Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses
Abstract
:1. Introduction
2. Ethylene Biosynthesis and Signaling in Plants
3. Ethylene Signaling Regulates Plant Growth and Development
3.1. Seed Germination and Dormancy
3.2. Root Growth
3.3. Fruit Ripening
3.4. Leaf Senescence
4. Plant Biotic and Abiotic Stress Regulation in Ethylene Signaling Pathway
4.1. High Salt Stress
4.2. Cold Stress
4.3. Drought Stress
4.4. Heat Stress
4.5. Nutritional Stress
4.6. Biotic Stress
5. Epigenetic Modifications in Ethylene Signaling
5.1. DNA Methylation and Ethylene Signal Transduction
5.2. Histone Modification and Ethylene Signal Transduction
5.3. Non-Coding RNAs and Ethylene Signal Transduction
6. Correlation Between Ethylene and Respiration
7. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ACC | 1-Aminocyclopropane-1-caroboxylic acid |
ACO | 1-Aminocyclopropane-1-caroboxylic acid oxidase |
ACS | 1-Aminocyclopropane-1-caroboxylic acid synthase |
AOX | Alternative Oxidase |
AtFIT | Arabidopsis thaliana Fer-like Iron Deficiency-Induced Transcription Factor |
AtFRO2 | Arabidopsis thaliana Ferric Reductase Oxidase 2 |
AtIRT1 | Arabidopsis thaliana Iron-Regulated Transporter1 |
BPH | brown planthopper |
CDPK | Calcium-Dependent Protein Kinase |
CNR | Colorless Non-Ripening |
COX | Cytochrome Oxidase |
EBF | EIN3-Binding F-BOX Protein |
ER | endoplasmic reticulum |
ERF | Ethylene Response Factors |
ERS | RESPONSE SENSOR |
ETR | EIN2-Targeting Protein |
EXP | Expansin Genes |
GST | Glutathione S-Transferase |
hac | histone acetyltransferase |
JA | Jasmonic Acid |
lncRNA | long non-coding RNA |
LTP | Lipid transfer protein |
MdCIbHLH | Malus domestica Cyanidin Synthesis-related basic Helix-Loop-Helix transcription factor |
MHZ1/OsHK1 | Multi-Hit Zinc-Finger Protein 1/ Oryza sativa High-Affinity Potassium Transporter 1 |
miRNA | micro RNA |
MYB | v-myeloblastosis viral oncogene homolog factor |
NO | nitric oxide |
NR | Never Ripe |
NRT | Nitrate Transporter |
OsARD1 | Oryza sativa Arginine Deiminase 1 |
OsFBK12 | Oryza sativa F-box with Kelch repeat-containing protein 12 |
OsP5CS | Oryza sativa Pyrroline-5-Carboxylate Synthetase |
OsSAMS1 | Oryza sativa Sphase Kinase-Associated protein1-Like protein |
PDC | pyruvate dehydrogenase complex |
Plant Defensin 1.2a | |
PR | Pathogenesis-Related Protein |
PTMs | post-translational modifications |
RHD | Root Hair Defective |
RIN | RIPENING INHIBITOR |
ROS | reactive oxygen species |
RSL | Root Hair Defective 6-LIKE |
SAM | S-adenosyl-l-methionine |
slAP2a | Solanum lycopersicum APETALA2a |
SUB1A | subunit 1A |
VaWRKY | Vitis amurensis WRKY transcription factor |
WDL5 | Microtubule-binding protein WVD2-like 5 |
References
- Zhang, Z.G.; Zhou, H.L.; Chen, T.; Gong, Y.; Cao, W.H.; Wang, Y.J.; Zhang, J.S.; Chen, S.Y. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol. 2004, 136, 2971–2981. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Kang, Y. Research Advances in Ethylene Regulation to Growth and Development of Seedling Root. Chin. Agric. Sci. Bull. 2013, 29, 6–12. [Google Scholar]
- Morgan, P.W.; Drew, M.C. Ethylene and plant responses to stress. Physiol. Plant. 1997, 100, 620–630. [Google Scholar] [CrossRef]
- Cao, Y.-R.; Chen, S.-Y.; Zhang, J.-S. Ethylene signaling regulates salt stress response: An overview. Plant Signal. Behav. 2008, 3, 761–763. [Google Scholar] [CrossRef]
- Husain, T.; Fatima, A.; Suhel, M.; Singh, S.; Sharma, A.; Prasad, S.M.; Singh, V.P. A brief appraisal of ethylene signaling under abiotic stress in plants. Plant Signal. Behav. 2020, 15, 1782051. [Google Scholar] [CrossRef]
- Yang, S.F.; Hoffman, N.E. Ethylene Biosynthesis and Its Regulation in Higher-Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1984, 35, 155–189. [Google Scholar] [CrossRef]
- Yang, C.; Lu, X.; Ma, B.; Chen, S.Y.; Zhang, J.S. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Mol. Plant 2015, 8, 495–505. [Google Scholar] [CrossRef]
- Larsen, P.B. Mechanisms of ethylene biosynthesis and response in plants. Essays Biochem. 2015, 58, 61–70. [Google Scholar] [PubMed]
- Bürstenbinder, K.; Rzewuski, G.; Wirtz, M.; Hell, R.; Sauter, M. The role of methionine recycling for ethylene synthesis in Arabidopsis. Plant J. 2007, 49, 238–249. [Google Scholar] [CrossRef]
- Lyzenga, W.J.; Stone, S.L. Regulation of ethylene biosynthesis through protein degradation. Plant Signal. Behav. 2012, 7, 1438–1442. [Google Scholar] [CrossRef]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef]
