08 a |
DBD7 | 0.41 ± 0.006 c | 0.29 ± 0.003 c | 0.71 ± 0.003 b | 0.60 ± 0.15 a | 0.35 ± 0.06 a,b | 0.65 ± 0.06 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judickaitė, A.; Jankaitytė, E.; Ramanciuškas, E.; Degutytė-Fomins, L.; Naučienė, Z.; Kudirka, G.; Okumura, T.; Koga, K.; Shiratani, M.; Mildažienė, V.; et al. Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics. Plants 2025, 14, 271. https://doi.org/10.3390/plants14020271
Judickaitė A, Jankaitytė E, Ramanciuškas E, Degutytė-Fomins L, Naučienė Z, Kudirka G, Okumura T, Koga K, Shiratani M, Mildažienė V, et al. Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics. Plants. 2025; 14(2):271. https://doi.org/10.3390/plants14020271
Chicago/Turabian StyleJudickaitė, Augustė, Emilija Jankaitytė, Evaldas Ramanciuškas, Laima Degutytė-Fomins, Zita Naučienė, Gediminas Kudirka, Takamasa Okumura, Kazunori Koga, Masaharu Shiratani, Vida Mildažienė, and et al. 2025. "Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics" Plants 14, no. 2: 271. https://doi.org/10.3390/plants14020271
APA StyleJudickaitė, A., Jankaitytė, E., Ramanciuškas, E., Degutytė-Fomins, L., Naučienė, Z., Kudirka, G., Okumura, T., Koga, K., Shiratani, M., Mildažienė, V., & Žūkienė, R. (2025). Effects of Seed Processing with Cold Plasma on Growth and Biochemical Traits of Stevia rebaudiana Bertoni Under Different Cultivation Conditions: In Soil Versus Aeroponics. Plants, 14(2), 271. https://doi.org/10.3390/plants14020271