Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial Activity and Cytotoxicity of Crude Extracts from Corymbia Trees
2.2. Antibacterial Activity of Flavonoids from Corymbia torelliana
2.3. Anti-Pseudomonas Activity and Cytotoxicity of 3,4′,5,7-Tetrahydroxyflavanone
3. Materials and Methods
3.1. Antimicrobial Activity and Cytotoxicity of Crude Extracts from Corymbia Trees
3.2. Antibacterial Activity of Flavonoids from Corymbia torelliana
3.3. Anti-Pseudomonas Activity and Cytotoxicity of 3,4′,5,7-tetrahydroxyflavanone
3.4. Data Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rappuoli, R. From Pasteur to genomics: Progress and challenges in infectious diseases. Nat. Med. 2004, 10, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.R. The challenge of multidrug resistance: Actual strategies in the development of novel antibacterials. Appl. Microbiol. Biotechnol. 2004, 63, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci. 2016, 37, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Siller, G.; Rosen, R.; Freeman, M.; Welburn, P.; Katsamas, J.; Ogbourne, S.M. PEP005 (ingenol mebutate) gel for the topical treatment of superficial basal cell carcinoma: Results of a randomized phase IIa trial. Australas. J. Dermatol. 2010, 51, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Frustaci, A.; Fini, M.; Cesario, A. From traditional European medicine to discovery of new drug candidates for the treatment of dementia and Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr. Med. Chem. 2013, 20, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Ogbourne, S.M.; Parsons, P.G. The value of nature’s natural product library for the discovery of New Chemical Entities: The discovery of ingenol mebutate. Fitoterapia 2014, 98, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.D.; Brooks, P.R.; Ogbourne, S.M.; Russell, F.D. Natural products isolated from Tetragonula carbonaria cerumen modulate free radical-scavenging and 5-lipoxygenase activities in vitro. BMC Complement. Altern. Med. 2017, 17, 232. [Google Scholar] [CrossRef] [PubMed]
- Maiden, J. The gums, resins and other vegetable exudations of Australia. J. R. Soc. NSW 1901, 1, 161–212. [Google Scholar]
- Penfold, A. The Eucalypts; Interscience Publishers: New York, NY, USA, 1961. [Google Scholar]
- Locher, C.; Currie, L. Revisiting kinos—An Australian perspective. J. Ethnopharmacol. 2010, 128, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Reid, E.J.; Betts, T.J. The Records of Western Australian Plants Used by Aboriginals as Medicinal Agents; Western Australian Institute of Technology: Perth, Australia, 1977. [Google Scholar]
- Packer, J.; Naz, T.; Yaegl Community Elders; Harrington, D.; Jamie, J.F.; Vemulpad, S.R. Antimicrobial activity of customary medicinal plants of the Yaegl Aboriginal community of northern New South Wales, Australia: A preliminary study. BMC Res. Notes 2015, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, C.B.A.; Lawal, T.O.; Mahady, G.B. In vitro susceptibility of Helicobacter pylori to extracts of Eucalyptus camaldulensis and Eucalyptus torelliana. Pharm. Biol. 2009, 47, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Lawal, T.O.; Adeniyi, B.A.; Adegoke, A.O.; Franzblau, S.G.; Mahady, G.B. In vitro susceptibility of Mycobacterium tuberculosis to extracts of Eucalyptus camaldulensis and Eucalyptus torelliana and isolated compounds. Pharm. Biol. 2012, 50, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Satwalekar, S.S.; Gupta, T.R.; Narasimha, P.L. Chemical and antibacterial properties of kinos from Eucalyptus spp. Citriodorol—The antibiotic principle from the kino of E. citriodora. J. Ind. Inst. Sci. 1956, 39, 195–212. [Google Scholar]