- Ju, C.; Chang, C. Mechanistic Insights in Ethylene Perception and Signal Transduction. Plant Physiol. 2015, 169, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Merchante, C.; Alonso, J.M.; Stepanova, A.N. Ethylene signaling: Simple ligand, complex regulation. Curr. Opin. Plant Biol. 2013, 16, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Binder, B.M. Ethylene signaling in plants. J. Biol. Chem. 2020, 295, 7710–7725. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Lee, H.Y.; Yoon, G.M. The regulation of ACC synthase protein turnover: A rapid route for modulating plant development and stress responses. Curr. Opin. Plant Biol. 2021, 63, 102046. [Google Scholar] [CrossRef]
- De Paepe, A.; Van Der Straeten, D. Ethylene biosynthesis and signaling: An overview. Vitam. & Horm. 2005, 72, 399–430. [Google Scholar]
- Zhou, Y.; Xiong, Q.; Yin, C.-C.; Ma, B.; Chen, S.-Y.; Zhang, J.-S. Ethylene Biosynthesis, Signaling, and Crosstalk with Other Hormones in Rice. Small Methods. 2020, 4, 1900278. [Google Scholar] [CrossRef]
- Tucker, M.L.; Kim, J.; Wen, C.K. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action. Methods Mol. Biol. 2017, 1573, 27–39. [Google Scholar]
- Zhang, Z.; Chen, Y.; Shao, Y. Review of Research Advances on Phytohormones Regulating Plant Defense Responses. Crops 2009, 6, 13–17. [Google Scholar]
- Lin, Z.; Zhong, S.; Grierson, D. Recent advances in ethylene research. J. Exp. Bot. 2009, 60, 3311–3336. [Google Scholar] [CrossRef] [PubMed]
- Squier, S.A.; Taylor, G.E.; Selvidge, W.J.; Gunderson, C.A. Effect of Ethylene and Related Hydrocarbons on Carbon Assimilation and Transpiration in Herbaceous and Woody Species. Environ. Sci. Technol. 1985, 19, 432–437. [Google Scholar] [CrossRef]
- Kan, J.; Zhang, Q.; Wan, B.; Liu, J.; Jin, C. Effect of Exogenous Ethylene on Mitochondrial Cytochrome C Oxidase during Postharvest Storage of Peach Fruit. Food Sci. 2015, 36, 302–306. [Google Scholar]
- Fugate, K.K.; Suttle, J.C.; Campbell, L.G. Ethylene production and ethylene effects on respiration rate of postharvest sugarbeet roots. Postharvest Biol. Technol. 2010, 56, 71–76. [Google Scholar] [CrossRef]
- Xu, C.; Hao, B.W.; Sun, G.L.; Mei, Y.Y.; Sun, L.F.; Sun, Y.M.; Wang, Y.B.; Zhang, Y.Y.; Zhang, W.; Zhang, M.Y.; et al. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. Sci. Adv. 2021, 7, eabg8752. [Google Scholar] [CrossRef]
- Moller, I.M.; Rasmusson, A.G.; Siedow, J.N.; Vanlerberghe, G.C. The product of the alternative oxidase is still H2O. Arch. Biochem. Biophys. 2010, 495, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yuan, S.; Zhang, D.W.; Lv, X.; Lin, H.H. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. J. Exp. Bot. 2012, 63, 5705–5716. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.J.; Chou, S.J.; Shih, M.C. Ethylene plays an essential role in the recovery of Arabidopsis during post-anaerobiosis reoxygenation. Plant Cell Environ. 2014, 37, 2391–2405. [Google Scholar] [CrossRef]
- Yang, L.; Li, N.; Liu, Y.; Miao, P.F.; Liu, J.; Wang, Z. Updates and Prospects: Morphological, Physiological, and Molecular Regulation in Crop Response to Waterlogging Stress. Agronomy 2023, 13, 2599. [Google Scholar] [CrossRef]
- Hsu, F.C.; Chou, M.Y.; Peng, H.P.; Chou, S.J.; Shih, M.C. Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS ONE 2011, 6, e28888. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, C.; Lan, C.; Tao, Z. Genetic and epigenetic basis of phytohormonal control of floral transition in plants. J. Exp. Bot. 2024, 75, 4180–4194. [Google Scholar] [CrossRef]
- Talarico, E.; Zambelli, A.; Araniti, F.; Greco, E.; Chiappetta, A.; Bruno, L. Unravelling the Epigenetic Code: DNA Methylation in Plants and Its Role in Stress Response. Epigenomes 2024, 8, 30. [Google Scholar] [CrossRef]
- Chen, T.; Duan, W. DNA methylation changes were involved in inhibiting ethylene signaling and delaying senescence of tomato fruit under low temperature. Biologia 2023, 78, 415–427. [Google Scholar] [CrossRef]
- Yang, S.F.; Yip, W.K.; Satoh, S.; Miyazaki, J.H.; Jiao, X.; Liu, Y.; Su, L.Y.; Peiser, G.D. Metabolic aspects of ethylene biosynthesis. Plant Growth Subst. 1988, 1990, 291–299. [Google Scholar]
- Fluhr, R.; Mattoo, A.K. Ethylene-Biosynthesis and perception. Crit. Rev. Plant Sci. 1996, 15, 479–523. [Google Scholar]
- Zhao, H.; Yin, C.C.; Ma, B.; Chen, S.Y.; Zhang, J.S. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. J. Integr. Plant Biol. 2021, 63, 102–125. [Google Scholar] [CrossRef]
