Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE
Abstract
:1. Introduction
2. Results
2.1. Fingerprint of Event
2.2. Paleoclimatic and Tectonic Context
2.3. Climate Teleconnections
3. Discussion
3.1. Prime Suspect: Cold Spell
3.2. Extenuating Circumstances
3.3. Accomplice from the Tropics
4. Materials and Methods
4.1. Data Sources
4.2. Data Processing and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Tree Species a | Country | ITRDB Code or Chronology Code b | Coordinates | Mean/min in 1699–1706 d | R e | ||
---|---|---|---|---|---|---|---|---|
Lat. N | Long. E | Elev. c, m a.s.l. | ||||||
1 | LASI | Russia | RUSS127 | 50.15 | 85.37 | 1750 | −0.47/−1.64 | −0.03 |
2 | LASI | Russia | RUSS129 | 51 | 85.63 | 1450 | −0.31/−1.43 | 0.18 |
3 | LASI | Russia | RUSS130 | 50.87 | 85.23 | 1450 | −0.65/−1.39 | 0.21 |
4 | LASI | Russia | RUSS135 | 50.42 | 87.58 | 2000 | −1.23/−2.66 | 0.48 |
5 | LASI | Russia | RUSS137 | 50.48 | 87.65 | 2150 | −1.20/−2.24 | 0.31 |
6 | LASI | Russia | RUSS226 | 50.803 | 87.933 | −2.61/−3.42 | 0.65 | |
7 | LASI | Russia | RUSS227 | 49.617 | 88.1 | −2.09/−3.26 | 0.59 | |
8 | LASI | Russia | RUSS228 | 50.867 | 85.233 | −0.18/−0.93 | 0.14 | |
9 | LASI | Russia | RUSS229 | 50.3 | 87.833 | −0.83/−2.50 | 0.26 | |
10 | LASI | Russia | RUSS230 | 50.267 | 87.833 | −0.26/−1.17 | 0.08 | |
11 | LASI | Russia | RUSS231 | 49.167 | 87.283 | −0.50/−1.32 | 0.04 | |
12 | LASI | Russia | RUSS232 | 50.167 | 87.833 | −1.86/−3.28 | 0.62 | |
13 | LASI | Russia | RUSS233 | 50.117 | 87.917 | −0.57/−1.75 | 0.22 | |
14 | LASI | Russia | RUSS234 | 50.483 | 87.483 | −1.27/−2.31 | 0.37 | |
15 | LASI | Russia | RUSS235 | 50.683 | 87.967 | −1.12/−1.88 | 0.19 | |
16 | LASI | Russia | RUSS241 | 52.399 | 98.685 | 2020 | −0.15/−0.78 | 0.06 |
17 | LASI | Russia | RUSS247 | 49.23 | 87.23 | 2200 | −1.19/−2.52 | 0.40 |
18 | LASI | Russia | RUSS248 | 49.2 | 87.02 | 2250 | −0.70/−1.70 | 0.31 |
19 | LASI | Russia | RUSS249 | 51.58 | 95.31 | 2060 | −0.23/−0.64 | 0.18 |
20 | LASI | Russia | RUSS250 | 49.51 | 87.5 | 2250 | −1.49/−3.45 | 0.50 |
21 | LASI | Russia | RUSS251 | 49.36 | 86.57 | 2200 | −0.92/−2.13 | 0.30 |
22 | LASI | Russia | RUSS252 | 50.36 | 91.28 | 2170 | −0.66/−2.68 | 0.06 |
23 | LASI | Russia | RUSS253 | 50.2 | 96.39 | 2254 | −0.23/−1.00 | 0.25 |
24 | LASI | Russia | RUSS254 | 50.24 | 89.59 | 2280 | −1.49/−2.94 | 0.52 |
25 | LASI | Russia | RUSS255 | 50.07 | 88.17 | 2100 | −0.61/−1.98 | 0.17 |
26 | LASI | Russia | RUSS256 | 50.49 | 94.18 | 2130 | −0.31/−1.13 | 0.11 |
27 | LASI | Russia | RUSS257 | 49.39 | 88.14 | 2250 | −1.16/−2.78 | 0.37 |
28 | LASI | Russia | RUSS258 | 50.22 | 98.14 | 2200 | −0.62/−1.12 | 0.35 |
29 | LASI | Russia | RUSS259 | 50.04 | 87.54 | 2250 | −1.37/−2.22 | 0.30 |
30 | LASI | Russia | RUSS288 | 56.412 | 115.589 | 465 | −0.62/−1.29 | 0.30 |
31 | LASI | Russia | RUSS292 | 53.144 | 106.832 | 810 | −1.03/−1.68 | 0.18 |
32 | LASI | Russia | AKK b | 49.917 | 86.55 | 2050 | −1.75/−3.09 | 0.55 |
33 | LASI | China | CHIN029 | 43.85 | 93.3 | 2810 | 0.11/−1.54 | −0.04 |
34 | LASI | China | CHIN030 | 43.833 | 93.383 | 2840 | −2.10/−3.41 | 0.49 |
35 | LASI | Mongolia | MONG001 | 50.77 | 100.2 | 2300 | −0.09/−0.56 | 0.15 |
36 | LASI | Mongolia | MONG006 | 47.78 | 107.5 | 1415 | 0.07/−1.45 | −0.04 |
