An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds
Abstract
:1. Introduction
2. Results
2.1. Toxicity of EO on T. flavus in Lab
2.2. Toxicity of EOs to T. flavus in Pots
2.3. Behavioral Effects of EOs on T. flavus
2.4. Effects of Essential Oils on Plants
2.5. Chemical Composition of Four EOs
3. Discussion
4. Materials and Methods
4.1. Insects
4.2. Essential Oils
4.3. Toxicity Test on T. flavus
4.4. Pot Experiments
4.5. Behavioral Assays
4.6. Phytotoxic Activity of EOs
4.7. Chemical Composition Analysis
4.8. Statistics
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pei, T.; Zhao, Y.; Huang, X.; Zhao, Y.; Pan, L.; Wang, L.; Gao, H.; Xu, M.L.; Gao, Y. Chemical composition of five Lamiaceae essential oils and their insecticidal and phytotoxic activity. Plants 2024, 13, 2204. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A. It runs in the Family: The importance of the Lamiaceae family species. Agronomy 2024, 14, 1274. [Google Scholar] [CrossRef]
- Krause, S.T.; Liao, P.; Crocoll, C.; Boachon, B.; Förster, C.; Leidecker, F.; Wiese, N.; Zhao, D.; Wood, J.C.; Buell, C.R.; et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proc. Natl. Acad. Sci. USA 2021, 118, e2110092118. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. Biological activities of three essential oils of the Lamiaceae family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef]
- Negahban, M.; Moharramipour, S.; Sefidkon, F. Fumigant toxicity of essential oil from Artemisia sieberi Besser against three stored-product insects. J. Stored Prod. Res. 2007, 43, 123–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.; Wang, X.; Bian, Z.; Zhang, X.; Yang, G.; Lu, Y. Volatiles from essential oils of three Lamiaceae plants repel the winged cotton aphid, disturb its feeding behavior and reduce its fecundity. Pest Manag. Sci. 2024, 80, 4253–4263. [Google Scholar] [CrossRef]
- Heydari, M.; Amirjani, A.; Bagheri, M.; Sharifian, I.; Sabahi, Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. 2020, 27, 6667–6679. [Google Scholar] [CrossRef]
- Norris, E.J.; Archevald-Cansobre, M.; Gross, A.D.; Bartholomay, L.C.; Coats, J.R. Rapid immobilization of adult Aedes aegypti caused by plant essential oils at sublethal concentrations. J. Am. Mosq. Control Assoc. 2018, 34, 210–216. [Google Scholar] [CrossRef]
- Mardin, S.; Ramadhan, A.; Afiat, N.; Istadewi, I. Repellent and larvacidal activity of patchouli oil and Curcuma aeruginosarhizome extract against Aedes aegypti. L (Diptera: Culicidae). Egypt. J. Chem. 2024, 67, 117–125. [Google Scholar] [CrossRef]
- Peterson, C.; Ems-Wilson, J. Catnip essential oil as a barrier to subterranean termites (Isoptera: Rhinotermitidae) in the laboratory. J. Econ. Entomol. 2003, 96, 1275–1282. [Google Scholar] [CrossRef]
- Zhu, J.J.; Dunlap, C.A.; Behle, R.W.; Berkebile, D.R.; Wienhold, B. Repellency of a wax-based catnip-oil formulation against stable flies. J. Agric. Food Chem. 2010, 58, 12320–12326. [Google Scholar] [CrossRef] [PubMed]
