Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context
Abstract
:1. Introduction
- To test and detect the selected leaf functional traits to study the response of tree species in urban forests;
- To detect the main climatic variables that may affect urban forests;
- To compare the health status of Quercus cerris in urban forests versus natural forests during different seasons;
- To propose expedited and practical tools for monitoring the response of the trees in different urban forest conditions.
2. Results
2.1. Community Description and Characterization
2.2. Correlations Between Traits and Climatic Variables
2.3. Plant Functional Traits Variation in the Sampling Times
3. Discussion
4. Materials and Methods
4.1. Study Area and Stands Selection
4.2. Sampling Protocol
4.3. Satellite Data
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MedECC. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Lana-Renault, N.; Morán-Tejeda, E.; Moreno de las Heras, M.; Lorenzo-Lacruz, J.; López-Moreno, N. Chapter 10—Land-Use Change and Impacts. In Water Resources in the Mediterranean Region; Zribi, M., Brocca, L., Tramblay, Y., Molle, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 257–296. ISBN 978-0-12-818086-0. [Google Scholar]
- Ameztegui, A.; Coll, L.; Cáceres, M.D.; Morán-Ordóñez, A. Disturbance Impacts on Mediterranean Forests across Climate and Management Scenarios. J. Environ. Manag. 2024, 371, 123193. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Benavides, R.; Rabasa, S.G.; Díaz, M.; Pausas, J.G.; Paula, S.; Simonson, W.D. Global Change and Mediterranean Forests: Current Impacts and Potential Responses. In Forests and Global Change; Coomes, D.A., Burslem, D.F.R.P., Simonson, W.D., Eds.; Ecological Reviews; Cambridge University Press: Cambridge, UK, 2014; pp. 47–76. ISBN 978-1-107-61480-2. [Google Scholar]
- Antrop, M. Landscape Change and the Urbanization Process in Europe. Landsc. Urban Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Konijnendijk, C.C.; Ricard, R.M.; Kenney, A.; Randrup, T.B. Defining Urban Forestry—A Comparative Perspective of North America and Europe. Urban For. Urban Green. 2006, 4, 93–103. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in Integrating the Concept of Ecosystem Services and Values in Landscape Planning, Management and Decision Making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple Ecosystem Services and Disservices of the Urban Forest Establishing Their Connections with Landscape Structure and Sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Watts, N.; Adger, W.N.; Ayeb-Karlsson, S.; Bai, Y.; Byass, P.; Campbell-Lendrum, D.; Colbourn, T.; Cox, P.; Davies, M.; Depledge, M.; et al. The Lancet Countdown: Tracking Progress on Health and Climate Change. Lancet 2017, 389, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Stefano, V.D.; Orlandini, S.; Gensini, G.F. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Savard, J.-P.L.; Clergeau, P.; Mennechez, G. Biodiversity Concepts and Urban Ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Alvey, A.A. Promoting and Preserving Biodiversity in the Urban Forest. Urban. For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Bailey, S. Increasing Connectivity in Fragmented Landscapes: An Investigation of Evidence for Biodiversity Gain in Woodlands. Ecol. Manag. 2007, 238, 7–23. [Google Scholar] [CrossRef]
- Gentili, R.; Quaglini, L.A.; Galasso, G.; Montagnani, C.; Caronni, S.; Cardarelli, E.; Citterio, S. Urban Refugia Sheltering Biodiversity across World Cities. Urban. Ecosyst. 2024, 27, 219–230. [Google Scholar] [CrossRef]
- Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R.J. The Social and Economic Value of Cultural Ecosystem Services Provided by Urban Forests in North America: A Review and Suggestions for Future Research. Urban. For. Urban Green. 2017, 25, 103–111. [Google Scholar] [CrossRef]
