Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments
Abstract
:1. Introduction
2. Results
2.1. Proximal Content
2.2. Mineral Composition
2.3. Antinutritional Composition
3. Discussion
4. Materials and Methods
4.1. Sample Procurement
4.2. Sample Preparation
4.3. Proximal Composition
4.3.1. Moisture Content Determination
4.3.2. Ash Content
4.3.3. Crude Protein
4.3.4. Crude Fiber
4.3.5. Crude Lipid
4.3.6. Total Carbohydrate Content
4.3.7. Energy Value Evaluation
4.3.8. Evaluation of Mineral Element
4.4. Determination of Antinutritional Composition
4.4.1. Alkaloid Content
4.4.2. Oxalate Content
4.4.3. Phytate (Phytic Acid) Content
4.4.4. Saponin Content
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Keats, E.C.; Rappaport, A.I.; Shah, S.; Oh, C.; Jain, R.; Bhutta, Z.A. The dietary intake and practices of adolescent girls in low-and middle-income countries: A systematic review. Nutrients 2018, 10, 1978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Children’s Fund (UNICEF). UNICEF Global Databases: Infant and Young Child Feeding; Division of Research and Policy: New York, NY, USA, 2018. [Google Scholar]
- Jones, A.D.; Ejeta, G. A new global agenda for nutrition and health: The importance of agriculture and food systems. Bull. World Health Organ. 2016, 94, 228–229. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA A Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.J. Global impacts of human mineral nutrition. Plant Soil 2010, 335, 133–154. [Google Scholar] [CrossRef]
- Gupta, I.; Clauder-Munster, S.; Klaus, B.; Jarvelin, A.I.; Aiyar, R.S.; Benes, V.; Wilkening, S.; Huber, W.; Pelechano, V.; Steinmetz, L.M. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol. Syst. Biol. 2014, 10, 1–11. [Google Scholar] [CrossRef]
- Hounsome, N.; Hounsome, B.; Lobo, M.G. Chapter 2: Biochemistry of Vegetables—Major classes of Primary metabolites (Carbohydrates, Amino acids, Vitamins, Organic acids and Fatty acids). In Handbook of Vegetables and Vegetable Processing; Siddiq, M., Uebersax, M.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; pp. 25–46. [Google Scholar]
- Wink, M. Plant secondary metabolites modulate insect behaviour- Steps towards addiction? Front. Physiol. 2018, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Denham, S.A.; Blair, K.A.; DeMulder, E.; Levitas, J.; Sawyer, K.; Auerbach-Major, S.; Queenan, P. Preschool emotional competence: Pathway to social competence? Child Dev. 2003, 74, 238–256. [Google Scholar] [CrossRef]
- Denham, S.A.; Salich, M.; Olthof, T.; Kochanoff, A.; Caverly, S. Emotional and social development in childhood. In Childhood Social Development; Smith, P.K., Hart, C.H., Eds.; Blackwell Publishing Limited: Hoboken, NJ, USA, 2004; pp. 307–328. [Google Scholar]
- Nayar, N.M. The Bananas: Botany, Origin, Dispersal. Hortic. Rev. 2010, 36, 117–164. [Google Scholar]
- Kumar, V.; Akinleye, A.; Makkar, H.P.S.; Angulo-Escalante, M.A.; Becker, K. Growth performance and metabolic efficiency in Nile tilapia (Oreochromis niloticus L.) fed a diet containing Jatropha platyphylla kernel meal as a protein source. J. Anim. Physiol. Anim. Nutr. 2012, 96, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Nelson, S.C.; Ploetz, R.C.; Kepler, A.K. Musa species (bananas and plantains). In Species Profiles for Pacific Island Agroforestry; Elevitch, C.R., Ed.; Permanent Agricultural Resources: Holualoa, HI, USA, 2006. [Google Scholar]