- Badreddine, B.S.; Olfa, E.; Samir, D.; Hnia, C.; Lahbib, B.J.M. Chemical composition of Rosmarinus and Lavandula essential oils and their insecticidal effects on Orgyia trigotephras (Lepidoptera, Lymantriidae). Asian Pac. J. Trop. Med. 2015, 8, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Devescovi, G.; Venturi, V.; Camele, I.; Bufo, S.A. Study of the regulatory role of N-acyl homoserine lactones mediated quorum sensing in the biological activity of Burkholderia gladioli pv. agaricicola causing soft rot of Agaricus spp. Front. Microbiol. 2019, 10, 2695. [Google Scholar] [CrossRef] [PubMed]
- Mossa, A.-T.H. Green pesticides: Essential oils as biopesticides in insect-pest management. J. Environ. Sci. Technol. 2016, 9, 354. [Google Scholar] [CrossRef]
- Al-Harbi, N.A.; Al Attar, N.M.; Hikal, D.M.; Mohamed, S.E.; Abdel Latef, A.A.H.; Ibrahim, A.A.; Abdein, M.A. Evaluation of insecticidal effects of plants essential oils extracted from basil, black seeds and lavender against Sitophilus oryzae. Plants 2021, 10, 829. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Wang, D.; Yang, J.; Ding, N.; Shi, S. Effect of different plants on the growth and reproduction of Thrips flavus (Thysanoptera: Thripidae). Insects 2021, 12, 502. [Google Scholar] [CrossRef]
- Boonham, N.; Smith, P.; Walsh, K.; Tame, J.; Morris, J.; Spence, N.; Bennison, J.; Barker, I. The detection of tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). J. Virol. Methods 2002, 101, 37–48. [Google Scholar] [CrossRef]
- Niu, Y.; Pei, T.; Zhao, Y.; Zhou, C.; Liu, B.; Shi, S.; Xu, M.L.; Gao, Y. Exploring the efficacy of four essential oils as potential insecticides against Thrips flavus. Agronomy 2024, 14, 1212. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, T.; Long, S.; Li, S.; Wang, C.; Chen, Q.; Chen, J.; Feng, Z.; Cao, Y. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations. J. Econ. Entomol. 2023, 116, 416–425. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, N.; Wang, D.; Zhao, Y.J.; Cui, J.; Li, W.B.; Pei, T.H.; Shi, S.S. Effect of temperature on the development and reproduction of Thrips flavus (Thysanoptera: Thripidae). Agric. For. Entomol. 2022, 24, 279–288. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.; Traykova, B.; Yankova-Tsvetkova, E.; Stefanova, T.; Dzhurmanski, A.; Aneva, I.; Berkov, S. Herbicide potential of selected essential oils from plants of Lamiaceae and Asteraceae families. Acta Agrobot. 2021, 74, 7411. [Google Scholar] [CrossRef]
- Kashkooli, A.B.; Saharkhiz, M.J. Essential oil compositions and natural herbicide activity of four Denaei Thyme (Thymus daenensis Celak.) ecotypes. J. Essent. Oil-Bear. Plants 2014, 17, 859–874. [Google Scholar] [CrossRef]
- Bellache, M.; Torres-Pagan, N.; Verdeguer, M.; Benfekih, L.A.; Vicente, O.; Sestras, R.E.; Sestras, A.F.; Boscaiu, M. Essential oils of three aromatic plant species as natural herbicides for environmentally friendly agriculture. Sustainability 2022, 14, 3596. [Google Scholar] [CrossRef]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef]
- Tworkoski, T. Herbicide effects of essential oils. Weed Sci. 2002, 50, 425–431. [Google Scholar] [CrossRef]
- Gruľová, D.; Caputo, L.; Elshafie, H.S.; Baranová, B.; De Martino, L.; Sedlák, V.; Gogaľová, Z.; Poráčová, J.; Camele, I.; De Feo, V. Thymol chemotype Origanum vulgare L. essential oil as a potential selective bio-based herbicide on monocot plant species. Molecules 2020, 25, 595. [Google Scholar] [CrossRef]