- Sakai, H.; Hua, J.; Chen, Q.G.; Chang, C.; Medrano, L.J.; Bleecker, A.B.; Meyerowitz, E.M. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 1998, 95, 5812–5817. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Liu, G.; Zhang, P.; Li, H.; Peng, Z.; Wang, Y.; Jemrić, T.; Fu, D. The Ubiquitin-26S Proteasome Pathway and Its Role in the Ripening of Fleshy Fruits. Int. J. Mol. Sci. 2023, 24, 2750. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhu, C.; Zhang, X.; Wen, X.; Liu, L.; Peng, J.; Guo, H.; Yi, C. Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3. PLoS ONE 2015, 10, e0137439. [Google Scholar] [CrossRef] [PubMed]
- Fatma, M.; Asgher, M.; Iqbal, N.; Rasheed, F.; Sehar, Z.; Sofo, A.; Khan, N.A. Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. Plants 2022, 11, 2211. [Google Scholar] [CrossRef]
- Müller, M.; Munné-Bosch, S. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. Plant Physiol. 2015, 169, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Cheng, H.; Li, S.; Zuo, D.; Lin, Z.; Zhang, Y.; Lv, L.; Wang, Q.; Song, G. Molecular cloning and characterization of GhERF105, a gene contributing to the regulation of gland formation in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2021, 21, 102. [Google Scholar] [CrossRef]
- Lei, C.; Dang, Z.; Zhu, M.; Zhang, M.; Wang, H.; Chen, Y.; Zhang, H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024, 912, 148382. [Google Scholar] [CrossRef]
- Sato, H.; Köhler, C. Genomic imprinting regulates establishment and release of seed dormancy. Curr. Opin. Plant Biol. 2022, 69, 102264. [Google Scholar] [CrossRef] [PubMed]
- Carruggio, F.; Onofri, A.; Catara, S.; Impelluso, C.; Castrogiovanni, M.; Lo Cascio, P.; Cristaudo, A. Conditional Seed Dormancy Helps Silene hicesiae Brullo & Signor. Overcome Stressful Mediterranean Summer Conditions. Plants 2021, 10, 2130. [Google Scholar] [CrossRef]
- Wang, X.; Yesbergenova-Cuny, Z.; Biniek, C.; Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. Revisiting the Role of Ethylene and N-End Rule Pathway on Chilling-Induced Dormancy Release in Arabidopsis Seeds. Int. J. Mol. Sci. 2018, 19, 3577. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Wang, L.; Zhou, B.; Wang, S.; Li, R.; Jiang, T. Over-expression of poplar transcription factor ERF76 gene confers salt tolerance in transgenic tobacco. J. Plant Physiol. 2016, 198, 23–31. [Google Scholar] [CrossRef]
- Li, X.; Fei, R.; Chen, Z.; Fan, C.; Sun, X. Plant hormonal changes and differential expression profiling reveal seed dormancy removal process in double dormant plant-herbaceous peony. PLoS ONE 2020, 15, e0231117. [Google Scholar] [CrossRef] [PubMed]
- Pirrello, J.; Jaimes-Miranda, F.; Sanchez-Ballesta, M.T.; Tournier, B.; Khalil-Ahmad, Q.; Regad, F.; Latche, A.; Pech, J.C.; Bouzayen, M. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 2006, 47, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.Y.; Pei, W.Z.; He, L.Q.; Ma, B.; Tang, C.; Zhu, L.; Wang, L.P.; Zhong, Y.Y.; Chen, G.; Wang, Q.; et al. ZmEREB92 plays a negative role in seed germination by regulating ethylene signaling and starch mobilization in maize. PLoS Genet. 2023, 19, e1011052. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Moya, J.; Cebrián, G.; Garrido, D.; Martínez, C.; Jamilena, M. The ethylene receptor mutation etr2b reveals crosstalk between ethylene and ABA in the control of Cucurbita pepo germination. Physiol. Plant. 2023, 175, e13864. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Xiao, M.G.; Li, Y.X.; Huang, R.F. Ethylene Modulates Rice Root Plasticity under Abiotic Stresses. Plants 2024, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Ma, C.; Zhou, Y.; Miao, Y.; Huang, R. Molecular Modulation of Root Development by Ethylene. Small Methods 2020, 4, 1900067. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, C.; Zhang, M.; Wei, L.; Liao, W. Identification of Key Genes during Ethylene-Induced Adventitious Root Development in Cucumber (Cucumis sativus L.). Int. J. Mol. Sci. 2022, 23, 12981. [Google Scholar] [CrossRef]
- Cho, H.T.; Cosgrove, D.J. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 2002, 14, 3237–3253. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Huang, R. Auxin Controlled by Ethylene Steers Root Development. Int. J. Mol. Sci. 2018, 19, 3656. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Ivanchenko, M.G.; Muday, G.K. Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J. 2008, 55, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xu, P.; Li, B.; Li, P.; Wen, X.; An, F.; Gong, Y.; Xin, Y.; Zhu, Z.; Wang, Y.; et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc. Natl. Acad. Sci. USA 2017, 114, 13834–13839. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Duan, K.-X.; Ma, B.; Yin, C.-C.; Hu, Y.; Tao, J.-J.; Huang, Y.-H.; Cao, W.-Q.; Chen, H.; Yang, C.; et al. Histidine kinase MHZ1/OsHK1 interacts with ethylene receptors to regulate root growth in rice. Nat. Commun. 2020, 11, 518. [Google Scholar] [CrossRef]