- Wang, S.; Alseekh, S.; Fernie, A.R.; Luo, J. The structure and function of major plant metabolite modifications. Mol. Plant 2019, 12, 899–919. [Google Scholar] [CrossRef] [PubMed]
- Nwofia, G.E.; Ojimelukwe, P.; Eji, C. Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes. Int. J. Med. Aromat. Plants 2012, 2, 200–206. [Google Scholar]
- Uyoh, E.A.; Chukwura, P.N.; David, I.A.; Bassey, A.C. Evaluation of antioxidant capacity of two Ocimum species consumed locally as spices in Nigeria as a justification for increased domestication. Am. J. Plant Sci. 2013, 4, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Ogbonna, O.A.; Izundu, A.I.; Okoye, N.H.; Ikeyi, A.P. Phytochemical compositions of fruits of three Musa species at three stages of development. IOSR J. Pharm. Biol. Sci. 2016, 11, 48–59. [Google Scholar]
- Oko, J.O.; Abriba, C.; Audu, J.A.; Kutman, N.A.; Okeh, Q. Bacteriological and nutritional analysis of groundnut cake sold in an open market in Samaru, Zaria-Kaduna State. Int. J. Sci. Technol. Res. 2015, 4, 224–227. [Google Scholar]
- Ogidi, I.A.; Wariboko, C.; Alamene, A. Appraisal of some chemical elements of plantain (Musa paradisiaca L.) cultivars in Bayelsa state, Nigeria. Eur. J. Agric. For. Res. 2018, 6, 1–31. [Google Scholar]
- Fidrianny, I.; Anggraeni, N.A.S.; Insanu, M. Antioxidant properties of peels extracts from three varieties of banana (Musa sp.) grown in West Java, Indonesia. Int. Food Res. J. 2018, 25, 57–64. [Google Scholar]
- Djuric, Z.; DiLaura, N.M.; Jenkins, I.; Darga, L.; Jen, C.K.; Mood, D.; Bradley, E.; Hryniuk, W.M. Combining weight-loss counselling with the weight watchers plan for obese breast cancer survivors. Obes. Res. 2002, 10, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Moongngarm, A. Chemical compositions and resistant starch content in starchy foods. Am. J. Agric. Biol. Sci. 2013, 8, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Comerford, K.B.; Pasin, G. Emerging evidence for the importance of dietary protein source on glucoregulatory markers and type 2 diabetes: Different effects of dairy, meat, fish, egg, and plant protein foods. Nutrients 2016, 8, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitada, M.; Ogura, Y.; Nitta, K.; Fujii, M.; Kanasaki, K.; Konishi, K.; Iida, Y.; Nakagawa, A.; Koya, D. Effect of switching to teneligliptin from other dipeptidyl peptidase-4 inhibitors on glucose control and renoprotection in type 2 diabetes patients with diabetic kidney disease. J. Diabetes Investig. 2019, 10, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.T.; Sanni, L.O.; Barimalaa, I.S.; Hart, A.D. Nutritional composition of five new Nigerian Musa hybrid cultivars: Implications for adoption in human nutrition. Fruits 2007, 62, 135–142. [Google Scholar] [CrossRef]
- Khawas, P.; Deka, S.C. Comparative nutritional, functional, morphological and diffractogram study on Culinary banana (Musa ABB) peel at various stages of development. Int. J. Food Prop. 2016, 19, 2832–2853. [Google Scholar] [CrossRef] [Green Version]