- Spano, G.; Giannico, V.; Elia, M.; Bosco, A.; Lafortezza, R.; Sanesi, G. Human Health–Environment Interaction Science: An Emerging Research Paradigm. Sci. Total Environ. 2020, 704, 135358. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez Barona, C. Adopting Public Values and Climate Change Adaptation Strategies in Urban Forest Management: A Review and Analysis of the Relevant Literature. J. Environ. Manag. 2015, 164, 215–221. [Google Scholar] [CrossRef]
- Barron, S.; Sheppard, S.R.J.; Condon, P.M. Urban Forest Indicators for Planning and Designing Future Forests. Forests 2016, 7, 208. [Google Scholar] [CrossRef]
- Sukopp, H.; Wurzel, A. Changing Climate and the Effects on Vegetation in Central European Cities. Arboric. J. 2000, 24, 257–281. [Google Scholar] [CrossRef]
- Calfapietra, C.; Peñuelas, J.; Niinemets, Ü. Urban Plant Physiology: Adaptation-Mitigation Strategies under Permanent Stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef]
- Ferrini, F.; Fini, A. Gli Effetti Del Cambiamento Climatico Sugli Alberi in Ambienti Urbani Mediterranei. Italus Hortus 2015, 22, 59–74. [Google Scholar]
- Fantozzi, D.; Montagnoli, A.; Trupiano, D.; Di Martino, P.; Scippa, G.S.; Agosto, G.; Chiatante, D.; Sferra, G. A Systematic Review of Studies on Fine and Coarse Root Traits Measurement: Towards the Enhancement of Urban Forests Monitoring and Management. Front. Glob. Chang. 2024, 7, 1322087. [Google Scholar] [CrossRef]
- Lazzarini, L.; Mahmoud, I.; Pastore, M.C. Urban Planning for Biodiversity. TeMA J. Land Use Mobil. Environ. 2024, 1, 45–60. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Sáenz, S.; Penas, A. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar]
- Lenormand, M.; Papuga, G.; Argagnon, O.; Soubeyrand, M.; Barros, G.D.; Alleaume, S.; Luque, S. Biogeographical Network Analysis of Plant Species Distribution in the Mediterranean Region. Ecol. Evol. 2019, 9, 237–250. [Google Scholar] [CrossRef]
- Blasi, C.; Capotorti, G.; Copiz, R.; Guida, D.; Mollo, B.; Smiraglia, D.; Zavattero, L. Terrestrial Ecoregions of Italy. Map and Explanatory Notes; Global Map Srl: Firenze, Italy, 2018. [Google Scholar]
- Frigerio, J.; Capotorti, G.; Del Vico, E.; Ouled Larbi, M.; Grassi, F.; Blasi, C.; Labra, M.; Guidi Nissim, W. Tree Tracking: Species Selection and Traceability for Sustainable and Biodiversity-Friendly Urban Reforestation. Plant Biosyst. 2023, 157, 920–934. [Google Scholar] [CrossRef]
- Ellenberg, H. Zeigerwerte der Gefäßpflanzen Mitteleuropas; Scripta Geobotanica 9; Erich Goltze KG: Gottingen, Germany, 1974. [Google Scholar]
- Ellenberg, H.; Weber, H.E.; Düll, R.; Wirth, V.; Werner, W.; Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa; Erich Goltze KG: Gottingen, Germany, 1992. [Google Scholar]
- Hájek, M.; Dítě, D.; Horsáková, V.; Mikulášková, E.; Peterka, T.; Navrátilová, J.; Jiménez-Alfaro, B.; Hájková, P.; Tichý, L.; Horsák, M. Towards the Pan-European Bioindication System: Assessing and Testing Updated Hydrological Indicator Values for Vascular Plants and Bryophytes in Mires. Ecol. Indic. 2020, 116, 106527. [Google Scholar] [CrossRef]
- Tichý, L.; Axmanová, I.; Dengler, J.; Guarino, R.; Jansen, F.; Midolo, G.; Nobis, M.P.; Van Meerbeek, K.; Aćić, S.; Attorre, F.; et al. Ellenberg-Type Indicator Values for European Vascular Plant Species. J. Veg. Sci. 2023, 34, e13168. [Google Scholar] [CrossRef]
- Dengler, J.; Jansen, F.; Chusova, O.; Hüllbusch, E.; Nobis, M.P.; Meerbeek, K.V.; Axmanová, I.; Bruun, H.H.; Chytrý, M.; Guarino, R.; et al. Ecological Indicator Values for Europe (EIVE) 1.0. Veg. Classif. Surv. 2023, 4, 7–29. [Google Scholar] [CrossRef]
- Kermavnar, J.; Kutnar, L. Three Decades of Understorey Vegetation Change in Quercus-Dominated Forests as a Result of Increasing Canopy Mortality and Global Change Symptoms. J. Veg. Sci. 2024, 35, e13317. [Google Scholar] [CrossRef]
- Santoianni, L.A.; Innangi, M.; Varricchione, M.; Carboni, M.; La Bella, G.; Haider, S.; Stanisci, A. Ecological Features Facilitating Spread of Alien Plants along Mediterranean Mountain Roads. Biol. Invasions 2024, 26, 3879–3899. [Google Scholar] [CrossRef]