- Klee, H.J.; Giovannoni, J.J. Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annu. Rev. Genet. 2011, 45, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, J.; El-Rakshy, S. Genetic regulation of tomato fruit ripening and development and implementation of associated genomics tools. In Proceedings of the 5th International Postharvest Symposium, Verona, Italy, 6–11 June 2004. [Google Scholar]
- An, J.-P.; Wang, X.-F.; Li, Y.-Y.; Song, L.-Q.; Zhao, L.-L.; You, C.-X.; Hao, Y.-J. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 Act in a Regulatory Loop That Synergistically Modulates Ethylene Biosynthesis and Anthocyanin Accumulation. Plant Physiol. 2018, 178, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; He, S.-J.; Duan, K.-X.; Yin, C.-C.; Chen, H.; Yang, C.; Xiong, Q.; Song, Q.-X.; Lu, X.; Chen, H.-W.; et al. Identification of Rice Ethylene-Response Mutants and Characterization of MHZ7/OsEIN2 in Distinct Ethylene Response and Yield Trait Regulation. Mol. Plant 2013, 6, 1830–1848. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Vrebalov, J.; Alba, R.; Lee, J.; McQuinn, R.; Chung, J.D.; Klein, P.; Giovannoni, J. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 2010, 64, 936–947. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, M.; Liu, M.; Su, D.; Chen, J.; Gao, Y.; Bouzayen, M.; Li, Z. The Molecular Regulation of Ethylene in Fruit Ripening. Small Methods 2020, 4, 1900485. [Google Scholar] [CrossRef]
- Wang, R.; Lammers, M.; Tikunov, Y.; Bovy, A.G.; Angenent, G.C.; de Maagd, R.A. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 2020, 294, 110436. [Google Scholar] [CrossRef] [PubMed]
- Lanahan, M.B.; Yen, H.C.; Giovannoni, J.J.; Klee, H.J. The Never Ripe Mutation Blocks Ethylene Perception in Tomato. Plant Cell 1994, 6, 521–530. [Google Scholar] [PubMed]
- Martel, C.; Vrebalov, J.; Tafelmeyer, P.; Giovannoni, J.J. The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. Plant Physiol. 2011, 157, 1568–1579. [Google Scholar] [CrossRef]
- Osorio, S.; Alba, R.; Damasceno, C.M.B.; Lopez-Casado, G.; Lohse, M.; Zanor, M.I.; Tohge, T.; Usadel, B.; Rose, J.K.C.; Fei, Z.; et al. Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions. Plant Physiol. 2011, 157, 405–425. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhu, B.; Pirrello, J.; Xu, C.; Zhang, B.; Bouzayen, M.; Chen, K.; Grierson, D. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol. 2020, 226, 460–475. [Google Scholar] [CrossRef]
- Ito, Y.; Nishizawa-Yokoi, A.; Endo, M.; Mikami, M.; Shima, Y.; Nakamura, N.; Kotake-Nara, E.; Kawasaki, S.; Toki, S. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat. Plants 2017, 3, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Kitagawa, M.; Ihashi, N.; Yabe, K.; Kimbara, J.; Yasuda, J.; Ito, H.; Inakuma, T.; Hiroi, S.; Kasumi, T. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 2008, 55, 212–223. [Google Scholar] [CrossRef]
- Manning, K.; Tor, M.; Poole, M.; Hong, Y.; Thompson, A.J.; King, G.J.; Giovannoni, J.J.; Seymour, G.B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006, 38, 948–952. [Google Scholar] [CrossRef]
- Mukherjee, S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 2019, 82, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, Y.; Liu, C.; Chen, L.; Ma, J.; Sheng, J.; Shen, L. Inhibition of nitric oxide synthesis delayed mature-green tomato fruits ripening induced by inhibition of ethylene. Sci. Hortic. 2016, 211, 95–101. [Google Scholar] [CrossRef]
- Gupta, K.J.; Mur, L.A.J.; Wany, A.; Kumari, A.; Fernie, A.R.; Ratcliffe, R.G. The role of nitrite and nitric oxide under low oxygen conditions in plants. New Phytol. 2020, 225, 1143–1151. [Google Scholar] [CrossRef]
- Pucciariello, C.; Perata, P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants. Plant Cell Environ. 2017, 40, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Qiu, K.; Li, Z.P.; Yang, Z.; Chen, J.Y.; Wu, S.X.; Zhu, X.Y.; Gao, S.; Gao, J.; Ren, G.D.; Kuai, B.K.; et al. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis. PLoS Genet. 2015, 11, e1005399. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.Y.; Luo, W.; Li, W.X.; Chen, N.; Zhang, D.J.; Chong, K. The F-Box Protein OsFBK12 Targets OsSAMS1 for Degradation and Affects Pleiotropic Phenotypes, Including Leaf Senescence, in Rice. Plant Physiol. 2013, 163, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Peng, J.Y.; Wen, X.; Guo, H.W. ETHYLENE-INSENSITIVE3 Is a Senescence-Associated Gene That Accelerates Age-Dependent Leaf Senescence by Directly Repressing miR164 Transcription in Arabidopsis. Plant Cell 2013, 25, 3311–3328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, S.; Zhang, J. Ethylene Signaling Pathway in Regulating Plant Response to Abiotic Stress. Biotechnol. Bull. 2016, 32, 1–10. [Google Scholar]