- Synowiec, A.; Możdżeń, K.; Krajewska, A.; Landi, M.; Araniti, F. Carum carvi L. essential oil: A promising candidate for botanical herbicide against Echinochloa crus-galli (L.) P. Beauv. in maize cultivation. Ind. Crops Prod. 2019, 140, 111652. [Google Scholar] [CrossRef]
- Blessing, D.J.; Gu, Y.; Cao, M.; Cui, Y.; Wang, X.; Asante-Badu, B. Overview of the advantages and limitations of maize-soybean intercropping in sustainable agriculture and future prospects: A review. Chil. J. Agric. Res. 2022, 82, 177–188. [Google Scholar] [CrossRef]
- Vitalini, S.; Orlando, F.; Palmioli, A.; Alali, S.; Airoldi, C.; De Noni, I.; Vaglia, V.; Bocchi, S.; Iriti, M. Different phytotoxic effect of Lolium multiflorum Lam. leaves against Echinochloa oryzoides (Ard.) Fritsch and Oriza sativa L. Environ. Sci. Pollut. 2020, 27, 33204–33214. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, C.A. Growth characteristics of weediness in Portulaca oleracea L. Ecology 1976, 57, 964–974. [Google Scholar] [CrossRef]
- Stepanycheva, E.; Petrova, M.; Chermenskaya, T.; Pavela, R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. 2019, 26, 30885–30892. [Google Scholar] [CrossRef] [PubMed]
- Ayvaz, A.; Sagdic, O.; Karaborklu, S.; Ozturk, I. Insecticidal activity of the essential oils from different plants against three stored-product insects. J. Insect Sci. 2010, 10, 21. [Google Scholar] [CrossRef]
- López, A.; Castro, S.; Andina, M.J.; Ures, X.; Munguía, B.; Llabot, J.M.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal activity of microencapsulated Schinus molle essential oil. Ind. Crops Prod. 2014, 53, 209–216. [Google Scholar] [CrossRef]
- Bedini, S.; Djebbi, T.; Ascrizzi, R.; Farina, P.; Pieracci, Y.; Echeverría, M.C.; Flamini, G.; Trusendi, F.; Ortega, S.; Chiliquinga, A.; et al. Repellence and attractiveness: The hormetic effect of aromatic plant essential oils on insect behavior. Ind. Crops Prod. 2024, 210, 118122. [Google Scholar] [CrossRef]
- Gregg, P.C.; Del Socorro, A.P.; Landolt, P.J. Advances in attract-and-kill for agricultural pests: Beyond pheromones. Annu. Rev. Entomol. 2018, 63, 453–470. [Google Scholar] [CrossRef]
- Batume, C.; Mulongo, I.M.; Ludlow, R.; Ssebaale, J.; Randerson, P.; Pickett, J.A.; Mukisa, I.M.; Scofield, S. Evaluating repellence properties of catnip essential oil against the mosquito species Aedes aegypti using a Y-tube olfactometer. Sci. Rep. 2024, 14, 2269. [Google Scholar] [CrossRef]
- Peterson, C.J.; Nemetz, L.T.; Jones, L.M.; Coats, J.R. Behavioral activity of catnip (Lamiaceae) essential oil components to the German cockroach (Blattodea: Blattellidae). J. Econ. Entomol. 2002, 95, 377–380. [Google Scholar] [CrossRef]
- Melo, N.; Capek, M.; Arenas, O.M.; Afify, A.; Yilmaz, A.; Potter, C.J.; Laminette, P.J.; Para, A.; Gallio, M.; Stensmyr, M.C. The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip. Curr. Biol. 2021, 31, 1988–1994. [Google Scholar] [CrossRef]
- Krčmar, S.; Gvozdić, V. Field studies of the efficacy of some commercially available essential oils against horse flies (Diptera: Tabanidae). Entomol. Gen. 2016, 36, 97–105. [Google Scholar] [CrossRef]