37 | LASI | Mongolia | MONG009 | 49.92 | 91.57 | 2500 | −0.26/−0.88 | 0.10 |
38 | LASI | Mongolia | MONG010 | 47.27 | 100.03 | 2500 | 0.36/−1.65 | −0.06 |
39 | LASI | Mongolia | MONG011 | 48.15 | 100.28 | 1900 | −0.30/−1.38 | 0.17 |
40 | LASI | Mongolia | MONG012 | 48.98 | 103.23 | 1400 | 0.20/−0.94 | 0.00 |
41 | LASI | Mongolia | MONG013 | 48.77 | 97.12 | 1840 | −1.14/−1.53 | 0.25 |
42 | LASI | Mongolia | MONG014 | 49.48 | 100.83 | 1800 | −0.20/−1.20 | 0.10 |
43 | LASI | Mongolia | MONG015 | 48.17 | 99.87 | 2060 | 0.14/−1.13 | −0.02 |
44 | LASI | Mongolia | MONG016 | 48.6 | 88.367 | 0.36/−1.24 | −0.24 | |
45 | LASI | Mongolia | MONG017 | 49.967 | 91 | −1.06/−2.00 | 0.20 | |
46 | LASI | Mongolia | MONG018 | 49.967 | 90.983 | −1.03/−1.92 | 0.33 | |
47 | LASI | Mongolia | MONG019 | 47.1 | 90.967 | 0.85/0.03 | −0.11 | |
48 | LASI | Mongolia | MONG020 | 48.267 | 88.867 | 0.45/−0.45 | −0.13 | |
49 | LASI | Mongolia | MONG021 | 48.35 | 107.467 | −0.28/−0.71 | 0.11 | |
50 | LASI | Mongolia | MONG023 | 49.5 | 94.583 | −0.38/−0.92 | 0.02 | |
51 | LASI | Mongolia | MONG024 | 48.5 | 88.5 | −0.07/−1.22 | 0.10 | |
52 | LASI | Mongolia | MONG025 | 48.7 | 88.8 | −0.49/−1.13 | 0.06 | |
53 | LASI | Mongolia | MONG026 | 46.817 | 100.117 | 0.14/−0.87 | 0.01 | |
54 | LASI | Mongolia | MONG027 | 46.317 | 101.317 | −0.67/−1.81 | 0.30 | |
55 | LASI | Mongolia | MONG028 | 48.833 | 111.683 | 0.95/−0.38 | −0.26 | |
56 | LASI | Mongolia | MONG029 | 49.867 | 91.433 | −0.76/−1.72 | −0.03 | |
57 | LASI | Mongolia | MONG030 | 49.383 | 94.883 | −0.52/−2.27 | 0.17 | |
58 | LASI | Mongolia | MONG032 | 46.517 | 100.95 | −0.27/−1.41 | 0.21 | |
59 | LASI | Mongolia | MONG033 | 49.37 | 94.88 | 2229 | −0.74/−0.99 | 0.51 |
60 | LASI | Mongolia | MONG040 | 51.15 | 99.083 | 2400 | −1.29/−2.20 | 0.49 |
61 | LAGM | Mongolia | MONG007 | 49.7 | 91.55 | 2000 | −0.44/−1.90 | −0.10 |
62 | PISI | Russia | RUSS222 | 50.417 | 84.617 | 1898 | −1.83/−2.54 | 0.64 |
63 | PISI | Russia | SPass20 b | 51.71 | 89.96 | 2000 | −3.39/−3.82 | 0.91 |
64 | PISI | Russia | GladSW b | 52.91 | 91.36 | 1620 | −3.17/−3.80 | 0.86 |
65 | PISI | Russia | SAR b | 52.23 | 92.25 | 1630 | −2.46/−3.27 | 0.85 |
66 | PISI | Russia | MGol8 b | 52.533 | 92.05 | 920 | −1.56/−2.20 | 0.49 |
67 | PISI | Russia | MGol5 b | 52.55 | 92.117 | 570 | −1.02/−2.01 | 0.19 |
68 | PISI | Russia | ErgV b | 52.8 | 93.433 | 1650 | −2.07/−3.99 | 0.75 |
69 | PISI | Russia | ErgR b | 52.833 | 93.333 | 1450 | −1.17/−1.87 | 0.57 |
70 | PISI | Mongolia | MONG041 | 48.17 | 99.87 | 2060 | 0.53/−0.67 | 0.00 |
71 | PISI | Mongolia | MONG042 | 46.68 | 101.77 | 2125 | 0.42/−0.32 | −0.12 |
72 | PISI | Mongolia | MONG002 | 47.77 | 107 | 1755 | −1.45/−2.24 | 0.13 |
73 | PISI | Mongolia | MONG003 | 48.3 | 98.93 | 2420 | −0.58/−0.93 | 0.25 |
74 | PISI | Mongolia | MONG008 | 49.37 | 94.88 | 2229 | −1.66/−2.58 | 0.46 |
75 | PISI | Mongolia | MONG031 | 48.25 | 97.4 | 0.51/−0.72 | −0.20 |
References
- Christiansen, B.; Ljungqvist, F.C. The extra-tropical Northern Hemisphere temperature in the last two millennia: Reconstructions of low-frequency variability. Clim. Past 2012, 8, 765–786. [Google Scholar] [CrossRef]