- Stefańska-Krzaczek, E.; Krzaczek, R.; Mazurek, N.; Chmura, D. Variability and Determinants of Vascular Plant Species Composition in Patches of Old Managed Oak Forest Stands Dispersed within Scots Pine Monocultures. Ecosyst 2024, 11, 100235. [Google Scholar] [CrossRef]
- Sanczuk, P.; Verheyen, K.; Lenoir, J.; Zellweger, F.; Lembrechts, J.J.; Rodríguez-Sánchez, F.; Baeten, L.; Bernhardt-Römermann, M.; De Pauw, K.; Vangansbeke, P.; et al. Unexpected Westward Range Shifts in European Forest Plants Link to Nitrogen Deposition. Science 2024, 386, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Maynard, D.S.; Bialic-Murphy, L.; Zohner, C.M.; Averill, C.; van den Hoogen, J.; Ma, H.; Mo, L.; Smith, G.R.; Acosta, A.T.R.; Aubin, I.; et al. Global Relationships in Tree Functional Traits. Nat. Commun. 2022, 13, 3185. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Valencia, R.; Ackerly, D.D. Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest. Science 2008, 322, 580–582. [Google Scholar] [CrossRef]
- Li, R.; Zhu, S.; Chen, H.Y.H.; John, R.; Zhou, G.; Zhang, D.; Zhang, Q.; Ye, Q. Are Functional Traits a Good Predictor of Global Change Impacts on Tree Species Abundance Dynamics in a Subtropical Forest? Ecol. Lett. 2015, 18, 1181–1189. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The Effects of Phenotypic Plasticity and Local Adaptation on Forecasts of Species Range Shifts under Climate Change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef]
- Quaranta, L.; Di Marzio, P.; Di Pietro, R.; Ferretti, F.; Di Salvatore, U.; Fortini, P. Analysis of the Functional Traits of Quercus cerris L. Seedlings in the Molise Region (Southern Italy). Plant Sociol. 2022, 59, 11–24. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of Tree Mortality under Drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A Standardized Protocol for the Determination of Specific Leaf Area and Leaf Dry Matter Content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- Cornelissen, J.H.C.; Cerabolini, B.; Castro-Díez, P.; Villar-Salvador, P.; Montserrat-Martí, G.; Puyravaud, J.P.; Maestro, M.; Werger, M.J.A.; Aerts, R. Functional Traits of Woody Plants: Correspondence of Species Rankings between Field Adults and Laboratory-Grown Seedlings? J. Veg. Sci. 2003, 14, 311–322. [Google Scholar] [CrossRef]
- Castro-Díez, P.; Puyravaud, J.P.; Cornelissen, J.H.C. Leaf Structure and Anatomy as Related to Leaf Mass per Area Variation in Seedlings of a Wide Range of Woody Plant Species and Types. Oecologia 2000, 124, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The Global Spectrum of Plant Form and Function: Enhanced Species-Level Trait Dataset. Sci. Data 2022, 9, 755. [Google Scholar] [CrossRef]
- Esperon-Rodriguez, M.; Rymer, P.D.; Power, S.A.; Challis, A.; Marchin, R.M.; Tjoelker, M.G. Functional Adaptations and Trait Plasticity of Urban Trees along a Climatic Gradient. Urban For. Urban Green. 2020, 54, 126771. [Google Scholar] [CrossRef]
- Varricchione, M.; Carranza, M.L.; D’Angeli, C.; de Francesco, M.C.; Innangi, M.; Santoianni, L.A.; Stanisci, A. Exploring the Distribution Pattern of Native and Alien Forests and Their Woody Species Diversity in a Small Mediterranean City. Plant Biosyst. 2024, 158, 1335–1346. [Google Scholar] [CrossRef]
- Kattge, J.; Bönisch, G.; Díaz, S.; Lavorel, S.; Prentice, I.C.; Leadley, P.; Tautenhahn, S.; Werner, G.D.A.; Aakala, T.; Abedi, M.; et al. TRY Plant Trait Database—Enhanced Coverage and Open Access. Glob. Chang. Biol. 2020, 26, 119–188. [Google Scholar] [CrossRef] [PubMed]
- Chalker-Scott, L. Environmental Significance of Anthocyanins in Plant Stress Responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Laoué, J.; Fernandez, C.; Ormeño, E. Plant Flavonoids in Mediterranean Species: A Focus on Flavonols as Protective Metabolites under Climate Stress. Plants 2022, 11, 172. [Google Scholar] [CrossRef]
