The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses
Abstract
:1. Introduction
2. Results
2.1. Chemical Analysis and Physical Properties
2.2. Enantioselective Analysis
2.3. Olfactometric Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Distillation of the EO and Sample Preparation
4.3. Qualitative Chemical Analysis
4.4. Quantitative Chemical Analysis
4.5. Enantioselective GC Analysis
4.6. GC–O Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Megadiverse Countries, UNEP-WCMC. 31 May 2020. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 31 May 2020).
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and Ethnopharmacology of the Ecuadorian Flora. A Review. Nat. Prod. Commun. 2016, 11, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical Composition, Enantiomeric Analysis, AEDA Sensorial Evaluation and Antifungal Activity of the Essential Oil from the Ecuadorian Plant Lepechinia mutica BENTH (Lamiaceae). Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- Calva, J.; Bec, N.; Gilardoni, G.; Larroque, C.; Cartuche, L.; Bicchi, C.; Montesinos, J. Acorenone B: AChE and BChE Inhibitor as a Major Compound of the Essential Oil Distilled from the Ecuadorian Species Niphogeton dissecta (Benth.) J.F.Macbr. Pharmaceuticals 2017, 10, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, C.; Morocho, V.; Vidari, G.; Bicchi, C.; Gilardoni, G. Phytochemical Investigation of Male and Female Hedyosmum scabrum (RUIZ & PAV.) SOLM Leaves from Ecuador. Chem. Biodivers. 2018, 15, e1700423. [Google Scholar] [CrossRef]
- Gilardoni, G.; Ramirez, J.; Montalvan, M.; Quinche, W.; León, J.; Benítez, L.; Morocho, V.; Cumbicus, N.; Bicchi, C. Phytochemistry of Three Ecuadorian Lamiaceae: Lepechinia heteromorpha (Briq.) Epling, Lepechinia radula (Benth.) Epling and Lepechinia paniculata (Kunth) Epling. Plants 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramirez, J.; Sgorbini, B.; Bicchi, C.; Gilardoni, G. Chemical, Enantioselective, and Sensory Analysis of a Cholinesterase Inhibitor Essential Oil from Coreopsis triloba S.F. Blake (Asteraceae). Plants 2019, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Montalván, M.; Peñafiel, M.; Ramirez, J.; Cumbicus, N.; Bec, N.; Larroque, C.; Bicchi, C.; Gilardoni, G. Chemical Composition, Enantiomeric Distribution, and Sensory Evaluation of the Essential Oils Distilled from the Ecuadorian Species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtacee). Plants 2019, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Gilardoni, G.; Cumbicus, N.; Morocho, V. Chemical Analysis of the Essential Oil from Siparuna echinata (Kunth) A. DC. (Siparunaceae) of Ecuador and Isolation of the Rare Terpenoid Sipaucin A. Plants 2020, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and Enantioselective Analysis of the Leaf Essential Oil from Piper coruscans Kunth (Piperaceae), a Costal and Amazonian Native Species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef]
- Kheder, D.A.; Al-Habib, O.A.M.; Gilardoni, G.; Vidari, G. Components of Volatile Fractions from Eucalyptus camaldulensis Leaves from Iraqi–Kurdistan and Their Potent Spasmolytic Effects. Molecules 2020, 25, 804. [Google Scholar] [CrossRef] [Green Version]
- Council of Europe. European Pharmacopoeia; Council of Europe: Strasbourg, France, 2013; p. 743. [Google Scholar]
- Tropicos.org. Missouri Botanical Garden. 30 June 2020. Available online: https://www.tropicos.org/name/13014068 (accessed on 30 June 2020).
- Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999. [Google Scholar]
- Tropicos.org. Missouri Botanical Garden. 30 June 2020. Available online: https://www.tropicos.org/name/1301406 (accessed on 30 June 2020).
