Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Total Quantity of Phenolic Compounds
2.2. The Total Quantity of Flavonoids
2.3. Antioxidant Activity
2.4. Correlation between Phenolic Compounds, Flavonoids, and Antioxidant Activity
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Plant Extracts
3.3. Chemicals
3.4. Determination of Total Phenolic Contents
3.5. Determination of Flavonoid Concentrations
3.6. Evaluation of DPPH Scavenging Activity
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Bohnert, J.H.; Shen, B. Transformation and compatible solutes. Sci. Hortic. 1999, 78, 237–260. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Van Breusegem, F.; Dat, F.J. Reactive oxygen species in plant cell death. Plant Physiol. 2006, 141, 384–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliebenstein, D.J.; Osbourn, A. Making new molecules—Evolution of pathways for novel metabolites in plants. Curr. Opin. Plant Biol. 2012, 15, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signaling on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [PubMed]
- Mukherjee, S.K. Medicinal plants of Asteraceae in India and their uses. In Proceeding of National Seminar; Gupta, S.K., Mitra, B.R., Eds.; Ramakrishna Mission Ashrama: Kolkata, India, 2006; pp. 43–49. [Google Scholar]
- Jayaraman, S.; Manoharam, S.M.; Illanchezian, S. In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop. J. Pharm. Res. 2008, 7, 1143–1149. [Google Scholar] [CrossRef]
- Kasim, L.S.; Ferro, V.A.; Odukoya, O.A.; Drummond, A.; Ukpo, G.E.; Seidel, V.; Gray, A.I.; Waigh, R. Antimicrobial agents from the leaf of Struchium sparganophora (Linn) Ktze, Asteraceae. J. Microbiol. Antimicrob. 2011, 3, 13–17. [Google Scholar]
- Gajić, M. Genus Cichorium L. In Flora of Serbia; Josifović, M., Ed.; Serbian Academy of Sciences and Arts: Belgrade, Serbia, 1975; Volume 7, pp. 266–268. [Google Scholar]
- Lee, K.T.; Kim, J.I.; Park, H.J.; Yoo, K.O.; Han, Y.N.; Miyamoto, K.I. Differentiation-inducing effect of magnolialide, a 1β-hydroxyeudesmanolide isolated from Cichorium intybus, on human leukemia cells. Biol. Pharm. Bull. 2000, 23, 1005–1007. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, N.; Zubair, M.; Rizwan, K.; Rasool, N.; Shahid, M.; Ahmad, V.U. Antioxidant, antimicrobial and phytochemical analysis of Cichorium intybus seeds extract and various organic fractions. Iran J. Pharm. Res. 2012, 11, 1145–1151. [Google Scholar] [PubMed]
- Pushparaj, P.N.; Low, H.K.; Manikandan, J.; Tan, B.K.; Tan, C.H. Antidiabetc effects of Cichorium intybus in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2007, 111, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, C.; Schmidt, B.; Ilic, N.; Poulev, A.; Dey, M.; Kurmukov, A.G. Antinflammatory effects of a sesquiterpene lactone extract from chicory (Cichorium intybus L.) roots. Nat. Prod. Commun. 2007, 2, 717–722. [Google Scholar]
- Das, S.; Vasudeva, N.; Sharma, S. Cichorium intybus: A concise report on its ethnomedicinal, botanical, and phytopharmacological aspects. Drug Dev. Ther. 2016, 7, 1–12. [Google Scholar]
- Miller, M.C.; Duckett, S.K.; Andrae, J.G. The effect of forage species on performance and gastrointestinal nematode infection in lambs. Small Rumin. Res. 2011, 95, 188–192. [Google Scholar] [CrossRef]
- Wesołowska, A.; Nikiforuk, A.; Michalska, K.; Kisiel, W.; Chojnacka-Wójcik, E. Analgesic and sedative activities of lactucin and some lactucin-like guaianolides in mice. J. Ethnopharmacol. 2006, 107, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Nayeemunnisa, A. Alloxan diabetes-induced oxidative stress and impairment of oxidative defense system in rat brain: Neuroprotective effects of Cichorium intybus. Int. J. Diabetes Metab. 2009, 17, 105–109. [Google Scholar]