- Hapsari, L.; Lestari, D.A. Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. AGRIVITA J. Agric. Sci. 2016, 38, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Khan, K.Y.; Khan, M.A.; Niamat, R.; Munir, M.; Fazal, H.; Mazari, P.; Seema, N.; Bashir, T.; Kanwal, A.; Ahmed, S.N. Element content analysis of plants of genus Ficus using atomic absorption spectrometer. Afr. J. Pharm. Pharmacol. 2011, 5, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Wall, M.M. Ascorbic acid, vitamin A and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compos. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Haq, F.; Ullah, R. Comparative determination of trace elements from Allium sativum, Rheum austral and Terminalia chebulaby atomic absorption spectroscopy. Int. J. Biosci. 2011, 1, 77–82. [Google Scholar]
- Kartika, H.; Shido, J.; Nakamoto, S.T.; Li, Q.X.; Iwaoka, W.T. Nutrient and mineral composition of dried mamaki leaves (Pipturus albidus) and infusions. J. Food Compos. Anal. 2011, 24, 44–48. [Google Scholar] [CrossRef]
- Okareh, O.T.; Adeolu, A.T.; Adepoju, O.T. Proximate and mineral composition of plantain (Musa paradisiaca) waste flour; a potential nutrients source in the formulation of animal feeds. Afr. J. Food Sci. Technol. 2015, 6, 53–57. [Google Scholar] [CrossRef]
- Ekmekcioglu, C.; Wallner, P.; Kundi, M.; Weisz, U.; Haas, W.; Hutter, H. Red meat, diseases, and healthy alternatives: A critical review. Crit. Rev. Food Sci. Nutr. 2016, 58, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Alinnor, I.J.; Oze, R. Chemical evaluation of the nutritive value of Pentaclethra macrophyllabenth (African Oil Bean) Seeds. Pak. J. Nutr. 2011, 10, 355–359. [Google Scholar]
- Ibrahim, H.O.; Osilesi, O.; Adebawo, O.O.; Onajobi, F.D.; Karigidi, K.O.; Muhammad, L.B. Nutrients compositions and phytochemical contents of edible parts of Chrysophyllum albidum fruit. J. Nutr. Food Sci. 2017, 7, 1–9. [Google Scholar]
- McCarron, M.; Swinburne, J.; Burke, E.; McGlinchey, E.; Carroll, R.; McCallion, P. Patterns of multi-morbidity in an older population of persons with an intellectual disability: Results from the intellectual disability supplement to the Irish longitudinal study on aging (IDS-TILDA). Res. Dev. Disabil. 2013, 34, 521–527. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, T.; Kuklina, E.V.; Flanders, W.D.; Hong, Y.; Gillespie, C.; Hu, F.B. Sodium and potassium intake and mortality among US adults: Prospective data from the third national health and nutrition examination survey. Arch. Intern. Med. 2011, 171, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Perez, V.; Chang, E.T. Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Adv. Nutr. 2014, 5, 712–741. [Google Scholar] [CrossRef]
- Park, J.; Kwock, C.K.; Yang, Y.J. The effect of the sodium to potassium ratio on hypertension prevalence: A propensity score matching approach. Nutrients 2016, 8, 482. [Google Scholar] [CrossRef] [Green Version]
- Veum, T.L. Phosphorus and calcium nutrition and metabolism. In Phosphorus and Calcium Utilization and Requirements in Farm Animals; Vitti, D.M.S.S., Kebreab, E., Eds.; CAB International: Oxfordshire, UK, 2010; pp. 94–111. [Google Scholar]