- Yu, Y.W.; Huang, R.F. Ethylene and plant resistance to adversity. J. Agric. Sci. Technol. 2013, 15, 70–75. [Google Scholar]
- Jegadeesan, S.; Beery, A.; Altahan, L.; Meir, S.; Pressman, E.; Firon, N. Ethylene production and signaling in tomato (Solanum lycopersicum) pollen grains is responsive to heat stress conditions. Plant Reprod. 2018, 31, 367–383. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S.; Yang, C.-Y. Ethylene-mediated signaling confers thermotolerance and regulates transcript levels of heat shock factors in rice seedlings under heat stress. Bot. Stud. 2019, 60, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Li, F.; Li, D.J.; Zhang, H.W.; Huang, R.F. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 2010, 232, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Peng, S.B.; Wang, T.Y.; Gao, X.Q.; Li, D.P.; Li, M.G.; Chen, S.W.; Xu, Z.G. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance. Ecotoxicol. Environ. Saf. 2021, 228, 112945. [Google Scholar] [CrossRef]
- Liang, S.S.; Xiong, W.; Yin, C.C.; Xie, X.D.; Jin, Y.J.; Zhang, S.J.; Yang, B.; Ye, G.Y.; Chen, S.Y.; Luan, W.J. Overexpression of OsARD1 Improves Submergence, Drought, and Salt Tolerances of Seedling Through the Enhancement of Ethylene Synthesis in Rice. Front. Plant Sci. 2019, 10, 1088. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Duan, J.L.; Shan, C.; Mei, Z.L.; Chen, H.Y.; Feng, H.F.; Zhu, J.; Cai, W.M. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. Plant Sci. 2020, 292, 110353. [Google Scholar] [CrossRef]
- Dou, L.R.; He, K.K.; Higaki, T.; Wang, X.F.; Mao, T.L. Ethylene Signaling Modulates Cortical Microtubule Reassembly in Response to Salt Stress. Plant Physiol. 2018, 176, 2071–2081. [Google Scholar] [CrossRef]
- Wu, D.; Ji, J.; Wang, G.; Guan, C.; Jin, C. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco. Plant Cell Rep. 2014, 33, 2033–2045. [Google Scholar] [CrossRef]
- Qin, H.; Pandey, B.K.; Li, Y.X.; Huang, G.Q.; Wang, J.; Quan, R.D.; Zhou, J.H.; Zhou, Y.; Miao, Y.C.; Zhang, D.B.; et al. Orchestration of ethylene and gibberellin signals determines primary root elongation in rice. Plant Cell 2022, 34, 1273–1288. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Xie, W.W.; Sun, Y.; Yang, Q.C.; Wu, M.S. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. Afr. J. Biotechnol. 2010, 9, 7589–7594. [Google Scholar]
- Sun, X.M.; Zhang, L.L.; Wong, D.C.J.; Wang, Y.; Zhu, Z.F.; Xu, G.Z.; Wang, Q.F.; Li, S.H.; Liang, Z.C.; Xin, H.P. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. Plant J. 2019, 99, 988–1002. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.R.; Huang, X.B.; Amombo, E.; Liu, A.; Fan, J.B.; Bi, A.Y.; Ji, K.; Xin, H.P.; Chen, L.; Fu, J.M. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. Plant Sci. 2020, 294, 110432. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wang, C.; Xu, N.; Wang, M.L. The ethylene response factor SlERF.B8 triggers jasmonate biosynthesis to promote cold tolerance in tomato. Environ. Exp. Bot. 2022, 203, 105073. [Google Scholar] [CrossRef]
- Wang, Y.C.; Jiang, H.Y.; Mao, Z.L.; Liu, W.J.; Jiang, S.H.; Xu, H.F.; Su, M.Y.; Zhang, J.; Wang, N.; Zhang, Z.Y.; et al. Ethylene increases the cold tolerance of apple via the MdERF1B-MdCIbHLH1 regulatory module. Plant J. 2021, 106, 379–393. [Google Scholar] [CrossRef] [PubMed]
- García, M.J.; Lucena, C.; Romera, F.J.; Alcántara, E.; Pérez-Vicente, R. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 2010, 61, 3885–3899. [Google Scholar] [CrossRef]
- Binder, B.M.; Walker, J.M.; Gagne, J.M.; Emborg, T.J.; Hemmann, G.; Bleecker, A.B.; Vierstra, R.D. The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 2007, 19, 509–523. [Google Scholar] [CrossRef]
- Tao, J.J.; Chen, H.W.; Ma, B.; Zhang, W.K.; Chen, S.Y.; Zhang, J.S. The Role of Ethylene in Plants Under Salinity Stress. Front. Plant Sci. 2015, 6, 1059. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, S.L.; Wang, Z.; Yuan, Y.Q.; Zhang, Z.F.; Liang, Q.J.; Yang, X.; Duan, Z.B.; Liu, Y.C.; Kong, F.J.; et al. Progress in soybean functional genomics over the past decade. Plant Biotechnol. J. 2022, 20, 256–282. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.C.; Han, X.; An, Y.; Guo, H.W.; Xia, X.L.; Yin, W.L. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ. 2013, 36, 1328–1337. [Google Scholar] [CrossRef] [PubMed]