- Esper, J.; Krusic, P.J.; Ljungqvist, F.C.; Luterbacher, J.; Carrer, M.; Cook, E.; Davi, N.K.; Harti-Meier, C.; Kirdyanov, A.; Konter, O.; et al. Ranking of tree-ring based temperature reconstructions of the past millennium. Quat. Sci. Rev. 2016, 145, 134–151. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Piermattei, A.; Seim, A.; Krusic, P.J.; Büntgen, U.; He, M.; Kirdyanov, A.V.; Luterbacher, J.; Schneider, L.; Seftingen, K.; et al. Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quat. Sci. Rev. 2020, 230, 106074. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate change and forest disturbances: Climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Crowley, T.J.; Zielinski, G.; Vinther, B.; Udisti, R.; Kreutz, K.; Cole-Dai, J.; Castellano, E. Volcanism and the little ice age. PAGES News 2008, 16, 22–23. [Google Scholar] [CrossRef]
- Stoffel, M.; Bollschweiler, M.; Butler, D.R.; Luckman, B.H. Tree Rings and Natural Hazards: A State-of-Art; Springer: Dordrecht, The Netherlands, 2010; 505p. [Google Scholar] [CrossRef]
- Nikolaeva, S.A.; Savchuk, D.A.; Bocharov, A.Y. Influence of different factors on tree growth of Pinus sibirica in the highlands of the central Altai Mountains. J. Sib. Fed. Univ. Biol. 2015, 8, 299. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef]
- Klesse, S.; Etzold, S.; Frank, D. Integrating tree-ring and inventory-based measurements of aboveground biomass growth: Research opportunities and carbon cycle consequences from a large snow breakage event in the Swiss Alps. Eur. J. For. Res. 2016, 135, 297–311. [Google Scholar] [CrossRef]
- Gao, S.; Liang, E.; Liu, R.; Lu, X.; Rossi, S.; Zhu, H.; Piao, S.; Penuelas, J.; Camarero, J.J. Shifts of forest resilience after seismic disturbances in tectonically active regions. Nat. Geosci. 2024, 17, 189–196. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Krutovsky, K.V.; Kholdaenko, Y.A.; Babushkina, E.A.; Vaganov, E.A. Spatial-coherent dynamics and climatic signals in the radial growth of Siberian stone pine (Pinus sibirica Du Tour) in subalpine stands along the Western Sayan Mountains. Forests 2022, 13, 1994. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Upadhyay, K.K.; Tripathi, S.K.; Babushkina, E.A.; Vaganov, E.A. 495-year wood anatomical record of Siberian stone pine (Pinus sibirica Du Tour) as climatic proxy on the timberline. Forests 2022, 13, 247. [Google Scholar] [CrossRef]
- Jacoby, G.C.; D’Arrigo, R.D.; Davaajamts, T. Mongolian tree rings and 20th-century warming. Science 1996, 273, 771–773. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, R.; Jacoby, G.; Frank, D.; Pederson, N.; Cook, E.; Buckley, B.; Nachin, B.; Mijiddorj, R.; Dugarjav, C. 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophys. Res. Lett. 2001, 28, 543–546. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.; Yu, S.; Chen, F. A 391-year summer temperature reconstruction of the Tien Shan, reveals far-reaching summer temperature signals over the midlatitude Eurasian continent. J. Geophys. Res. Atmos. 2019, 124, 11850–11862. [Google Scholar] [CrossRef]
- Davi, N.K.; Rao, M.P.; Wilson, R.; Andreu-Hayles, L.; Oelkers, R.; D’Arrigo, R.; Nachin, B.; Buckley, B.; Pederson, N.; Leland, C.; et al. Accelerated recent warming and temperature variability over the past eight centuries in the Central Asian Altai from blue intensity in tree rings. Geophys. Res. Lett. 2021, 48, e2021GL092933. [Google Scholar] [CrossRef]