- Kheloul, L.; Kellouche, A.; Bréard, D.; Gay, M.; Gadenne, C.; Anton, S. Trade-off between attraction to aggregation pheromones and repellent effects of spike lavender essential oil and its main constituent linalool in the flour beetle Tribolium confusum. Entomol. Exp. Appl. 2019, 167, 826–834. [Google Scholar] [CrossRef]
- Kirk, W.D. The aggregation pheromones of thrips (Thysanoptera) and their potential for pest management. Int. J. Trop. Insect Sci. 2017, 37, 41–49. [Google Scholar] [CrossRef]
- Ramezani, S.; Saharkhiz, M.J.; Ramezani, F.; Fotokian, M.H. Use of essential oils as bioherbicides. J. Essent. Oil Bear. Plants 2008, 11, 319–327. [Google Scholar] [CrossRef]
- Pandey, S.K.; Bhandari, S.; Sarma, N.; Begum, T.; Munda, S.; Baruah, J.; Gogoi, R.; Haldar, S.; Lal, M. Essential oil compositions, pharmacological importance and agro technological practices of patchouli (Pogostemon cablin Benth.): A review. J. Essent. Oil Bear. Plants 2021, 24, 1212–1226. [Google Scholar] [CrossRef]
- Mohammadi, S.; Saharkhiz, M.J. Changes in essential oil content and composition of catnip (Nepeta cataria L.) during different developmental stages. J. Essent. Oil Bear. Plants 2011, 14, 396–400. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
- Yahya, A.; Yunus, R.M. Influence of sample preparation and extraction time on chemical composition of steam distillation derived patchouli oil. Procedia Eng. 2013, 53, 1–6. [Google Scholar] [CrossRef]
- Lima, S.L.; Barreto Brandão, L.; da Costa, P.; Luiz, A.; Lopes Martins, R.; Lobato Rodrigues, A.B.; Alves Lobato, A.; Moreira da Silva de Almeida, S.S. Bioinsecticidal and pharmacological activities of the essential oil of Pogostemon cablin Benth leaves: A review. Pharmacogn. Rev. 2022, 16, 139–145. [Google Scholar] [CrossRef]
- Almarie, A.A.A. Roles of Terpenoids in Essential Oils and Its Potential as Natural Weed Killers: Recent Developments. In Essential Oils; Oliveira, M.S., Costa, W.A.D., Silva, S.G., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 10. [Google Scholar] [CrossRef]
- Ahuja, N.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci. 2015, 88, 209–218. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Kasrati, A.; Sakar, E.H.; Aljaiyash, A.; Hirri, A.; Tamegart, L.; Abbad, I.; Alaoui Jamali, C. Chemical profiling, insecticidal, and phytotoxic effect of essential oils from leaves and inflorescence of Moroccan Chenopodium ambrosioides (L.). Plants 2024, 13, 483. [Google Scholar] [CrossRef] [PubMed]
Number | EOs | Regression Equation | Correlation Coefficient | LC50 (mg/mL) | 95% Confidence Interval | χ2 | df |
---|---|---|---|---|---|---|---|
1 | Patchouli oil | y = 6.6940 + 3.3029x | 0.96 | 0.31 | 0.22–0.38 | 2.29 | 3 |
2 | Catnip oil | y = 6.8508 + 3.8827x | 0.99 | 0.33 | 0.26–0.40 | 0.58 | 3 |
3 | Lavandula oil | y = 6.3242 + 2.9614x | 0.78 | 0.36 | 0.27–0.43 | 7.36 | 3 |
4 | Mint oil | y = 6.1968 + 4.2378x | 0.88 | 0.52 | 0.45–0.60 | 4.44 | 3 |
5 | 45% Malathion EC | y = 9.7959 + 2.5307x | 0.94 | 0.0127 | 0.0068–0.0168 | 1.97 | 3 |
Number | Retention Index | Relative Percentage (%) | Name of Constituent |
---|---|---|---|
1 | 935 | 0.08 | α-pinene |
2 | 974 | 0.17 | β-pinene |
3 | 1340 | 0.14 | δ-elemene |
4 | 1387 | 3.22 | β-patchoulene |