- Mlitan, A.M.; Sasi, M.S.; Alkherraz, A.M. Proximate and minor mineral content in some selected basil leaves of Ocimum gratissimum L. in Libya. Int. J. Chem. Eng. Appl. 2014, 5, 8–17. [Google Scholar]
- Tomé, D.; Bos, C. Dietary protein and nitrogen utilization. J. Nutr. 2000, 130, 1868S–1873S. [Google Scholar] [CrossRef]
- Clark, K.L.; Noudoost, B. The role of prefrontal catecholamines in attention and working memory. Front. Neural Circuits 2014, 8, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieu, P.T.; Heiskala, M.; Peterson, P.A.; Yang, Y. The roles of iron in health and disease. Mol. Asp. Med. 2001, 22, 1–87. [Google Scholar] [CrossRef]
- Alibabića, V.; Šertovića, E.; Mujićb, I.; Živkovićc, J.; Blažićd, M.; Zavadlav, S. The level of nutrition knowledge and dietary iron intake of Bosnian women. Procedia-Soc. Behav. Sci. 2016, 217, 1071–1075. [Google Scholar]
- Kookal, S.K. Thimmaiah, A. Nutritional composition of staple food bananas of three cultivars in India. Am. J. Plant Sci. 2018, 9, 2480–2493. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Chapter 11: Evaluation of foods. In Animal Nutrition, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA; Pearson: London, UK, 1995; pp. 254–280. [Google Scholar]
- Shomar, B. Zamzam water: Concentration of trace elements and other characteristics. Chemosphere 2012, 86, 600–605. [Google Scholar] [CrossRef]
- Russell, D.G.; Parnell, W.; Wilson, N.; Faed, J.; University of Otago; LINZ Activity and Health Research Unit.; New Zealand Ministry of Health. NZ food: NZ people. In Key Results of the 1997 National Nutrition Survey; Ministry of Health: Wellington, New Zealand, 1999. [Google Scholar]
- Hassan, H.F.; Hassan, U.F.; Usher, O.A.; Ibrahim, A.B.; Tabe, N.N. Exploring the potentials of Banana (Musa Sapietum) peels in feed formulation. Int. J. Adv. Res. Chem. Sci. 2018, 5, 10–14. [Google Scholar]
- Igile, G.O.; Iwara, I.A.; Mgbeje, B.I.A.; Uboh, F.E.; Ebong, P.E. Phytochemical, proximate and nutrient composition of Vernonia calvaona Hook (Asterecea): A Green-Leafy Vegetable in Nigeria. J. Food Res. 2013, 2, 1–11. [Google Scholar]
- El Barky, A.B.; Hussein, S.A.; Alm-Eldeen, A.A.; Hafez, Y.A.; Mohamed, T.M. Saponins and their potential role in diabetes mellitus. Diabetes Manag. 2017, 7, 148–158. [Google Scholar]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Nutritional evaluation of Kedrostis africana (L.) Cogn: An edible wild plant of South Africa. Asian Pac. J. Trop. Biomed. 2017, 7, 1–17. [Google Scholar] [CrossRef]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, S330–S375. [Google Scholar] [CrossRef]
- Savage, G.P.; Dubois, M. The effect of soaking and cooking on the oxalate content of taro leaves. Int. J. Food Sci. Nutr. 2006, 57, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, O.; Drüeke, T.B. A new era in the treatment of calcium oxalate stones? Kidney Int. 2013, 83, 998–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.V.H.; Savage, G.P. Oxalate content of New Zealand grown and imported fruits. J. Food Compos. Anal. 2013, 31, 180–184. [Google Scholar] [CrossRef]