- Daryanavard, H.; Postiglione, A.E.; Mühlemann, J.K.; Muday, G.K. Flavonols Modulate Plant Development, Signaling, and Stress Responses. Curr. Opin. Plant Biol. 2023, 72, 102350. [Google Scholar] [CrossRef] [PubMed]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of Chlorophyll and Synthesis of Flavonols during Autumn Senescence—The Story Told by Individual Leaves. AoB PLANTS 2018, 10, ply028. [Google Scholar] [CrossRef]
- Wilson, P.J.; Thompson, K.; Hodgson, J.G. Specific Leaf Area and Leaf Dry Matter Content as Alternative Predictors of Plant Strategies. New Phytol. 1999, 143, 155–162. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The Worldwide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Terzi, M.; Ciaschetti, G.; Fortini, P.; Rosati, L.; Viciani, D.; Di Pietro, R. A revised phytosociological nomenclature for the Italian Quercus cerris woods. Mediterr. Bot. 2020, 41, 101–120. [Google Scholar]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Vendramini, F.; Díaz, S.; Gurvich, D.E.; Wilson, P.J.; Thompson, K.; Hodgson, J.G. Leaf Traits as Indicators of Resource-Use Strategy in Floras with Succulent Species. New Phytol 2002, 154, 147–157. [Google Scholar] [CrossRef]
- Karavin, N. Effects of Leaf and Plant Age on Specific Leaf Area in Deciduous Tree Species Quercus cerris L. var. cerris. Bangladesh J. Bot. 2013, 42, 301–306. [Google Scholar] [CrossRef]
- Dijkstra, P.; Lambers, H. Analysis of Specific Leaf Area and Photosynthesis of Two Inbred Lines of Plantago major Differing in Relative Growth Rate. New Phytol 1989, 113, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Garnier, E.; Laurent, G. Leaf Anatomy, Specific Mass and Water Content in Congeneric Annual and Perennial Grass Species. New Phytol 1994, 128, 725–736. [Google Scholar] [CrossRef]
- Ordoñez, J.C.; Van Bodegom, P.M.; Witte, J.-P.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A Global Study of Relationships between Leaf Traits, Climate and Soil Measures of Nutrient Fertility. Glob. Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Karavin, N.; Kilinc, M. Variation in SLA and LMA of Deciduous Quercus cerris Var. cerris and Evergreeen Phillyrea latifolia According to Directional, Seasonal and Climatical Parameters. Ekoloji 2011, 20, 21–29. [Google Scholar] [CrossRef]
- Valladares, F.; Martinez-Ferri, E.; Balaguer, L.; Pérez-Corona, M.E.; Manrique, E. Low Leaf-Level Response to Light and Nutrients in Mediterranean Evergreen Oaks: A Conservative Resource-Use Strategy? New Phytol. 2000, 148, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Gratani, L.; Foti, I. Estimating Forest Structure and Shade Tolerance of the Species in a Mixed Deciduous Broad-Leaved Forest in Abruzzo, Italy. Ann. Bot. Fenn. 1998, 35, 75–83. [Google Scholar]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf Age and Season Influence the Relationships between Leaf Nitrogen, Leaf Mass per Area and Photosynthesis in Maple and Oak Trees. Plant Cell Environ. 1991, 14, 251–259. [Google Scholar] [CrossRef]
- Luo, T.; Luo, J.; Pan, Y. Leaf Traits and Associated Ecosystem Characteristics across Subtropical and Timberline Forests in the Gongga Mountains, Eastern Tibetan Plateau. Oecologia 2005, 142, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Milla, R.; Reich, P.B.; Niinemets, Ü.; Castro-Díez, P. Environmental and Developmental Controls on Specific Leaf Area Are Little Modified by Leaf Allometry. Funct. Ecol. 2008, 22, 565–576. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Ji, Y.; Gao, J. Climate Factors Determine the Utilization Strategy of Forest Plant Resources at Large Scales. Front. Plant Sci. 2022, 13, 990441. [Google Scholar] [CrossRef] [PubMed]
- Weisse, M.; Goldman, E.; Carter, S. Forest Pulse: The Latest on the World’s Forests; World Resources Institute: Washington, DC, USA, 2021; Available online: https://research.wri.org/gfr/forest-pulse (accessed on 30 November 2024).