5 | 1391 | 1.46 | β-elemene |
6 | 1415 | 1.08 | thujopsen |
7 | 1422 | 4.18 | β-caryophyllene |
8 | 1440 | 12.43 | α-guaiene |
9 | 1447 | 8.36 | α-panasinsene |
10 | 1456 | 1.21 | α-bisabolene |
11 | 1463 | 9.59 | α-bulnesene |
12 | 1471 | 0.63 | caryophyllene |
13 | 1478 | 1.05 | alloaromadendrene |
14 | 1489 | 0.83 | α-guaiene |
15 | 1500 | 5.55 | longifolene |
16 | 1506 | 16.33 | β-humulene |
17 | 1520 | 0.39 | β-panasinsene |
18 | 1528 | 0.14 | cubebene |
19 | 1551 | 0.97 | isopatchoulane |
20 | 1568 | 0.30 | α-longipinene |
21 | 1579 | 0.63 | viridiflorol |
22 | 1618 | 0.91 | widdrol |
23 | 1657 | 29.54 | patchouli alcohol |
Number | Retention Index | Relative Percentage (%) | Name of Constituent |
---|---|---|---|
1 | 1013 | 20.32 | o-cymene |
2 | 1024 | 51.31 | limonene |
3 | 1051 | 2.65 | γ-terpinene |
4 | 1235 | 12.90 | 2-propenal |
5 | 1332 | 10.45 | eugenol |
6 | 1418 | 1.85 | β-caryophyllene |
7 | 1454 | 0.51 | α-caryophyllene |
Number | Retention Index | Relative Percentage (%) | Name of Constituent |
---|---|---|---|
1 | 934 | 7.24 | α-pinene |
2 | 1021 | 4.40 | 1,8-cineole |
3 | 1086 | 8.01 | 3-Octanol |
4 | 1126 | 7.94 | camphor |
5 | 1136 | 0.76 | β-terpineol |
6 | 1159 | 0.75 | borneol |
7 | 1171 | 0.45 | terpinen-4-ol |
8 | 1179 | 6.16 | α-terpineol |
9 | 1185 | 2.42 | γ-terpineol |
10 | 1246 | 17.90 | linalyl acetate |
11 | 1270 | 4.48 | cyclohexanol |
12 | 1274 | 9.81 | bornyl acetate |
13 | 1318 | 1.12 | β-terpinyl acetate |
14 | 1335 | 16.66 | terpinyl acetate |
15 | 1347 | 0.33 | octylmethacrylat |
16 | 1408 | 9.95 | lignyl acetate |
17 | 1420 | 0.80 | β-caryophyllene |
Number | Retention Index | Relative Percentage (%) | Name of Constituent |
---|---|---|---|
1 | 933 | 4.55 | α-pinene |
2 | 968 | 0.66 | α-phellandrene |
3 | 973 | 4.64 | β-pinene |
4 | 983 | 1.77 | 3-octanol |
5 | 1023 | 8.21 | limonene |
6 | 1140 | 1.69 | isopulegol |
7 | 1143 | 17.81 | isomenthone |
8 | 1153 | 10.41 | menthone |
9 | 1161 | 6.73 | neoisomenthol |
10 | 1168 | 27.54 | menthol |
11 | 1176 | 1.26 | isomenthol |
12 | 1179 | 0.91 | α-terpineol |
13 | 1214 | 1.97 | pulegone |
14 | 1222 | 1.22 | valeric acid 3-hexen-1-yl ester |
15 | 1228 | 1.31 | piperitone |
16 | 1280 | 7.86 | menthyl acetate |
17 | 1387 | 0.24 | β-bourbonene |
18 | 1420 | 0.93 | β-caryophyllene |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Pei, T.; Zhou, X.; Xu, M.-L.; Gao, H.; Wang, L.; Gao, Y. An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds. Plants 2025, 14, 448. https://doi.org/10.3390/plants14030448
Zhou Y, Pei T, Zhou X, Xu M-L, Gao H, Wang L, Gao Y. An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds. Plants. 2025; 14(3):448. https://doi.org/10.3390/plants14030448
Chicago/Turabian StyleZhou, Yuxin, Tianhao Pei, Xuechao Zhou, Meng-Lei Xu, Hexin Gao, Lulu Wang, and Yu Gao. 2025. "An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds" Plants 14, no. 3: 448. https://doi.org/10.3390/plants14030448
APA StyleZhou, Y., Pei, T., Zhou, X., Xu, M.-L., Gao, H., Wang, L., & Gao, Y. (2025). An Investigation into the Biological Activities of Four Lamiaceae Essential Oils Against Thrips flavus, Crops, and Weeds. Plants, 14(3), 448. https://doi.org/10.3390/plants14030448