- Dupont, S.; Zacchigna, L.; Cordenonsi, M.; Soligo, S.; Adorno, M.; Rugge, M.; Piccolo, S. Germ-layer specification and control of cell growth by ectodermin, a smad4 ubiquitin ligase. Cell 2005, 121, 87–99. [Google Scholar] [CrossRef]
- Aniszewski, T. Alkaloids—Secrets of Life-Alkaloid Chemistry, Biological Significance, Applications and Ecological Role; Elsevier Publications: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Unuofin, J.O.; Otunola, G.A.; Afolayan, A.J. Essential oil composition, nutrient and anti-nutrient analysis of Vernonia mespilifolia Less. Res. J. Bot. 2017, 12, 38–45. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC, 17th ed; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Agrilasa. Method 6.1.1. Dry ashing. In Handbook of Feeds and Plant Analysis, 2nd ed.; Palic, P., Claasens, A.S., Collier, J., Loock, A., Hattingh, D., Eds.; Agricultural Laboratory Association of South Africa: Pretoria, South Africa, 2007. [Google Scholar]
- Hussain, J.; ur Rehman, N.; Al-Harrasi, A.; Ali, L.; Ullah, R.; Mabood, F.; Hussain, H.; Ismail, M. Nutritional prospects and mineral compositions of selected vegetables from Dhoda sharif Kohat. J. Med. Plants Res. 2011, 5, 6509–6514. [Google Scholar]
- Aina, V.O.; Sambo, B.; Zakari, A.; Haruna, M.S.H.; Umar, H.; Akinboboye, R.M.; Mohammed, A. Determination of nutritional and anti-nutrient content of Vitis vinifera (Grapes) grown in Bomo (Area C) Zaria, Nigeria. Adv. J. Food Sci. Technol. 2012, 4, 445–448. [Google Scholar]
- Al-Harrasi, A.; Al-Rawahi, A.; Hussain, J.; Rehman, N.U.; Ali, L.; Hussain, H. Proximate analysis of the resins and leaves of Boswellia sacra. J. Med. Plants Res. 2012, 6, 3098–3104. [Google Scholar] [CrossRef]
- Omoruyi, B.E.; Bradley, G.; Afolayan, A.J. Antioxidant and phytochemical properties of Carpobrotus edulis (L.) bolus leaf used for the management of common infections in HIV/AIDS patients in Eastern Cape Province. BMC Complement. Altern. Med. 2012, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Agbaire, P.O. Nutritional and anti-nutritional levels of some local vegetables (Vernonia amygdalina, Manihot esculenta, Telferia occidentalis, Talinum triangulare and Amaranthus spinosus) from Delta State, Nigeria. J. Appl. Sci. Environ. Manag. 2011, 15, 625–628. [Google Scholar]
- Damilola, O.L.; Joseph, O.B.; Olufemi, A.; Amoo, I.A. Chemical composition of red and white cocoyam (Colocosia esculenta) leaves. Int. J. Sci. Res. 2013, 11, 121–125. [Google Scholar]
- Otang, W.M.; Grierson, D.S.; Ndip, R.N. Phytochemical studies and antioxidant activity of two South African medicinal plants traditionally used for the management of opportunistic fungal infections in HIV/AIDS patients. BMC Complement. Altern. Med. 2012, 12, 1–7. [Google Scholar]
Sample | Moisture | Lipid (Fat) | Ash | Fiber | Protein | Carbohydrate | Energy Value | |
---|---|---|---|---|---|---|---|---|
Banana | Flesh | 20.81 ± 0.72 a | 0.15 ± 0.00 f | 1.01 ± 0.00 e | 0.73 ± 0.00 f | 1.71 ± 0.00 e | 75.59 ± 0.72 c | 310.55 ± 0.01 c |
Peel | 20.87 ± 0.19 ab | 1.24 ± 0.00 a | 3.95 ± 0.00 b | 4.17 ± 0.00 b | 2.48 ± 0.00 a | 67.29 ± 0.19 e | 290.24 ± 0.01 e | |