- Anderson, C.G.; Bond-Lamberty, B.; Stegen, J.C. Active Layer Depth and Soil Properties Impact Specific Leaf Area Variation and Ecosystem Productivity in a Boreal Forest. PLoS ONE 2020, 15, e0232506. [Google Scholar] [CrossRef] [PubMed]
- Vaieretti, M.V.; Díaz, S.; Vile, D.; Garnier, E. Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species. Ann. Bot. 2007, 99, 955–958. [Google Scholar] [CrossRef]
- Shomali, A.; Das, S.; Arif, N.; Sarraf, M.; Zahra, N.; Yadav, V.; Aliniaeifard, S.; Chauhan, D.K.; Hasanuzzaman, M. Diverse Physiological Roles of Flavonoids in Plant Environmental Stress Responses and Tolerance. Plants 2022, 11, 3158. [Google Scholar] [CrossRef] [PubMed]
- Camm, E.L.; McCALLUM, J.; Leaf, E.; Koupai-Abyazani, M.R. Cold-Induced Purpling of Pinus contorta Seedlings Depends on Previous Daylength Treatment. Plant Cell Environ. 1993, 16, 761–764. [Google Scholar] [CrossRef]
- Murray, J.R.; Smith, A.G.; Hackett, W.P. Differential Dihydroflavonol Reductase Transcription and Anthocyanin Pigmentation in the Juvenile and Mature Phases of Ivy (Hedera helix L.). Planta 1994, 194, 102–109. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Pei, Z.; Huang, Y.; Ni, J.; Liu, Y.; Yang, Q. For a Colorful Life: Recent Advances in Anthocyanin Biosynthesis during Leaf Senescence. Biology 2024, 13, 329. [Google Scholar] [CrossRef] [PubMed]
- Nagata, N.; Tanaka, R.; Satoh, S.; Tanaka, A. Identification of a Vinyl Reductase Gene for Chlorophyll Synthesis in Arabidopsis thaliana and Implications for the Evolution of Prochlorococcus Species. Plant Cell 2005, 17, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Šimková, M.; Vacek, S.; Šimůnek, V.; Vacek, Z.; Cukor, J.; Hájek, V.; Bílek, L.; Prokůpková, A.; Štefančík, I.; Sitková, Z.; et al. Turkey Oak (Quercus cerris L.) Resilience to Climate Change: Insights from Coppice Forests in Southern and Central Europe. Forests 2023, 14, 2403. [Google Scholar] [CrossRef]
- Salamanca-Fonseca, M.; Aldana, A.M.; Vargas-Martinez, V.; Acero-Gomez, S.; Fonseca-Tellez, J.; Gutierrez, S.; Hoyos, Y.D.; León, K.M.; Márquez, C.; Molina-R, L.; et al. Effects of Urban, Peri-Urban and Rural Land Covers on Plant Functional Traits around Bogotá, Colombia. Urban Ecosyst. 2024, 27, 251–260. [Google Scholar] [CrossRef]
- Mazrooei, A.; Reitz, M.; Wang, D.; Sankarasubramanian, A. Urbanization Impacts on Evapotranspiration Across Various Spatio-Temporal Scales. Earths Future 2021, 9, e2021EF002045. [Google Scholar] [CrossRef]
- Blasi, C. (Ed.) La Vegetazione d’Italia. Con Carta Delle Serie di Vegetazione in Scala 1:500,000; Palombi Editori: Roma, Italy, 2010. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie: Grundzüge der Vegetationskunde; 3. neubearb. und wesentlich verm. Aufl.; Springer: New York, NY, USA, 1964. [Google Scholar]
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E.; et al. An Updated Checklist of the Vascular Flora Native to Italy. Plant Biosyst. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Biondi, E.; Blasi, C.; Allegrezza, M.; Anzellotti, I.; Azzella, M.M.; Carli, E.; Casavecchia, S.; Copiz, R.; Del Vico, E.; Facioni, L.; et al. Plant Communities of Italy: The Vegetation Prodrome. Plant Biosyst. 2014, 148, 728–814. [Google Scholar] [CrossRef]