- Von Martius, S.; Hammer, K.A.; Locher, C. Chemical characteristics and antimicrobial effects of some Eucalyptus kinos. J. Ethnopharmacol. 2012, 144, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Ramos Alvarenga, R.F.; Wan, W.; Inui, T.; Franzblau, S.G.; Pauli, G.F.; Jaki, B.U. Airborne antituberculosis activity of Eucalyptus citriodora essential oil. J. Nat. Prod. 2014, 77, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, B.A.; Odufowoke, R.O.; Olaleye, S.B. Antibacterial and gastroprotective properties of Eucalyptus torelliana [Myrtaceae] crude extracts. Int. J. Pharmacol. 2006, 2, 362–365. [Google Scholar]
- Lawal, T.O.; Adeniyi, B.A.; Idowu, O.S.; Moody, J.O. In vitro activities of Eucalyptus camaldulensis Dehnh. and Eucalyptus torelliana F. Muell. against non-tuberculous mycobacteria species. Afr. J. Microbiol. Res. 2011, 5, 3652–3657. [Google Scholar]
- Wallace, H.M.; Trueman, S.J. Dispersal of Eucalyptus torelliana seeds by the resin-collecting stingless bee, Trigona carbonaria. Oecologia 1995, 104, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Wallace, H.M.; Howell, M.G.; Lee, D.J. Standard yet unusual mechanisms of long-distance dispersal: Seed dispersal of Corymbia torelliana by bees. Divers. Distrib. 2008, 14, 87–94. [Google Scholar] [CrossRef]
- Wallace, H.; Lee, D.J. Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae). Apidologie 2010, 41, 428–435. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Wallace, H.M.; Schmitt, T. The cuticular profiles of Australian stingless bees are shaped by resin of the eucalypt tree Corymbia torelliana. Austral Ecol. 2011, 36, 537–543. [Google Scholar] [CrossRef]
- Wallace, H.M.; Leonhardt, S.D. Do hybrid trees inherit invasive characteristics? Fruits of Corymbia torelliana × C. citriodora hybrids and potential for seed dispersal by bees. PLoS ONE 2015, 10, e0138868. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, S.D.; Baumann, A.-M.; Wallace, H.M.; Brooks, P.; Schmitt, T. The chemistry of an unusual seed dispersal mutualism: Bees use a complex set of olfactory cues to find their partner. Anim. Behav. 2014, 98, 41–51. [Google Scholar] [CrossRef]
- Drescher, N.; Wallace, H.M.; Katouli, M.; Massaro, C.F.; Leonhardt, S.D. Diversity matters: How bees benefit from different resin sources. Oecologia 2014, 176, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.F.; Smyth, T.J.; Smyth, W.F.; Heard, T.; Leonhardt, S.D.; Katouli, M.; Wallace, H.M.; Brooks, P. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phytother. Res. 2015, 29, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Nobakht, M.; Grkovic, T.; Trueman, S.J.; Wallace, H.M.; Katouli, M.; Quinn, R.J.; Brooks, P.R. Chemical constituents of kino extract from Corymbia torelliana. Molecules 2014, 19, 17862–17871. [Google Scholar] [CrossRef] [PubMed]
- Streeter, K.; Neuman, C.; Thompson, J.; Hatje, E.; Katouli, M. The characteristics of genetically related Pseudomonas aeruginosa from diverse sources and their interaction with human cell lines. Can. J. Microbiol. 2016, 62, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, A. Mode of action of β-lactam antibiotics—A microbiologist’s view. In Antibiotics—Handbook of Experimental Pharmacology; Demain, A.L., Solomon, A.N., Eds.; Springer: Berlin, Germany, 1983; pp. 15–96. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; CLSI document M100-S22; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Polaquini, S.R.B.; Svidzinski, T.I.E.; Kemmelmeier, C.; Gasparetto, A. Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch. Oral Biol. 2006, 51, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. J. Infect. Public Health 2009, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Ciofu, N.; Bjarnshol, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.S.; Robertson, G.T. Bacterial and fungal biofilm infections. Annu. Rev. Med. 2008, 59, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, C.; Barbieri, E.; Falzano, L.; Mattaresse, P.; Baffone, W.; Pianetti, A.; Katouli, M.; Kühn, I.; Möllby, R.; Bruscolini, F.; et al. Occurrence, diversity and pathogenicity of mesophilic Aeromonas in estuarine waters of the Italian coast of the Adriatic Sea. J. Appl. Microbiol. 