Peel extract | - | 0.75 ± 0.00 d | 6.56 ± 0.00 a | 2.07 ± 0.00 e | 2.15 ± 0.00 c | 88.47 ± 0.00 b | 369.23 ± 0.01 b | |
Plantain | Flesh | 20.92 ± 0.02 ab | 0.24 ± 0.00 e | 0.78 ± 0.00 f | 10.24 ± 0.00 a | 1.22 ± 0.00 f | 66.60 ± 0.02 f | 273.44 ± 0.01 f |
Peel | 21.81 ± 0.04 a | 1.10 ± 0.00 b | 2.23 ± 0.00 d | 4.06 ± 0.00 c | 2.23 ± 0.00 b | 68.57 ± 0.04 d | 293.10 ± 0.07 d | |
Peel extract | - | 0.77 ± 0.00 c | 3.39 ± 0.00 c | 2.45 ± 0.00 d | 1.82 ± 0.00 d | 91.57 ± 0.00 a | 381.03 ± 0.01 a |
Banana Flesh | Banana Peel | Banana Peel Extract | Plantain Flesh | Plantain Peel | Plantain Peel Extract | |
---|---|---|---|---|---|---|
Calcium | 4.64 ± 1.64 d | 40.99 ± 2.51 ab | 26.3 ± 2.51 bc | 6.96 ± 1.64 d | 45.64 ± 14.89 a | 15.47 ± 1.89 cd |
Magnesium | 29.39 ± 0.95 bc | 28.62 ± 0.95 a | 26.30 ± 0.95 ab | 17.02 ± 2.51 c | 17.79 ± 0.95 ab | 26.30 ± 2.51 bc |
Potassium | 350.39 ± 1.64 e | 1708.66 ± 0.95 b | 2244.70 ± 3.42 a | 284.65 ± 3.42 f | 729.41 ± 2.51 d | 1312.63 ± 4.13 c |
Sodium | 7.73 ± 0.95 bc | 9.28 ± 1.64 ab | 11.60 ± 0.95 ab | 4.64 ± 1.64 c | 12.37 ± 2.51 a | 7.73 ± 0.95 bc |
Phosphorus | 15.47 ± 0.95 b | 27.84 ± 1.64 ab | 26.30 ± 0.95 ab | 12.37 ± 2.51 b | 13.92 ± 1.64 b | 46.41 ± 28.42 a |
Zinc | 0.15 ± 0.01 c | 0.41 ± 0.01 b | 0.39 ± 0.01 b | 0.08 ± 0.01 d | 0.41 ± 0.02 b | 0.78 ± 0.01 a |
Manganese | 0.18 ± 0.01 c | 0.52 ± 0.02 a | 0.35 ± 0.01 b | 0.05 ± 0.01 d | 0.20 ± 0.01 c | 0.10 ± 0.09 cd |
Copper | 0.10 ± 0.01 c | 0.06 ± 0.01 d | 0.15 ± 0.01 b | 0.04 ± 6.01 d | 0.11 ± 0.01 c | 0.19 ± 0.01 a |
Iron | 0.06 ± 0.01 a | 0.07 ± 0.00 a | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b |
Nitrogen | 273.88 ± 0.40 e | 397.15 ± 0.54 a | 344.79 ± 0.66 c | 196.04 ± 0.79 f | 357.42 ± 0.40 b | 291.95 ± 0.40 d |
Na+/K+ | 0.005 ± 0.001 a | 0.001 ± 0.002 b | 0.001 ± 0.003 b | 0.004 ± 0.001 a | 0.004 ± 0.00 a | 0.001 ± 0.00 b |
Samples | Alkaloid (%) | Oxalate (%) | Phytate (%) | Saponin (%) | |
---|---|---|---|---|---|
Banana | Flesh | 0.46 ± 0.03 c | 17.9 ± 0.07 b | 2.42 ± 0.01 b | 4.02 ± 0.41 abc |
Peel | 0.66 ± 0.34 bc | 37.0 ± 4.63 a | 2.78 ± 0.33 b | 6.57 ± 3.12 ab | |
Boiled peel extract | 1.76 ± 1.92 a | 40.2 ± 5.48 b | 2.11 ± 0.02 b | 8.12 ± 2.46 a | |
Plantain | Flesh | 0.93 ± 0.00 b | 18.8 ± 0.81 b | 2.36 ± 0.02 a | 1.39 ± 0.98 c |
Peel | 0.62 ± 0.11 bc | 22.2 ± 0.53 b | 2.26 ± 0.04 b | 1.16 ± 0.82 c | |
Boiled peel extract | 0.45 ± 0.15 c | 20.0 ± 0.74 b | 2.34 ± 0.06 b | 2.86 ± 1.23 bc |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyeyinka, B.O.; Afolayan, A.J. Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments. Plants 2019, 8, 598. https://doi.org/10.3390/plants8120598
Oyeyinka BO, Afolayan AJ. Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments. Plants. 2019; 8(12):598. https://doi.org/10.3390/plants8120598
Chicago/Turabian StyleOyeyinka, Barnabas Oluwatomide, and Anthony Jide Afolayan. 2019. "Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments" Plants 8, no. 12: 598. https://doi.org/10.3390/plants8120598
APA StyleOyeyinka, B. O., & Afolayan, A. J. (2019). Comparative Evaluation of the Nutritive, Mineral, and Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain) Fruit Compartments. Plants, 8(12), 598. https://doi.org/10.3390/plants8120598