Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions
Abstract
:1. Introduction
2. Results
2.1. Influence of N Fertilization Levels and Plant-Based Biostimulants on Yield and Plant Growth Parameters
2.2. Influence of N Fertilization Levels and Plant-Based Biostimulants on SPAD index and Leaf Colorimetry
2.3. Influence of N Fertilization Levels and Plant-Based Biostimulants on Nitrate Accumulation and Biochemical Parameters
2.4. Influence of N Fertilization Levels and Plant-Based Biostimulants on Lipophilic Antioxidant Activity and Total Ascorbic Acid
3. Discussion
4. Materials and Methods
4.1. Growing Conditions, Rocket Cultivar, and Experimental Design
4.2. Nitrogen Fertilization Management and Biostimulant Characteristics and Application
4.3. Morphological Parameters and Leaf Colorimetry
4.4. Lipophilic Antioxidant Activity and Total Ascorbic Acid Analysis
4.5. Chlorophyll, Carotenoid, and Nitrate Analysis
4.6. Statistical Processing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liebman, M.; Davis, A.S. Integration of soil, crop and weed management in low-external-input farming systems. Weed Res. 2000, 40, 27–47. [Google Scholar] [CrossRef]
- Alberici, A.; Quattrini, E.; Penati, M.; Martinetti, L.; Gallina, P.M.; Ferrante, A.; Schiavi, M. Effect of the reduction of nutrient solution concentration on leafy vegetables quality grown in floating system. Acta Hortic. 2008, 801, 1167–1176. [Google Scholar] [CrossRef]
- Cavaiuolo, M.; Ferrante, A. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 2014, 14, 1519–1538. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.K.; Sun, S.B.; Jia, L.J.; Chen, W.; Shen, Q. The mechanism of nitrate accumulation in pakchoi [Brassica campestris L. ssp. Chinensis L.]. Plant Soil 2006, 282, 291–300. [Google Scholar] [CrossRef]
- Parks, S.E.; Huett, D.O.; Campbell, L.C.; Spohr, L.J. Nitrate and nitrite in Australian leafy vegetables. Aust. J. Agric. Res. 2008, 59, 632–638. [Google Scholar] [CrossRef]
- Cavaiuolo, M.; Cocetta, G.; Spadafora, N.D.; Müller, C.T.; Rogers, H.J.; Ferrante, A. Gene expression analysis of rocket salad under pre-harvest and postharvest stresses: A transcriptomic resource for Diplotaxis tenuifolia. PLoS ONE 2017, 12, e0178119. [Google Scholar] [CrossRef]
- Mattner, S.W.; Wite, D.; Riches, D.A.; Porter, I.J.; Arioli, T. The effect of kelp extract on seedling establishment of broccoli on contrasting soil types in southern Victoria, Australia. Biol. Agric. Hortic. 2013, 29, 258–270. [Google Scholar] [CrossRef]
- Gangolli, S.D.; Van den Brandt, P.A.; Feron, V.J.; Jan-Zowsky, C.; Koeman, J.H.; Speijers, G.J.A.; Spiegelhalder, B.; Walker, R.; Winshnok, J.S. Nitrate, nitrite and N-nitroso compounds. Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. 1994, 292, 1–38. [Google Scholar] [CrossRef]
- Walker, R. Nitrate, nitrite and N-nitroso compounds: A review of the occurrence in food and diet and the toxicological implications. Food Addit. Cont. 2000, 7, 717–768. [Google Scholar] [CrossRef]
- Lazzeri, L.; Baruzzi, G.; Malaguti, L.; Antoniacci, L. Replacing methyl bromide in annual strawberry production with glucosinolate containing green manure crops. Pest. Manag. Sci. 2003, 59, 983–990. [Google Scholar] [CrossRef]
- Kim, J.S.; Chung, T.Y.; King, G.J.; Jin, M.; Yang, T.J.; Jin, Y.M.; Kim, H.I.; Park, B.S. A sequence-tagged linkage map of Brassica rapa. Genetics 2006, 174, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sánchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef] [PubMed]
- Gonnella, S.F.; Santamaria, P. Fattori genetici e contenuto di nitrato degli ortaggi. Colt. Protette 2002, 12, 14–19. [Google Scholar]