- Peralta, M.A.; Santi, M.D.; Cabrera, J.L.; Ortega, M.G. Dalea Genus, Chemistry, and Bioactivity Studies. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 62, pp. 307–341. [Google Scholar]
- Balladelli, P.P. Entre lo mágico y lo Natural. La Medicina Indígena. Testimonios de Pesillos, 2nd ed.; Ediciones Abya-Yala: Quito, Ecuador, 1990; pp. 246–247. [Google Scholar]
- Lucero, M.E.; Estell, R.E.; Fredrickson, E.L. The Essential Oil Composition of Psorofhamnus scoprius (A. Gray) Rydb. JEOR 2003, 15, 108–111. [Google Scholar]
- McCaughey, W.F.; Buehrer, T.F. Essential Oil Plants of Southern Arizona. J. Pharm. Sci. 1961, 50, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Acevedo, A.; González, M.d.C.; Stashenko, E.E. Volatile Fractions and Essential Oils of the Leaves and Branches of Dalea carthagenensis (Jacq.) J.F. Macbr. from Northern Region of Colombia. J. Essent. Oil-Bear. Plants 2019, 22, 774–788. [Google Scholar] [CrossRef]
- Lucero, M.E.; Estell, R.E.; Sedillo, R.L. The Composition of Dalea formosa Oil Determined by Steam Distillation and Solid-Phase Microextraction. JEOR 2005, 17, 645–647. [Google Scholar]
- Villa-Ruano, N.; Pacheco-Hernández, Y.; Rubio-Rosas, E.; Zarate-Reyes, J.A.; Lozoya-Gloria, E.; Cruz-Duran, R. Chemical profile, nutraceutical and anti-phytobacterial properties of the essential oil from Dalea foliolosa (Fabaceae). Emir. J. Food Agric. 2017, 29, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Benites, J.; Moiteiro, C.; Figueiredo, A.C.; Rijo, P.; Buc-Calderon, P.; Bravo, F.; Gajardo, S.; Sánchez, I.; Torres, I.; Ganoza, M. Chemical composition and antimicrobial activity of essential oil of Peruvian Dalea strobilacea Barneby. Bull. Lat. Caribe Plants 2016, 15, 429–435. [Google Scholar]
- González, A.G.; Aguiar, Z.E.; Luis, J.G.; Rivera, A.; Calle, J.; Gallo, G. A C-Methyl Chalcone from Dalea caerullea. Phytochemistry 1992, 31, 2565–2566. [Google Scholar]
- Arango, A.I.; Gonzalez, G.J. Prenylflavones of Dalea caerulea. Revista Colombiana de Química 1994, 23, 1–7. [Google Scholar]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas. Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Koenig, W.A.; Hochmuth, D.H. Enantioselective Gas Chromatography in Flavor and Fragrance Analysis: Strategies for the Identification of Known and Unknown Plant Volatiles. J. Chromatogr. Sci. 2004, 42, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Liberto, E.; Cagliero, C.; Sgorbini, B.; Bicchi, C.; Sciarrone, D.; d’Acampora Zellner, B.; Mondello, L.; Rubiolo, P. Enantiomer Identification in the Flavour and Fragrance Fields by ‘Interactive’ Combination of Linear Retention Indices from Enantioselective Gas Chromatography and Mass Spectrometry. J. Chromatogr. A 2008, 1195, 117–126. [Google Scholar] [CrossRef]
- Brattoli, M.; Cisternino, E.; Dambruoso, P.R.; de Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759–16800. [Google Scholar] [CrossRef] [Green Version]