- Catinot, J.; Huang, J.B.; Huang, P.Y.; Tseng, M.Y.; Chen, Y.L.; Gu, S.Y.; Lo, W.S.; Wang, L.C.; Chen, Y.R.; Zimmerli, L. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate-and ethylene-responsive defence genes. Plant Cell Environ. 2015, 38, 2721–2734. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.S.; Ermawati, N.; Cha, J.Y.; Jung, M.H.; Su’udi, M.; Kim, M.G.; Ha, S.H.; Park, C.G.; Son, D. Overexpression of an AP2/ERF-type Transcription Factor CRF5 Confers Pathogen Resistance to Arabidopsis Plants. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 142–148. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.L.; Sun, S.; Xing, G.M.; Wang, F.; Li, M.Y.; Tian, Y.S.; Xiong, A.S. AP2/ERF Transcription Factors Involved in Response to Tomato Yellow Leaf Curly Virus in Tomato. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, J.-J.; Zhang, W.-W.; Zhao, J.-L.; Mao, Z.-C. Cloning of pepper ethylene-responsive proteinase inhibitor Cacl-6468 and its effect on resistance to Meloidogyne incognita. Acta Hortic. Sin. 2024, 51, 761–772. [Google Scholar]
- Stotz, H.U.; Pittendrigh, B.R.; Kroymann, J.; Weniger, K.; Fritsche, J.; Bauke, A.; Mitchell-Olds, T. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 2000, 124, 1007–1017. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.L.; Li, Z.X.; Wang, S.Y.; Li, K.J.; Tang, F.; Jia, J.X.; Zhao, Q.J.; Jing, P.H.; Yang, W.Q.; Hua, C.M.; et al. The F-box protein OsEBF2 confers the resistance to the brown planthopper (Nilparvata lugens Stal). Plant Sci. 2023, 327, 111547. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef]
- Steffens, B. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Front. Plant Sci. 2014, 5, 685. [Google Scholar] [CrossRef]
- Yang, Q.S.; Gao, J.; He, W.D.; Dou, T.X.; Ding, L.J.; Wu, J.H.; Li, C.Y.; Peng, X.X.; Zhang, S.; Yi, G.J. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genom. 2015, 16, 446. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, M.; Zhu, C.; Wu, S.; Li, J.; Yu, J.; Hu, Z. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. Plant Cell Environ. 2024, 47, 1334–1347. [Google Scholar] [CrossRef]
- Zhao, R.; Xie, H.; Lv, S.; Zheng, Y.; Yu, M.; Shen, L.; Sheng, J. LeMAPK4 participated in cold-induced ethylene production in tomato fruit. J. Sci. Food Agric. 2013, 93, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wilkinson, S.; Shen, J.; Forde, B.G.; Davies, W.J. Stomatal and growth responses to hydraulic and chemical changes induced by progressive soil drying. J. Exp. Bot. 2017, 68, 5883–5894. [Google Scholar] [CrossRef]
- Luo, Z. Hot Water Treatment of Postharvest Mei Fruit to Delay Ripening. HortScience 2006, 41, 737–740. [Google Scholar] [CrossRef]
- Du, Z.; Gong, H.; Wang, R.; Li, Y.; Wang, L.; Li, B.; Li, B. Effect of Hot Water Treatment on Strawberry Fruits Preservation and Its Relationship with Ethylene Gene Expression. Acta Hortic. Sin. 2009, 36, 647–654. [Google Scholar]
- Loayza, F.E.; Brecht, J.K.; Simonne, A.H.; Plotto, A.; Baldwin, E.A.; Bai, J.; Lon-Kan, E. Synergy between hot water treatment and high temperature ethylene treatment in promoting antioxidants in mature-green tomatoes. Postharvest Biol. Technol. 2020, 170, 111314. [Google Scholar] [CrossRef]
- Lynch, J.; Brown, K.M. Ethylene and plant responses to nutritional stress. Physiol. Plant. 1997, 100, 613–619. [Google Scholar] [CrossRef]
- Kou, X.; Watkins, C.B.; Gan, S.S. Arabidopsis AtNAP regulates fruit senescence. J. Exp. Bot. 2012, 63, 6139–6147. [Google Scholar] [CrossRef]
- Ma, B.; Ma, T.; Xian, W.; Hu, B.; Chu, C. Interplay between ethylene and nitrogen nutrition: How ethylene orchestrates nitrogen responses in plants. J. Integr. Plant Biol. 2023, 65, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, P.; Yu, X.F.; Cao, J.P.; Chen, X.; Gao, L.; Chen, K.S.; Grierson, D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022, 11, 2484. [Google Scholar] [CrossRef] [PubMed]
- Lephatsi, M.M.; Meyer, V.; Piater, L.A.; Dubery, I.A.; Tugizimana, F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021, 11, 457. [Google Scholar] [CrossRef]
- Wang, D.; Xie, D.; Zhang, J.; Cai, B.; Yang, B.; Zhou, L.; Huang, X. Comprehensive analysis of the coding and non-coding RNA transcriptome expression profiles of hippocampus tissue in tx-J animal model of Wilson’s disease. Sci. Rep. 2023, 13, 9252. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Puig, R.; Bueno-Costa, A.; Esteller, M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett. 2020, 474, 127–137. [Google Scholar] [CrossRef]