- Steingrover, E.; Ratering, P.; Siesling, J. Daily changes in uptake, reduction and storage of nitrate in spinach grown at low light intensity. Physiol. Plant. 1986, 66, 550–556. [Google Scholar] [CrossRef]
- Blom-Zandastra, M.; Lampe, J.E.M. The role of nitrate in the osmoregulation of lettuce (Lactuca sativa L.) grown at different light intensities. J. Exp. Bot. 1985, 36, 1043–1052. [Google Scholar] [CrossRef]
- Russo, R.O.; Berlyn, G.P. The Use of Organic Biostimulants to Help Low Input Sustainable agriculture. J. Sustain. Agric. 1990, 1, 19–42. [Google Scholar] [CrossRef]
- Hamza, B.; Suggars, A. Biostimulants: Myths and realities. Turfgrass Trends 2001, 10, 6–10. [Google Scholar]
- Kauffman, G.L.; Kneivel, D.P.; Watschke, T.L. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop. Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Altissimo, A.; Franceschi, C.; Nardi, S. Phenol-containing organic substances stimulate phenylpropanoid metabolism in Zea mays. J. Plant Nutr. Soil. Sci. 2011, 174, 496–503. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Guinan, K.J.; Sujeeth, N.; Copeland, R.B.; Jones, P.W.; O’Brien, N.M.; Sharma, H.S.S.; Prouteau, P.F.J.; O’Sullivan, J.T. Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. Acta Hortic. 2013, 1009, 127–136. [Google Scholar] [CrossRef]
- Nardi, S.; Carletti, P.; Pizzeghello, D.; Muscolo, A. Biological activities of humic substances. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; Wiley: Hoboken, NJ, USA, 2009; Volume 2, pp. 305–340. [Google Scholar]
- Nardi, S.; Carletti, P.; Ertani, A.; Pizzeghello, D. Knowledge and evaluation of plant growth stimulants. Inform. Agrario 2006, 45, 41–44. [Google Scholar]
- Petrozza, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Piaggesi, A. Evaluation of the effect of Radifarm w treatment on the morpho-physiological characteristics of root systems via image analysis. Acta Hortic. 2013, 1009, 149–153. [Google Scholar] [CrossRef]
- Petrozza, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Piaggesi, A. An evaluation of tomato plant root development and morpho-physiological response treated with VIVA w by image analysis. Acta Hortic. 2013, 1009, 155–159. [Google Scholar] [CrossRef]
- Kunicki, E.; Grabowska, A.; Sekara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. J. Food. Agric. Environ. 2005, 3, 86–88. [Google Scholar]
- Vernieri, P.; Borghesi, E.; Tognoni, F.; Serra, G.; Ferrante, A.; Piagessi, A. Use of biostimulants for reducing nutrient solution concentration in floating system. ISHM Acta Hortic. 2006, 718, 477–484. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.M.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein Hydrolysate or Plant Extract-based Biostimulants Enhanced Yield and Quality Performances of Greenhouse Perennial Wall Rocket Grown in Different Seasons. Plants 2019, 5, 208. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant- and Seaweed-Based Extracts Increase Yield but Differentially Modulate Nutritional Quality of Greenhouse Spinach through Biostimulant Action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Lucini, L.; Canaguier, R.; Stefanoni, W.; Fiorillo, A.; Cardarelli, M. Protein hydrolysate-based biostimulants: Origin, biological activity and application methods. Acta Hortic. 2016, 1148, 27–34. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Nardi, S. Transcriptome-wide identification of differentially expressed genes in Solanum Lycopersicon, L. in response to an alfalfa-protein hydrolysate using microarrays. Front. Plant Sci. 2017, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Manoli, A.; Quaggiotti, S.A. Novel biostimulant, belonging to protein hydrolysates, mitigates abiotic stress effects on maize seedlings grown in hydroponics. Agronomy 2019, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M.; Siwik-Ziomek, A. P and K accumulation by rapeseed as affected by biostimulant under different NPK and S fertilization doses. Agronomy 2019, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; Francisco, S.S.; Baigorri, R.; Cruz, F. Brassica napus growth is promoted by Ascophyllum nodosum L. Le Jol. seaweed extract: Microarray analysis and physiological characterization of N, C, and S metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Tsouvaltzis, P.; Koukounaras, A.; Siomos, S.A. Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. Int. J. Agric. Biol. 2014, 16, 951–955. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 231–238. [Google Scholar] [CrossRef]
- Tadros, M.J.; Omari, H.J.; Turk, M.A. The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Aust. J. Crop Sci. 2019, 13, 412–417. [Google Scholar] [CrossRef]
- Ali, M.; Cheng, Z.H.; Hayat, S.; Ahmad, H.; Ghani, M.I.; Liu, T. Foliar spraying of aqueous garlic bulb extract stimulates growth and antioxidant enzyme activity in eggplant (Solanum melongena L.). J. Integr. Agric. 2019, 18, 1001–1013. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; Kyriacou, M.C.; et al. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale food production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Graziani, G.; Pannico, A.; Soteriou, G.A.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem. 2019, 277, 107–118. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K.; et al. Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: A case study on tomato. Front Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Miras Moreno, M.B.; Reynaud, H.; Canaguier, R.; Trtílek, M.; et al. A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front Plant Sci. 2019, 10, 493. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of Vesuvian Piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Van Montagu, M.; Inzé, D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995, 225, 165–167. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Sah, R.N. Nitrate-nitrogen determination: A critical review. Commun. Soil Sci. Plant Anal. 1994, 25, 2841–2869. [Google Scholar] [CrossRef]
- Ruggeri, R.; Provenzano, M.E.; Rossini, F. Effect of mulch on initial coverage of four groundcover species for low input landscaping in a Mediterranean climate. Urban For. Urban Green. 2016, 19. [Google Scholar] [CrossRef]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulfur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the Mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
Treatments | I Harvest | II Harvest | III Harvest | Total | |
---|---|---|---|---|---|
(t ha−1) | |||||
N0 | Control | 6.35 e | 1.73 g | 2.01 e | 10.09 f |
TPE | 7.75 d | 3.56 ef | 2.40 de | 13.71 e | |
LDPH | 8.10 d | 3.15 f | 2.93 cd | 14.18 de | |
N1 | Control | 10.15 c | 3.64 ef | 2.10 e | 15.89 d |
TPE | 10.73 bc | 4.35 ce | 5.09 b | 20.17 c | |
LDPH | 10.93 b | 4.53 cd | 5.11 b | 20.57 c | |
N2 | Control | 11.65 a | 3.92 df | 3.19 c | 18.76 c |
TPE | 11.80 a | 7.38 b | 5.49 b | 24.67 b | |
LDPH | 11.87 a | 7.15 b | 5.08 b | 24.10 b | |
N3 | Control | 11.73 a | 4.82 c | 3.57 c | 20.13 c |
TPE | 11.57 a | 9.04 a | 7.18 a | 27.79 a | |
LDPH | 11.70 a | 8.35 a | 7.40 a | 27.44 a | |
Significance | |||||
Nitrogen (N) | ** | ** | ** | ** | |
Biostimulants (B) | NS | * | * | * | |
N × B | ** | ** | ** | ** |
Treatments | LAI | Succulence | SLW | ||||||
---|---|---|---|---|---|---|---|---|---|
I Harvest | II Harvest | III Harvest | I Harvest | II Harvest | III Harvest | I Harvest | II Harvest | III Harvest | |
(mg H2O cm−2) | (mg d.m. cm−2) | ||||||||
Nitrogen (N) | |||||||||
N0 | 3.5 c | 1.0 d | 0.9 c | 51.5 b | 66.9 b | 65.2 c | 4.4 a | 6.0 a | 7.4 a |