- Grosch, W. Determination of Potent Odorants in Foods by Aroma Extract Dilution Analysis (AEDA) and Calculation of Odour Activity Values (OAVs). Flavour Fragr. J. 1994, 9, 147–158. [Google Scholar] [CrossRef]
- Grosch, W. Detection of Potent Odorants in Foods by Aroma Extract Dilution Analysis. Trends Food Sci. Technol. 1993, 4, 68–73. [Google Scholar] [CrossRef]
- Benzo, M.; Gilardoni, G.; Gandini, C.; Caccialanza, G.; Vita Finzi, P.; Vidari, G.; Abdo, S.; Layedra, P. Determination of the threshold odour concentration of main odorants in essential oils using gas chromatography-olfactometry incremental dilution technique. J. Chromatogr. A. 2007, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Brenna, E.; Fuganti, C.; Serra, S. Enantioselective perception of chiral odorants. Tetrahedron: Asymmetry 2003, 14, 1–42. [Google Scholar] [CrossRef]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in gas chromatography: Prediction of flame ionization detector response factors from combustion enthalpies and molecular structures. Anal. Chem. 2010, 82, 6457. [Google Scholar] [CrossRef] [PubMed]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290. [Google Scholar] [CrossRef]
No. | RT 1 (min) | LRI 2 | Components | Quantitative Analysis | ||
---|---|---|---|---|---|---|
Calculated 3 | Reference 4 | % 5 | Σ 6 | |||
1 | 7.73 | 921 | 926 | tricyclene | Trace | - |
2 | 7.85 | 924 | 930 | α-thujene | 0.9 | 0.14 |
3 | 8.18 | 932 | 939 | α-pinene | 42.9 | 6.07 |
4 | 8.84 | 947 | 954 | canfene | 0.3 | 0.04 |
5 | 9.81 | 970 | 975 | sabinene | 1.8 | 0.29 |
6 | 10.04 | 976 | 979 | β-pinene | 15.1 | 0.19 |
7 | 10.55 | 988 | 990 | myrcene | 6.7 | 1.18 |
8 | 11.2 | 1003 | 1004 | p-mentha-1(7),8-diene | Trace | - |
9 | 11.31 | 1005 | 1002 | α-phellandrene | 1.5 | 1.28 |
10 | 11.81 | 1015 | 1024 | p-cymene | 0.1 | 0.08 |
11 | 12.17 | 1023 | 1026 | o-cymene | 0.9 | 0.83 |
12 | 12.4 | 1028 | 1029 | limonene | 2.3 | 1.46 |
13 | 12.46 | 1029 | 1029 | β-phellandrene | 12.6 | 3.42 |
14 | 12.73 | 1035 | 1037 | (Z)-β-ocimene | 5.4 | 1.93 |
15 | 13.22 | 1045 | 1050 | (E)-β-ocimene | 0.5 | 0.26 |
16 | 13.77 | 1056 | 1059 | ϒ-terpinene | 0.7 | 0.13 |
17 | 15.07 | 1083 | 1088 | p-mentha-2,4(8)-diene | 0.1 | 0.10 |
18 | 15.83 | 1099 | 1100 | iso-pentyl-2-menthyl butanoate | Trace | - |
19 | 15.98 | 1102 | 1104 | 2-methyl butyl-iso-valerate | Trace | - |
20 | 16.06 | 1104 | 1104 | 2-(E)-hexenyl propanoate | Trace | - |
21 | 19.97 | 1185 | 1185 | cryptone | Trace | - |
22 | 27.32 | 1345 | 1351 | α-cubebene | 0.1 | 0.04 |
23 | 28.56 | 1373 | 1376 | α-copaene | 0.2 | 0.10 |
24 | 28.91 | 1381 | 1378 | (E)-methyl cinnamate | Trace | - |
25 | 29.1 | 1385 | 1388 | β-cubebene | 0.1 | 0.02 |
26 | 29.89 | 1404 | 1409 | α-gurjunene | Trace | - |
27 | 30.09 | 1408 | 1407 | longifolene | Trace | - |
28 | 30.42 | 1416 | 1408 | (Z)-β-caryophyillene | 0.4 | 0.29 |
29 | 31.03 | 1431 | 1434 | α-trans-bergamotene | Trace | - |