- Wolny, E.; Braszewska-Zalewska, A.; Hasterok, R. Spatial distribution of epigenetic modifications in Brachypodium distachyon embryos during seed maturation and germination. PLoS ONE 2014, 9, e101246. [Google Scholar] [CrossRef] [PubMed]
- Abdulraheem, M.I.; Xiong, Y.; Moshood, A.Y.; Cadenas-Pliego, G.; Zhang, H.; Hu, J. Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. Plants 2024, 13, 163. [Google Scholar] [CrossRef]
- Ding, X.; Liu, X.; Jiang, G.; Li, Z.; Song, Y.; Zhang, D.; Jiang, Y.; Duan, X. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. New Phytol. 2022, 233, 1202–1219. [Google Scholar] [CrossRef]
- Nottke, A.; Colaiácovo, M.P.; Shi, Y. Developmental roles of the histone lysine demethylases. Development 2009, 136, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Francelle, L.; Lotz, C.; Outeiro, T.; Brouillet, E.; Merienne, K. Contribution of Neuroepigenetics to Huntington′s Disease. Front. Hum. Neurosci. 2017, 11, 17. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Qi, B.; Zhao, B.; Ko, E.E.; Riggan, N.D.; Chin, K.; Qiao, H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proc. Natl. Acad. Sci. USA 2017, 114, 10274–10279. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, F.; Qiao, H. Chromatin Regulation in the Response of Ethylene: Nuclear Events in Ethylene Signaling. Small Methods 2020, 4, 1900288. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qiao, H. New Insights in Transcriptional Regulation of the Ethylene Response in Arabidopsis. Front. Plant Sci. 2019, 10, 790. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.Y.; Chen, J.Y.; Kuang, J.F.; Shan, W.; Xie, H.; Jiang, Y.M.; Lu, W.J. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes. J. Exp. Bot. 2013, 64, 2499–2510. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, C.; Zhang, W.; Che, W.; Zhang, J.; Zhuang, S.; Wang, Y.; Zhang, Y.; Liu, B. The Integrative Regulatory Network of circRNA, microRNA, and mRNA in Atrial Fibrillation. Front. Genet. 2019, 10, 526. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Gao, L.; Zhu, B.; Ju, Z.; Luo, Y.; Zuo, J. Parsing the Regulatory Network between Small RNAs and Target Genes in Ethylene Pathway in Tomato. Front. Plant Sci. 2017, 8, 527. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Yan, J.; Wang, K.; Luo, H.; Zhang, W. MiR319 mediated salt tolerance by ethylene. Plant Biotechnol. J. 2019, 17, 2370–2383. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Qiu, K.; Sun, W.; Yang, T.; Wu, T.; Song, T.; Zhang, J.; Yao, Y.; Tian, J. A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis. Plant Physiol. 2022, 189, 66–83. [Google Scholar] [CrossRef]
- Wu, S.; Wu, D.; Song, J.; Zhang, Y.; Tan, Q.; Yang, T.; Yang, J.; Wang, S.; Xu, J.; Xu, W.; et al. Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. Hortic. Res. 2022, 9, uhac102. [Google Scholar] [CrossRef]
- Shen, H.; Luo, B.; Ding, Y.; Xiao, H.; Chen, G.; Yang, Z.; Hu, Z.; Wu, T. The YABBY Transcription Factor, SlYABBY2a, Positively Regulates Fruit Septum Development and Ripening in Tomatoes. Int. J. Mol. Sci. 2024, 25, 5206. [Google Scholar] [CrossRef]
- Hartman, S.; Liu, Z.G.; van Veen, H.; Vicente, J.; Reinen, E.; Martopawiro, S.; Zhang, H.T.; van Dongen, N.; Bosman, F.; Bassel, G.W.; et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat. Commun. 2019, 10, 4020. [Google Scholar] [CrossRef] [PubMed]
- Geigenberger, P. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Nagai, K.; Furukawa, S.; Song, X.-J.; Kawano, R.; Sakakibara, H.; Wu, J.; Matsumoto, T.; Yoshimura, A.; Kitano, H.; et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 2009, 460, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hartman, S.; van Veen, H.; Zhang, H.; Leeggangers, H.; Martopawiro, S.; Bosman, F.; de Deugd, F.; Su, P.; Hummel, M.; et al. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. Plant Physiol. 2022, 190, 1365–1383. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chao, Y.-T.; Chen, W.-C.; Ho, H.-Y.; Chou, M.-Y.; Li, Y.-R.; Wu, Y.-L.; Yang, H.-A.; Hsieh, H.; Lin, C.-S.; et al. Regulatory cascade involving transcriptional and N-end rule pathways in rice under submergence. Proc. Natl. Acad. Sci. USA 2019, 116, 3300–3309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, A.; Zhang, Z.; Huang, Z.; Lu, P.; Zhang, D.; Liu, X.; Zhang, Z.-F.; Huang, R. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.). Sci. Rep. 2016, 6, 29948. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Z.; Zhang, H.; Wang, X.-C.; Huang, R. Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing. Plant Physiol. 2008, 148, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Li, Z.; Wen, X.; Li, W.; Shi, H.; Yang, L.; Zhu, H.; Guo, H. Salt-Induced Stabilization of EIN3/EIL1 Confers Salinity Tolerance by Deterring ROS Accumulation in Arabidopsis. PLoS Genet. 2014, 10, e1004664. [Google Scholar] [CrossRef] [PubMed]