N1 | 4.6 b | 1.5 c | 1.5 b | 55.9 a | 68.8 b | 68.7 bc | 4.4 a | 5.6 b | 5.4 b |
N2 | 5.2 a | 2.0 b | 1.6 b | 55.8 a | 74.2 a | 70.6 ab | 4.1 b | 5.6 b | 5.5 b |
N3 | 5.1 a | 2.4 a | 2.0 a | 56.5 a | 74.7 a | 73.1 a | 4.0 b | 5.6 b | 5.8 b |
Biostimulants (B) | |||||||||
Control | 4.5 | 1.2 b | 1.0 b | 54.5 | 68.6 b | 67.9 b | 4.2 | 5.8 | 6.8 a |
TPE | 4.7 | 2.1 a | 1.8 a | 55.1 | 71.9 a | 70.8 a | 4.3 | 5.7 | 5.7 b |
LDPH | 4.7 | 1.9 a | 1.8 a | 55.6 | 73.0 a | 70.6 a | 4.1 | 5.6 | 5.7 b |
Significance | |||||||||
N | * | * | * | * | ** | ** | * | ** | ** |
B | NS | * | * | NS | * | * | NS | NS | ** |
N × B | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | SPAD Index | ||
---|---|---|---|
I Harvest | II Harvest | III Harvest | |
(%) | |||
Nitrogen (N) | |||
N0 | 22.9 d | 31.8 d | 23.8 d |
N1 | 27.4 c | 34.1 c | 29.3 c |
N2 | 29.1 b | 36.4 b | 33.2 b |
N3 | 31.1 a | 37.5 a | 35.2 a |
Biostimulants (B) | |||
Control | 26.1 b | 32.6 b | 28.7 c |
TPE | 28.1 a | 35.8 a | 30.7 b |
LDPH | 28.6 a | 36.4 a | 31.7 a |
Significance | |||
N | ** | ** | ** |
B | * | * | ** |
N × B | NS | NS | NS |
Treatments | I Harvest | II Harvest | III Harvest | ||||||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | L* | a* | b* | |
Nitrogen (N) | |||||||||
N0 | 42.83 | –16.20 b | 25.15 b | 39.82 | −14.26 c | 20.38 b | 41.73 | –13.01 c | 20.39 c |
N1 | 42.96 | –16.85 a | 25.69 a | 39.74 | –14.75 b | 20.68 b | 41.81 | –13.30 bc | 20.71 bc |
N2 | 42.96 | –16.90 a | 25.96 a | 39.77 | –14.91 ab | 21.23 a | 41.63 | –13.69 ab | 20.91 ab |
N3 | 42.96 | –17.07 a | 27.15 a | 39.83 | −15.07 a | 21.40 a | 41.66 | –13.85 a | 21.30 a |
Biostimulants (B) | |||||||||
Control | 42.87 | –16.75 | 26.20 | 39.71 | –14.64 | 20.84 | 41.74 | –13.46 | 20.83 |
TPE | 43.00 | –16.72 | 26.33 | 39.79 | –14.77 | 20.94 | 41.67 | –13.56 | 20.89 |
LDPH | 42.91 | –16.79 | 26.18 | 39.87 | –14.83 | 20.98 | 41.72 | –13.38 | 20.77 |
Significance | |||||||||
N | NS | * | ** | NS | ** | ** | NS | ** | ** |
B | NS | NS | NS | NS | NS | NS | NS | NS | NS |
N × B | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatments | Nitrate | Chlorophyll a | Chlorophyll b | Total Chlorophyll | Carotenoids |
---|---|---|---|---|---|
(mg kg−1 fw) | (mg g−1 fw) | (mg g−1 fw) | (mg g−1 fw) | (µg g−1 fw) | |
Nitrogen (N) | |||||
N0 | 1049.3 d | 0.741 c | 0.464 b | 1.205 b | 232.0 c |
N1 | 2417.9 c | 0.843 bc | 0.572 ab | 1.415 a | 254.0 b |
N2 | 3036.5 b | 0.873 ab | 0.555 ab | 1.427 a | 265.0 ab |
N3 | 4417.4 a | 0.883 a | 0.624 a | 1.507 a | 280.0 a |
Biostimulants (B) | |||||
Control | 1650.0 b | 0.814 b | 0.524 b | 1.338 b | 253.0 b |
TPE | 3504.2 a | 0.784 b | 0.507 b | 1.291 b | 247.0 b |
LDPH | 2900.1 a | 0.907 a | 0.630 a | 1.537 a | 274.0 a |
Significance | |||||
N | * | * | * | * | ** |
B | * | * | * | * | * |
F × B | NS | NS | NS | NS | NS |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants 2019, 8, 522. https://doi.org/10.3390/plants8110522
Di Mola I, Ottaiano L, Cozzolino E, Senatore M, Giordano M, El-Nakhel C, Sacco A, Rouphael Y, Colla G, Mori M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants. 2019; 8(11):522. https://doi.org/10.3390/plants8110522
Chicago/Turabian StyleDi Mola, Ida, Lucia Ottaiano, Eugenio Cozzolino, Mauro Senatore, Maria Giordano, Christophe El-Nakhel, Adriana Sacco, Youssef Rouphael, Giuseppe Colla, and Mauro Mori. 2019. "Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions" Plants 8, no. 11: 522. https://doi.org/10.3390/plants8110522
APA StyleDi Mola, I., Ottaiano, L., Cozzolino, E., Senatore, M., Giordano, M., El-Nakhel, C., Sacco, A., Rouphael, Y., Colla, G., & Mori, M. (2019). Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants, 8(11), 522. https://doi.org/10.3390/plants8110522