30 | 31.19 | 1435 | 1432 | β-copaene | 0.1 | 0.07 |
31 | 31.91 | 1452 | 1454 | α-humulene | 0.1 | 0.05 |
32 | 32.09 | 1456 | 1460 | allo-aromandendrene | Trace | - |
33 | 32.73 | 1472 | 1466 | cis-muurola-4(14),5-diene | 0.1 | 0.11 |
34 | 32.97 | 1478 | 1479 | ϒ-muurolene | Trace | - |
35 | 33.45 | 1489 | 1493 | α-zingiberene | 1.6 | 0.84 |
36 | 33.59 | 1493 | 1493 | trans-muurola-4(14),5-diene | 0.1 | 0.07 |
37 | 33.71 | 1495 | 1500 | α-muurolene | 1,0 | 0.46 |
38 | 34.00 | 1503 | 1505 | (E,E)-α-farnesene | 0.4 | 0.30 |
39 | 34.27 | 1509 | 1513 | ϒ-cadinene | Trace | - |
40 | 34.39 | 1512 | 1512 | δ-amorphene | 0.1 | 0.06 |
41 | 34.49 | 1515 | 1523 | δ-cadinene | 0.1 | 0.07 |
42 | 34.61 | 1518 | 1522 | trans-calamenene | 0.3 | 0.46 |
43 | 35.05 | 1529 | 1534 | trans-cadina-1,4-diene | 0.1 | 0.05 |
44 | 36.98 | 1578 | 1575 | zierone | 0.2 | 0.14 |
45 | 37.85 | 1600 | 1600 | guaiol | 1.1 | 0.38 |
46 | 38.11 | 1607 | 1607 | dodecyl acetate | Trace | - |
47 | 38.74 | 1624 | 1619 | 1,10-di-epi-cubenol | Trace | - |
48 | 39.29 | 1639 | 1640 | epi-α-cadinol | 0.2 | 0.18 |
49 | 39.77 | 1652 | 1658 | valerianol | 0.1 | 0.15 |
50 | 43.06 | 1744 | 1741 | (E)-iso-amyl cinnamate | 0.1 | 0.09 |
Monoterpene hydrocarbons | 91.8 | |||||
Oxygenated monoterpenes | Trace | |||||
Sesquiterpene hydrocarbons | 4.8 | |||||
Oxygenated sesquiterpenes | 1.6 | |||||
Other compounds | 0.1 | |||||
Total | 98.3 |
RT 1 (min) | LRI 2 | Enantiomers | Enantiomeric Distribution (%) | ee3 (%) |
---|---|---|---|---|
9.46 | 932 | (1R,5R)-(+)-α-pinene | 95.8 | 91.6 |
12.50 | 987 | (1S,5S)-(−)-α-pinene | 4.2 | |
11.03 | 960 | (1R,5R)-(+)-β-pinene | 57.6 | 15.2 |
11.47 | 968 | (1S,5S)-(−)-β-pinene | 42.4 | |
14.76 | 1026 | (R)-(−)-α-phellandrene | 52.4 | 4.8 |
16.58 | 1057 | (S)-(+)-α-phellandrene | 47.6 | |
16.81 | 1061 | (R)-(+)-limonene | 100.0 | 100.0 |
17.06 | 1065 | (R)-(−)-β-phellandrene | 94.4 | 88.8 |
20.72 | 1127 | (S)-(+)-β-phellandrene | 5.6 |
LRI 1 | AEDA 2 (FD) 3 | Components | Descriptor |
---|---|---|---|
932 | 8 | α-pinene | Woody |
976 | 4 | β-pinene | Woody |
1005 | 2 | α-phellandrene | Herbaceous |
1035 | 2 | (Z)-β-ocimene | Sweet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants 2020, 9, 1403. https://doi.org/10.3390/plants9101403
Gilardoni G, Montalván M, Ortiz M, Vinueza D, Montesinos JV. The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants. 2020; 9(10):1403. https://doi.org/10.3390/plants9101403
Chicago/Turabian StyleGilardoni, Gianluca, Mayra Montalván, Mariana Ortiz, Diego Vinueza, and José Vinicio Montesinos. 2020. "The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses" Plants 9, no. 10: 1403. https://doi.org/10.3390/plants9101403
APA StyleGilardoni, G., Montalván, M., Ortiz, M., Vinueza, D., & Montesinos, J. V. (2020). The Flower Essential Oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, Enantioselective, and Olfactometric Analyses. Plants, 9(10), 1403. https://doi.org/10.3390/plants9101403