Biotic/Abiotic Stress | Action | Plant Species | Reference |
---|---|---|---|
Heat stress | The signaling of ethylene in tomato pollen grains exhibits sensitivity to heat stress. | Solanum lycopersicum | [82] |
Increased levels of EIN2 expression were observed in rice seedlings subjected to heat stress. | Oryza sativa | [83] | |
Drought stress | The increased expression of ERF1 resulted in a notable improvement in the drought resistance of genetically modified rice plants. | Oryza sativa | [84] |
JrERF2-2 can enhance plant resistance to drought stress by interacting with JrWRKY7 to regulate the expression of GSTs. | Juglans regia | [85] | |
The OsARD1 upregulates the expression of genes associated with drought response, thereby improving rice’s ability to withstand drought conditions. | Oryza sativa | [86] | |
Overexpression of OsEIL2 can increase the sensitivity to drought. | Oryza sativa | [87] | |
Salt stress | The reassembly of microtubules is regulated by ethylene signaling through the upregulation of WDL5 expression in response to salt stress. | Arabidopsis thaliana | [88] |
The enhanced expression of LchERF resulted in increased tolerance to salt stress. | Lycium chinense | [89] | |
The expression of OsDOF15 was inhibited under salt stress. | Oryza sativa | [90] | |
Identification of genes that are activated in response to salt stress in seedlings of Medicago truncatula L. | Medicago truncatula | [91] | |
Cold stress | VaERF092 controls the activity of the transcription factor VaWRKY33, enhancing resistance to cold stress. | Vitis amurensis | [92] |
CdERF1 in bermudagrass plays a role in enhancing cold tolerance. | Cynodon dactylon | [93] | |
The SlERF.B8 protein induces the biosynthesis of JA to enhance cold tolerance in tomato plants. | Solanum lycopersicum | [94] | |
Ethylene enhances the cold resistance of apples through the regulatory module MdERF1B-MdCIbHLH1. | Malus domestica | [95] | |
Nutrition stress | Ethylene participates in the upregulation of several Fe acquisition genes of Arabidopsis, such as AtFIT, AtFRO2, and AtIRT1. | Arabidopsis thaliana | [96] |
AtEIN3 is a nuclear protein gene that functions immediately after AtERF1 in ethylene signaling. | Arabidopsis thaliana | [97] | |
EIN3/EIL1 activates PHT1 to enhance the absorption of phosphorus. | Arabidopsis thaliana | [98] | |
GmETO1 enhances the tolerance of soybeans to low phosphorus stress. | Glycine max | [99] | |
Ethylene, in turn, downregulates the expression of NRT2.1 and reduces the high-affinity absorption of nitrate. | Arabidopsis thaliana | [100] | |
Biotic stress | SlERFs are involved in the response of tomato yellow leaf curl virus | Solanum lycopersicum | [101] |
Increased expression of CRF5 enhances resistance to pathogens in Arabidopsis plants. | Arabidopsis thaliana | [102] | |
Biotic stress | AP2/ERF transcription factors play a role in the tomato yellow leaf curl virus response. | Solanum lycopersicum | [103] |
ERF96 positively regulates Arabidopsis resistance to necrotrophic pathogens. | Arabidopsis thaliana | [101] | |
The study focuses on Pepper ethylene-responsive proteinase inhibitor Cacl-6468 and its impact on enhancing resistance against Meloidogyne incognita. | Capsicum annuum | [104] | |
Ein2 enhances resistance to Egyptian cotton worms. | Gossypium hirsutum | [105] | |
The ethylene signaling pathway exerts a negative regulatory effect on the resistance of rice plants to brown planthoppers. | Oryza sativa | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wen, H.; Suprun, A.; Zhu, H. Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. Plants 2025, 14, 309. https://doi.org/10.3390/plants14030309
Wang X, Wen H, Suprun A, Zhu H. Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. Plants. 2025; 14(3):309. https://doi.org/10.3390/plants14030309
Chicago/Turabian StyleWang, Xiaoyi, Hongyi Wen, Andrey Suprun, and Hongliang Zhu. 2025. "Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses" Plants 14, no. 3: 309. https://doi.org/10.3390/plants14030309
APA StyleWang, X., Wen, H., Suprun, A., & Zhu, H. (2025). Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. Plants, 14(3), 309. https://doi.org/10.3390/plants14030309