- Gürbüz, I.; Üstün, O.; Yeşilada, E.; Sezik, E.; Akyürek, N. In vivo gastroprotective effects of five Turkish folk remedies against ethanol-induced lesions. J. Ethnopharmacol. 2002, 83, 241–244. [Google Scholar] [CrossRef]
- Gilani, A.H.; Janbaz, K.H. Evaluation of the liver protective potential of Cichorium intybus seed extract on acetaminophen and CCl4-induced damage. Phytomedicine 1994, 1, 193–197. [Google Scholar] [CrossRef]
- Kim, J.H.; Mun, Y.J.; Woo, W.H.; Jeon, K.S.; An, N.H.; Park, J.S. Effects of the ethanol extract of Cichorium intybus on the immunotoxicity by ethanol in mice. Int. Immunopharmacol. 2002, 2, 733–744. [Google Scholar] [CrossRef]
- Behnam-Rassouli, M.; Aliakbarpour, A.; Hosseinzadeh, H.; Behnam-Rassouli, F.; Chamsaz, M. Investigating the effect of aqueous extract of Cichorium intybus L. leaves on offspring sex ratio in rat. Phytother. Res. 2010, 24, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Süntar, I.; Küpeli-Akkol, E.; Keles, H.; Yesilada, E.; Sarker, S.D.; Baykal, T. Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: Stepwise isolation of an active component by in vivo bioassay and its mode of activity. J. Ethnopharmacol. 2012, 143, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.E. Medicinal importance of Cichorium intybus—A review. IOSR J. Phram. 2016, 6, 41–56. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Montefusco, A.; Semitaio, G.; Marrese, P.P.; Iurlaro, A.; de Caroli, M.; Piro, G.; Dalassandro, G.; Lenucci, M.S. Antioxidants in varieties of chicory (Cichorium intybus L.) and wild poppy (Papaver rhoeas L.) of southern Italy. J. Chem. 2015. [Google Scholar] [CrossRef]
- Queslati, S.; Karray-Bouraoui, N.; Attia, H.; Rabhi, M.; Ksouri, R.; Lachaal, M. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol. Plant 2010, 32, 289–296. [Google Scholar] [CrossRef]
- Bourgou, S.; Kchouk, M.E.; Bellila, A.; Marzouk, B. Effect of salinity on phenolic composition and biological activity of Nigella sativa. Acta Hortic. 2010, 853, 57–60. [Google Scholar] [CrossRef]
- Cik, J.K.; Klejdus, B.; Hedbavny, J.; Bačkor, M. Salicylic acid alleviates NaCl-induced changes in the metabolism of Matricaria chamomilla plants. Ecotoxicology 2009, 18, 544–554. [Google Scholar]
- Alonso-Amelot, M.E.; Oliveros-Bastidas, A.; Calcagno-Pisarelli, M.P. Phenolics and condensed tannins in relation to altitude in neotropical Pteridium spp. A field study in the Venezuelan Andes. Biochem. Syst. Ecol. 2004, 32, 969–981. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Zhang, L.; Su, Z. Responses to UV-B exposure by saplings of the relict species Davidia involucrata Bill are modified by soil nitrogen availability. Pol. J. Ecol. 2014, 62, 101–110. [Google Scholar] [CrossRef]
- Stanković, M.; Topuzović, M.; Solujić, S.; Mihajlović, V. Antioxidant activity and concentration of phenols and flavonoids in the whole plant and plant parts of Teucrium chamaedrys L. var. glanduliferum Haussk. J. Med. Plants Res. 2010, 4, 2092–2098. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.S.; Petrović, M.; Godjevac, D.; Dajić-Stevanović, Z. Screening inland halophytes from the central Balkan for their antioxidant activity in relation to total phenolic compounds and flavonoids: Are there any prospective medicinal plants? J. Arid. Environ. 2015, 120, 26–32. [Google Scholar] [CrossRef]
- Liu, L.; Gitz, C.D.; McClure, W.J. Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. Physiol. Plant 1995, 93, 725–733. [Google Scholar] [CrossRef]