- Kirdyanov, A.V.; Arzac, A.; Kirdyanova, A.A.; Arosio, T.; Ovchinnikov, D.V.; Ganyushkin, D.A.; Katjutin, P.N.; Myglan, V.S.; Nazarov, A.N.; Slyusarenko, I.Y.; et al. Tree-Ring Chronologies from the Upper Treeline in the Russian Altai Mountains Reveal Strong and Stable Summer Temperature Signals. Forests 2024, 15, 1402. [Google Scholar] [CrossRef]
- Nazarov, A.B.; Myglan, V.S. The possibility of construction of the 6000-year chronology for Siberian pine in the Central Altai. J. Sib. Fed. Univ. Biol. 2012, 5, 70–88. (In Russian) [Google Scholar]
- Büntgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–236. [Google Scholar] [CrossRef]
- Davi, N.K.; D’Arrigo, R.; Jacoby, G.C.; Cook, E.R.; Anchukaitis, K.J.; Nachin, B.; Rao, M.P.; Leland, C. A long-term context (931–2005 CE) for rapid warming over Central Asia. Quat. Sci. Rev. 2015, 121, 89–97. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Bueh, C.; Nakamura, H. Scandinavian pattern and its climatic impact. J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 2117–2131. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Academic Press: London, UK, 1976; 567p. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. Methods of Dendrochronology: Applications in the Environmental Sciences; Springer: Dordrecht, The Netherlands, 1990; 394p. [Google Scholar] [CrossRef]
- Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 2010, 260, 1623–1639. [Google Scholar] [CrossRef]
- Gerasimova, O.V.; Zharnikov, Z.Y.; Knorre, A.A.; Myglan, V.S. Climatically induced dynamic of radial growth of Siberian stone pine and Siberian fir in the mountain-taiga belt in “Ergaki” National Park. J. Sib. Fed. Univ. Biol. 2010, 3, 18–29. (In Russian) [Google Scholar]
- Fang, K.; Davi, N.; Gou, X.; Chen, F.; Cook, E.; Li, J.; D’Arrigo, R. Spatial drought reconstructions for central High Asia based on tree rings. Clim. Dyn. 2010, 35, 941–951. [Google Scholar] [CrossRef]
- Eichler, A.; Olivier, S.; Henderson, K.; Laube, A.; Beer, J.; Papina, T.; Gäggeler, H.W.; Schwikowski, M. Temperature response in the Altai region lags solar forcing. Geophys. Res. Lett. 2009, 36, L01808. [Google Scholar] [CrossRef]
- Eichler, A.; Brütsch, S.; Olivier, S.; Papina, T.; Schwikowski, M. A 750 year ice core record of past biogenic emissions from Siberian boreal forests. Geophys. Res. Lett. 2009, 36, L18813. [Google Scholar] [CrossRef]
- Björklund, J.; Seftigen, K.; Schweingruber, F.; Fonti, P.; von Arx, G.; Bryukhanova, M.V.; Cuny, H.E.; Carrer, M.; Castagneri, D.; Frank, D.C. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers. New Phytol. 2017, 216, 728–740. [Google Scholar] [CrossRef] [PubMed]
- Rathgeber, C.B. Conifer tree-ring density interannual variability—Anatomical, physiological and environmental determinants. New Phytol. 2017, 216, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Kalugin, I.A.; Daryin, A.V.; Babich, V.V. Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments. Dokl. Earth Sci. 2009, 426, 681–684. [Google Scholar] [CrossRef]
- Wen, R.; Xiao, J.; Chang, Z.; Zhai, D.; Xu, Q.; Li, Y.; Itoh, S. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 2010, 39, 262–272. [Google Scholar] [CrossRef]
- Wang, S.; Gong, D.; Zhu, J. Twentieth-century climatic warming in China in the context of the Holocene. Holocene 2001, 11, 313–321. [Google Scholar] [CrossRef]