1998, 85, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Snowden, L.A.; Wernbacher, L.; Stenzel, D.; Tucker, J.; McKay, D.; O’Brien, M.; Katouli, M. Prevalence of environmental Aeromonas in South-East Queensland, Australia: A study of their interactions with human monolayer Caco-2 cells. J. Appl. Microbiol. 2006, 101, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Hatje, E.; Neuman, C.; Katouli, M. Interaction of Aeromonas strains with lactic acid bacteria using Caco-2 cells. Appl. Environ. Microbiol. 2014, 80, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Plésiat, P.; Nikaido, H. Outer membranes of Gram-negative bacteria are permeable to steroid probes. Mol. Microbiol. 1992, 6, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of the phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 1996, 50, 27–34. [Google Scholar] [CrossRef]
- Alcaraz, L.E.; Blanco, S.E.; Puig, O.N.; Tomas, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Theor. Biol. 2000, 205, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.F.M.; Souza, M.C.; Matta, S.R.; Andrade, M.R.; Vidal, F.V.N. Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chem. 2006, 99, 431–435. [Google Scholar] [CrossRef]
- Hoffman, L.R.; D’Argenio, D.A.; MacCoss, M.J.; Zhang, Z.; Jones, R.A.; Miller, S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Plyuta, V.; Zaitseva, J.; Lobakova, E.; Zagoskina, N.; Kuznetsov, A.; Khmel, I. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa. APMIS 2013, 121, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.P.; Silva, A.F.; Calil, N.O.; Oliveira, M.G.; Silva, S.S.; Raposo, N.R.B. In vitro inhibition of Pseudomonas aeruginosa adhesion by xylitol. Braz. Arch. Biol. Technol. 2011, 54, 877–884. [Google Scholar] [CrossRef]
- Hillis, W. The chemistry of the Eucalypt kinos. Part I. chromatographic resolution. Aust. J. Basic Appl. Sci. 1951, 3, 385–397. [Google Scholar]
- Hillis, W. The chemistry of the Eucalypt kinos. Part II. Aromadendrin, kaempferol and ellagic acid. Aust. J. Sci. Res. 1952, 2, 379–386. [Google Scholar]
- Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 2004, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Chem. Biol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.A.; Piggott, A.M.; Smith, T.E.; Nahrung, H.F. Corymbia phloem phenolics, tannins and terpenoids: Interactions with a cerambycid borer. Chemoecology 2014, 24, 95–103. [Google Scholar] [CrossRef]
- Nahrung, H.F.; Smith, T.E.; Wiegand, A.N.; Lawson, S.A.; Debuse, V.J. Host tree influences on longicorn beetle (Coleoptera: Cerambycidae) attack in subtropical Corymbia (Myrtales: Myrtaceae). Environ. Entomol. 2014, 43, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Loumouamou, A.N.; Silou, T.; Mapola, G.; Chalcat, J.C.; Figuéredo, G. Yield and composition of essential oils from Eucalyptus citriodora × Eucalyptus torelliana, a hybrid species growing in Congo-Brazzaville. J. Essent. Oils Res. 2009, 21, 295–299. [Google Scholar] [CrossRef]
- Dickinson, G.R.; Wallace, H.M.; Lee, D.J. Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: Forestry breeding and the risk of gene flow. Ann. For. Sci. 2013, 70, 1–10. [Google Scholar] [CrossRef]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Production of cuttings in response to stock plant temperature in the subtropical eucalypts, Corymbia citriodora and Eucalyptus dunnii. New For. 2013, 44, 265–279. [Google Scholar] [CrossRef]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Nutrient partitioning among the roots, hedge and cuttings of Corymbia citriodora stock plants. J. Plant Nutr. Soil Sci. 2013, 13, 977–989. [Google Scholar] [CrossRef]