- Canullo, R.; Allegrini, M.C.; Campetella, G. Reference Field Manual for Vegetation Surveys on the CONECOFOR LII Network, Italy (National Programme of Forest Ecosystems Control—UNECE, ICP Forests). Braun Blanquetia 2012, 48, 5–65. [Google Scholar]
- Caprari, C.; Bucci, A.; Ciotola, A.C.; Del Grosso, C.; Dell’Edera, I.; Di Bartolomeo, S.; Di Pilla, D.; Divino, F.; Fortini, P.; Monaco, P.; et al. Microbial Biocontrol Agents and Natural Products Act as Salt Stress Mitigators in Lactuca sativa L. Plants 2024, 13, 2505. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Gottardini, E.; Cristofolini, F.; Cristofori, A.; Pollastrini, M.; Ferretti, M. Misura Della Fluorescenza Della Clorofilla a, Contenuto Di Clorofilla e Tratti Fogliari: Campionamento, Raccolta e Misurazioni; Guida per Studi: Campo, CA, USA, 2016. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Kuckartz, U.; Rädiker, S.; Ebert, T.; Schehl, J. Statistik: Eine verständliche Einführung; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-531-19890-3. [Google Scholar]
- Chambers, J.M.; Freeny, A.E.; Heiberger, R.M. Analysis of Variance; Designed Experiments. In Statistical Models in S; Routledge: Milton Park, UK, 1992; ISBN 978-0-203-73853-5. [Google Scholar]
- Di Pietro, R.; Quaranta, L.; Mattioni, C.; Simeone, M.C.; Di Marzio, P.; Proietti, E.; Fortini, P. Chloroplast Haplotype Diversity in the White Oak Populations of the Italian Peninsula, Sicily, and Sardinia. Forests 2024, 15, 864. [Google Scholar] [CrossRef]
Stands | Altitude (m a.s.l.) | Slope (°) | Lithology 1 | Area (ha) | pH |
---|---|---|---|---|---|
Urban forest (UF) | 756 | 10 | Sandstones and conglomerates | 1.49 | 5.6 |
Peri-urban forest (PUF) | 587 | 15 | Feldspathic quartz sandstones | 2.09 | 5.8 |
Natural forest (NF) | 875 | 10 | Sandstones and conglomerates | 15.58 | 5.6 |
Variables | Unit | ||
---|---|---|---|
Stand Structure | In-Field | Leaf area index (LAI: leaf area/ground area) | m2/m2 |
Leaf Functional Traits | In-Field | Fresh weight (FW) | g |
Leaf thickness (THICK) | mm | ||
Chlorophyll content (CHL: chlorophyll fluorescence ratio) | T940 nm/T660 mm | ||
Anthocyanin content (Anth: anthocyanin fluorescence ratio) | F660 nm/F525 nm | ||
Flavonol content (Flv: flavonols fluorescence ratio) | F660 nm/F325 nm | ||
Laboratory | Leaf area (LA) | cm2 | |
Dry weight (DW) | g | ||
Specific leaf area (SLA: leaf area/dry weight) | cm2/g | ||
Leaf dry matter content (LDMC: dry weight/fresh weight) | mg/g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaranta, L.; Di Marzio, P.; Fortini, P. Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. Plants 2025, 14, 285. https://doi.org/10.3390/plants14020285
Quaranta L, Di Marzio P, Fortini P. Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. Plants. 2025; 14(2):285. https://doi.org/10.3390/plants14020285
Chicago/Turabian StyleQuaranta, Luca, Piera Di Marzio, and Paola Fortini. 2025. "Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context" Plants 14, no. 2: 285. https://doi.org/10.3390/plants14020285
APA StyleQuaranta, L., Di Marzio, P., & Fortini, P. (2025). Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. Plants, 14(2), 285. https://doi.org/10.3390/plants14020285