- Esper, J.; Shiyatov, S.G.; Mazepa, V.S.; Wilson, R.J.S.; Graybill, D.A.; Funkhouser, G. Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends. Clim. Dyn. 2003, 21, 699–706. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Shvetsov, E.G.; Kharuk, V.I. Fires in the Altai-Sayan region: Landscape and ecological confinement. Izv. Atmos. Ocean. Phys. 2016, 52, 725–736. [Google Scholar] [CrossRef]
- Hammond, W.M.; Williams, A.P.; Abatzoglou, J.T.; Adams, H.D.; Klein, T.; López, R.; Saenz-Romero, C.; Hartmann, H.; Dreshears, D.D.; Allen, C.D. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 2022, 13, 1761. [Google Scholar] [CrossRef] [PubMed]
- Bocharnikov, M.V. Climate-related gradients on vegetation diversity of the Altai-Sayan orobiome (Southern Siberia). Geogr. Environ. Sustain. 2023, 15, 17–31. [Google Scholar] [CrossRef]
- Babushkina, E.; Belokopytova, L.; Zhirnova, D.; Barabantsova, A.; Vaganov, E. Divergent growth trends and climatic response of Picea obovata along elevational gradient in Western Sayan mountains, Siberia. J. Mt. Sci. 2018, 15, 2378–2397. [Google Scholar] [CrossRef]
- Kostyakova, T.V.; Belokopytova, L.V.; Zhirnova, D.F.; Babushkina, E.A.; Vaganov, E.A. Dendrochronological indication of phyllophages’ outbreaks by larch radial growth in the forest-steppe zone of the Republic of Tyva. Contemp. Probl. Ecol. 2021, 14, 37–48. [Google Scholar] [CrossRef]
- Olatinwo, R.; Guo, Q.; Fei, S.; Otrosina, W.; Klepzig, K.D.; Streett, D. Climate-induced changes in vulnerability to biological threats in the Southern United States. In Climate Change Adaptation and Mitigation Management Options: A Guide for Natural Resource Managers in Southern Forest Ecosystems; Vose, J.M., Klepzig, K.D., Eds.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 127–172. [Google Scholar] [CrossRef]
- Levi, K.G.; Zadonina, N.V.; Berdnikova, N.E.; Voronin, V.I.; Glyzin, A.V.; Yazev, S.A.; Baasandzhav, B.; Ninzhbadgar, S.; Balzhinnyam, B.; Buddo, V.Y. Modern Geodynamics and Heliogeodynamics: A 500-Year History of Anomalous Phenomena in the Natural and Social Life of Siberia and Mongolia; Irkutsk State Technical University: Irkutsk, Russia, 2003; 382p. (In Russian) [Google Scholar]
- Tachiiri, K.; Shinoda, M.; Klinkenberg, B.; Morinaga, Y. Assessing Mongolian snow disaster risk using livestock and satellite data. J. Arid Environ. 2008, 72, 2251–2263. [Google Scholar] [CrossRef]
- Cohen, J.; Saito, K.; Entekhabi, D. The role of the Siberian high in Northern Hemisphere climate variability. Geophys. Res. Lett. 2001, 28, 299–302. [Google Scholar] [CrossRef]
- Lafon, C.W.; Speer, J.H. Using dendrochronology to identify major ice storm events in oak forests of southwestern Virginia. Clim. Res. 2002, 20, 41–54. [Google Scholar] [CrossRef]
- Mayr, S. Limits in water relations. In Trees at Their Upper Limit: Treelife Limitation at the Alpine Timberline; Wieser, G., Tausz, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 145–162. [Google Scholar] [CrossRef]
- CABI. Pines of Silvicultural Importance: Compiled from the Forestry Compendium; CABI: Wallingford, UK, 2001; 531p. [Google Scholar]