- Trueman, S.J.; McMahon, T.V.; Bristow, M. Biomass partitioning in Corymbia citriodora, Eucalyptus cloeziana and E. dunnii stock plants in response to temperature. J. Trop. For. Sci. 2013, 25, 504–509. [Google Scholar]
- Lopes, E.D.; Laia, M.L.; Santos, A.S.; Soares, G.M.; Leite, R.W.P.; Martins, N.S. Influência do espaçamento de plantio na produção energética de clones de Corymbia e Eucalyptus. Floresta 2017, 47, 95–104. [Google Scholar] [CrossRef]
- Wendling, I.; Brooks, P.R.; Trueman, S.J. Topophysis in Corymbia torelliana × C. citriodora seedlings: Adventitious rooting capacity, stem anatomy, and auxin and abscisic acid concentrations. New For. 2015, 46, 107–120. [Google Scholar] [CrossRef]
- Maiden, J.H. Botany Bay of Eucalyptus kino. Pharm. J. Trans. 1889, 3, 221–321. [Google Scholar]
- Kudi, A.; Umoh, J.; Eduvie, L.; Gefu, J. Screening of some Nigerian medicinal plants for antibacterial activity. J. Ethnopharmacol. 1999, 67, 225–228. [Google Scholar] [CrossRef]
- Boyanova, L.; Gergova, G.; Nikolov, R.; Derejian, S.; Lazarova, E.; Katsarova, N.; Mitov, I.; Krastev, Z. Activity of Bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol. 2005, 54, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A.; Semple, S. Antibacterial activity of traditional Australian medicinal plants. J. Ethnopharmacol. 2001, 77, 151–157. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Grey, P.A.; Kirov, S.M. Adherence to HEp-2 cells and enteropathogenic potential of Aeromonas spp. Epidemiol. Infect. 1993, 110, 279–287. [Google Scholar] [CrossRef] [PubMed]
Corymbia Species or Hybrid | Strain/Zone of Inhibition (mm) * | |||
---|---|---|---|---|
C1 | C8 | C11 | C19 | |
C. citriodora | 12 ± 0 | 18 ± 1 | 15 ± 1 | 11 ± 0 |
C. torelliana × C. citriodora | 11 ± 0 | 16 ± 1 | 19 ± 1 | 12 ± 0 |
C. torelliana | 11 ± 0 | 11 ± 1 | 1 ± 1 ** | 12 ± 0 |
Antibiotic Susceptibility Profile † | ||||
Amikacin (30 µg) | S | S | S | S |
Aztreonam (30 µg) | S | I | I | I |
Ceftazidime (30 µg) | S | S | S | S |
Cefepime (30 µg) | S | S | S | S |
Piperacillin (100 µg) | S | I | S | R |
Piperacillin-tazobactam (100/10 µg) | S | R | S | I |
Ticarcillin (75 µg) | I | I | R | I |
Gentamicin (10 µg) | S | I | S | S |
Ciprofloxacin (5 µg) | S | S | S | S |
Norfloxacin (10 µg) | S | S | S | S |
Imipenem (10 µg) | R | S | S | S |
Ticarcillin-clavulanic acid (75/10 µg) | I | R | I | R |
Bacterium | Zone of Inhibition (mm) | ||||||
---|---|---|---|---|---|---|---|
Compound | |||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
P. aeruginosa | 20.3 ± 1.8 | 6.7 ± 6.7 | 19.7 ± 1.9 | 12.3 ± 6.3 | 18.7 ± 1.2 | 24.7 ± 2.9 | 20.3 ± 2.8 |
S. aureus | inactive | inactive | inactive | inactive | 12.7 ± 1.8 | inactive | inactive |
MIC (µg/mL) | Control Adhesion cfu (Mean ± S.E.) | Adhesion Difference (%) | ||
---|---|---|---|---|
Final Mass (µg) | ||||
200 | 100 | 50 | ||
200 | 3.86 ± 0.16 | −19 | −38 | −35 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobakht, M.; Trueman, S.J.; Wallace, H.M.; Brooks, P.R.; Streeter, K.J.; Katouli, M. Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana. Plants 2017, 6, 39. https://doi.org/10.3390/plants6030039
Nobakht M, Trueman SJ, Wallace HM, Brooks PR, Streeter KJ, Katouli M. Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana. Plants. 2017; 6(3):39. https://doi.org/10.3390/plants6030039
Chicago/Turabian StyleNobakht, Motahareh, Stephen J. Trueman, Helen M. Wallace, Peter R. Brooks, Klrissa J. Streeter, and Mohammad Katouli. 2017. "Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana" Plants 6, no. 3: 39. https://doi.org/10.3390/plants6030039
APA StyleNobakht, M., Trueman, S. J., Wallace, H. M., Brooks, P. R., Streeter, K. J., & Katouli, M. (2017). Antibacterial Properties of Flavonoids from Kino of the Eucalypt Tree, Corymbia torelliana. Plants, 6(3), 39. https://doi.org/10.3390/plants6030039