- Abideen, Z.; Qasim, M.; Rasheed, A.; Adnan, M.Y.; Gul, B.; Khan, M.A. Antioxidant activity and polyphenolic content of Phragmites karka under saline conditions. Pak. J. Bot. 2015, 47, 813–818. [Google Scholar]
- Unal, B.T.; Aktas, L.Y.; Guven, A. Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulg. J. Agric. Sci. 2014, 20, 883–887. [Google Scholar]
- Alonso-Amelot, M.E.; Oliveros-Bastidas, A.; Calcagno-Pisarelli, M.P. Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation, and rain regime. Biochem. Syst. Ecol. 2007, 35, 1–10. [Google Scholar] [CrossRef]
- Ganzera, M.; Guggenberger, M.; Stuppner, H.; Zidorn, C. Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv. BONA. Planta Med. 2008, 74, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Stanković, M.S. Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac J. Sci. 2011, 33, 63–72. [Google Scholar]
- Zlatić, N.M.; Stanković, M.S.; Simić, Z.S. Secondary metabolites and metal content dynamics in Teucrium montanum L. and Teucrium chamaedrys L. from habitats with serpentine and calcareous substrate. Environ. Monit. Assess. 2017, 189, 110. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela, R.R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Quettier, D.C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.C.; Cayin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Takao, T.; Watanabe, N.; Yagi, I.; Sakata, K. A simple screening method for antioxidant and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem. 1994, 58, 1780–1783. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free radical scavenging activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef] [PubMed]
Locality | Type of Analysis | |||||
---|---|---|---|---|---|---|
Total Phenolic Content (mg of GA/g of Extract) | Flavonoid Content (mg of Ru/g of Extract) | Antioxidant Activity IC50 (µg/mL) | ||||
Type of Extract | ||||||
Ethanol | Ethyl Acetate | Ethanol | Ethyl Acetate | Ethanol | Ethyl Acetate | |
Oblačinska slatina | 120.83 ± 1.02 | 119.83 ± 1.34 | 144.36 ± 0.83 | 317.62 ± 2.04 | 117.73 ± 1.71 | 87.64 ± 1.90 |
Ivanjica | 95.53 ± 0.97 | 115.10 ± 1.50 | 129.00 ± 1.18 | 273.07 ± 1.56 | 120.53 ± 2.21 | 101.44 ± 1.53 |
Kragujevac | 92.44 ± 1.12 | 96.55 ± 1.45 | 86.03 ± 0.59 | 176.09 ± 1.39 | 121.05 ± 1.66 | 125.76 ± 2.33 |
(r) | AA Ethanol | AA Ethyl Acetate |
---|---|---|
TPC Ethanol | −0.999 * | −0.835 |
TPC Ethyl acetate | −0.760 | −0.985 |
TF Ethanol | −0.800 | −0.994 |
TF Ethyl acetate | −0.832 | −0.999 * |
Locality | Type of Habitat | Altitude | Latitude and Longitude |
---|---|---|---|
Oblačinska slatina | Meadow, Hygrophilous habitat | 285 m | 43°18′17.76″ N 21°41′0.340″ E |
Ivanjica | Meadow, Mesophilous habitat | 997 m | 43°28′32.55″ N 20°10′29.11″ E |
Kragujevac | Meadow, Mesophilous habitat | 194 m | 44°01′31.18″ N 20°54′50.62″ E |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatić, N.M.; Stanković, M.S. Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats. Plants 2017, 6, 38. https://doi.org/10.3390/plants6030038
Zlatić NM, Stanković MS. Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats. Plants. 2017; 6(3):38. https://doi.org/10.3390/plants6030038
Chicago/Turabian StyleZlatić, Nenad M., and Milan S. Stanković. 2017. "Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats" Plants 6, no. 3: 38. https://doi.org/10.3390/plants6030038
APA StyleZlatić, N. M., & Stanković, M. S. (2017). Variability of Secondary Metabolites of the Species Cichorium intybus L. from Different Habitats. Plants, 6(3), 38. https://doi.org/10.3390/plants6030038