- Jones, P.D.; Briffa, K.R.; Barnett, T.P.; Tett, S.F.B. High-resolution palaeoclimatic records for the last millennium: Interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 1998, 8, 455–471. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Klinger, P.; Newfield, T.; Rydval, M.; Wilson, R. Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland’s failure to cope. J. Volcanol. Geotherm. Res. 2020, 389, 106746. [Google Scholar] [CrossRef]
- Zhirnova, D.F.; Belokopytova, L.V.; Upadhyay, K.K.; Koshurnikova, N.N.; Mapitov, N.B.; Kholdaenko, Y.A.; Vaganov, E.A.; Babushkina, E.A. Climatic reactions in the radial growth of Pinus sibirica Du Tour from the lower to the upper limit along the Western Sayan Mountains, Siberia. For. Ecol. Manag. 2024, 563, 121995. [Google Scholar] [CrossRef]
- Myglan, V.S. Climate and Society of Siberia During the Little Ice Age; Siberian Federal University: Krasnoyarsk, Russia, 2010; 230p. (In Russian) [Google Scholar]
- Cook, E.R.; Krusic, P.J. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics; Lamont-Doherty Earth Observatory, Columbia University: Palisades, NY, USA, 2005; 14p. [Google Scholar]
Temperature Reconstruction | Z-Score Mean/min, 1699–1706 | Correlations with PISIreg, 1650–1750/Total Overlap Period b | |||||||
---|---|---|---|---|---|---|---|---|---|
Publication | Used Proxy a | Season | Location | Annual | Smoothed c | Smoothed (Lagged) d | Lag, Years | High-Pass e | |
[19] | LASI TRW | June–August | Altai | −1.56/−2.68 | 0.52/0.30 | 0.73/0.20 | 0.78/0.22 | 3/2 | 0.41/0.41 |
[20] | LASI TRW | June–July | Mongolia | −1.49/−2.45 | 0.49/0.27 | 0.70/0.20 | 0.71/0.21 | 1/2 | 0.35/0.33 |
[15] | PCSH MXD | July–August | Tien-Shan | −1.34/−1.97 | 0.35/0.04 | 0.40/0.06 | 0.82/0.23 | 7/8 | −0.13/−0.03 |
[16] | LASI BI | June–August | Mongolia | −0.82/−2.01 | 0.25/0.27 | 0.23/0.21 | 0.30/0.23 | 4/3 | 0.25/0.28 |
Type of Event b | Calendar Date | Epicenter Coordinates | Z-Scores a | |||
---|---|---|---|---|---|---|
Lat. N | Lon. E | Range of Means | Period of Calculation c | |||
Larch | Pine | |||||
Unknown | ca 1698–1699 | ~47–53° | ~85–95° | −2.61…0.95 | −3.39…0.53 | 1699–1706 |
Earthquake | 9 December 1761 | ~50° | ~90° | −0.69…2.03 | −0.32…1.48 | 1762–1769 |
Earthquake | 4 December 1957 | 45.5° | 99.5° | −1.16…1.00 | −1.72…1.22 | 1958–1965 |
Earthquake | 27 September 2003 | 50.038° | 87.813° | −0.15…0.77 | −1.01…1.54 | 2004–2011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meko, D.M.; Zhirnova, D.F.; Belokopytova, L.V.; Kholdaenko, Y.A.; Babushkina, E.A.; Mapitov, N.B.; Vaganov, E.A. Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE. Plants 2025, 14, 287. https://doi.org/10.3390/plants14020287
Meko DM, Zhirnova DF, Belokopytova LV, Kholdaenko YA, Babushkina EA, Mapitov NB, Vaganov EA. Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE. Plants. 2025; 14(2):287. https://doi.org/10.3390/plants14020287
Chicago/Turabian StyleMeko, David M., Dina F. Zhirnova, Liliana V. Belokopytova, Yulia A. Kholdaenko, Elena A. Babushkina, Nariman B. Mapitov, and Eugene A. Vaganov. 2025. "Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE" Plants 14, no. 2: 287. https://doi.org/10.3390/plants14020287
APA StyleMeko, D. M., Zhirnova, D. F., Belokopytova, L. V., Kholdaenko, Y. A., Babushkina, E. A., Mapitov, N. B., & Vaganov, E. A. (2025). Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE. Plants, 14(2), 287. https://doi.org/10.3390/plants14020287