Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines
Abstract
:1. Introduction
2. Results
2.1. Specificity and Analytical Sensitivity
2.2. Evaluation of LAMP with Bunch Trash
2.3. Evaluation of LAMP with Berries
3. Discussion
4. Materials and Methods
4.1. Real-Time LAMP
4.1.1. LAMP Kit
4.1.2. DNA Extraction
4.1.3. Specificity
4.1.4. Analytical Sensitivity
4.2. Evaluation of LAMP with Bunch Trash
4.2.1. Plant Material and B. cinerea Inoculation
4.2.2. Preparation of Crude Extracts from Bunch Trash
4.3. Evaluation of LAMP with Berries
4.3.1. Plant Material and B. cinerea Inoculation
4.3.2. Preparation of Crude Extracts from Berries
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coley-Smith, J.R.; Verhoeff, K.; Jarvis, W.R. The Biology of Botrytis; Academic Press Inc.: London, UK, 1980; p. 318. [Google Scholar]
- Elad, Y.; Williamson, B.; Tudzynski, P.; Delen, N. Botrytis: Biology, Pathology and Control; Springer Science & Business Media: Dordrecht, The Netherlands, 2007; p. 428. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, J.; Riberau-Gayon, P.; Seguin, G. Botrytis cinerea in enology. In The Biology of Botrytis; Coley-Smith, J.R., Verhoeff, K., Jarvis, W.R., Eds.; Academic Press Inc.: London, UK, 1980; pp. 251–274. [Google Scholar]
- Elmer, P.A.G.; Michailides, T.J. Epidemiology of Botrytis cinerea in Orchard and Vine Crops. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Springer Science & Business Media: Dordrecht, The Netherlands, 2007; pp. 243–272. [Google Scholar] [CrossRef]
- Lorenz, D.; Eichhorn, K.; Bleiholder, H.; Klose, R.; Meier, U. Phänologische Entwicklungsstadien der Weinrebe (Vitis vinifera L. ssp. vinifera). Codierung und Beschreibung nach der erweiterten BBCH-Skala. Wein Wiss. 1994, 49, 66–70. [Google Scholar]
- Seyb, A.; Gaunt, R.; Trought, M.; Frampton, C.; Balasubramaniam, R.; Jaspers, M. Relationship between debris within grape bunches and Botrytis infection of berries. N. Z. Plant Prot. 2000, 53, 451. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Garrido, C.; Usall, J.; Viñas, I.; Elmer, P.A.; Cases, E.; Teixidó, N. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Pest Manag. Sci. 2014, 70, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Holz, G.; Gütschow, M.; Coertze, S.; Calitz, F.J. Occurrence of Botrytis cinerea and subsequent disease expression at different positions on leaves and bunches of grape. Plant Dis. 2003, 87, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.; Guilbaud-Oulton, S.; Barchia, I.; Emmett, R. Significance of carry over inoculum, flower infection and latency on the incidence of Botrytis cinerea in berries of grapevines at harvest in New South Wales. Aust. J. Exp. Agric. 1995, 35, 1177–1180. [Google Scholar] [CrossRef]
- Viret, O.; Keller, M.; Jaudzems, V.G.; Cole, F.M. Botrytis cinerea infection of grape flowers: Light and electron microscopical studies of infection sites. Phytopathology 2004, 94, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Holz, G.; Coertze, S.; Basson, E. Latent infection of Botrytis cinerea in grape pedicels leads to postharvest decay. Phytopathology 1997, 87, S43. [Google Scholar]
- Keller, M.; Viret, O.; Cole, F.M. Botrytis cinerea infection in grape flowers: Defense reaction, latency, and disease expression. Phytopathology 2003, 93, 316–322. [Google Scholar] [CrossRef] [Green Version]
- McClellan, W.; Hewitt, W.B. Early Botrytis Rot of Grapes: Time of Infection and Latency of Botrytis cinerea Pers. in Vitis vinifera L. Phytopathology 1973, 63, 1151–1157. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Ciliberti, N.; Rossi, V. A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PLoS ONE 2015, 10, e0140444. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Garrido, C.; Viñas, I.; Elmer, P.A.; Usall, J.; Teixidó, N. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Manag. Sci. 2014, 70, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Fedele, G.; González-Domínguez, E.; Si Ammour, M.; Languasco, L.; Rossi, V. Reduction of Botrytis cinerea colonization of and sporulation on bunch trash. Plant Dis. 2020, 104, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- Ștefan, A.L.; Paica, A.; Iacob, F.; Iacomi, B.M. Sustainable use of fungicides and biocontrol agents for Botrytis gray mold management in grapes. Sci. Papers Ser. B Hortic. 2015, 59, 159–162. [Google Scholar]
- Broome, J.; English, J.; Marois, J.; Latorre, B.; Aviles, J. Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology 1995, 85, 97–102. [Google Scholar] [CrossRef]
- Bulit, J.; Lafon, R.; Guillier, G. Périodes favorables a l’application de traitments pour lutter contre la pourriture grise de la vigne. Phytiatr. Phytopharm. 1970, 19, 159–165. [Google Scholar]
- González-Domínguez, E.; Fedele, G.; Caffi, T.; Delière, L.; Sauris, P.; Gramaje, D.; Ramos-Saez de Ojer, J.L.; Díaz-Losada, E.; Díez-Navajas, A.M.; Bengoa, P. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. Pest Manag. Sci. 2019, 75, 324–332. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Fedele, G.; Languasco, L.; Rossi, V. Interactions among fungicides applied at different timings for the control of Botrytis bunch rot in grapevine. Crop Prot. 2019, 120, 30–33. [Google Scholar] [CrossRef]
- Mundy, D.; Beresford, R. Susceptibility of grapes to Botrytis cinerea in relation to berry nitrogen and sugar concentration. N. Z. Plant Prot. 2007, 60, 123–127. [Google Scholar] [CrossRef]
- Nair, N.; Emmett, R.; Parker, F. Some factors predisposing grape berries to infection by Botrytis cinerea. N. Z. J. Exp. Agric. 1988, 16, 257–263. [Google Scholar] [CrossRef]
- Nelson, R. Factors influencing the infection of table Grapes by Botrytis cinerea. Phytopathology 1951, 41, 319–326. [Google Scholar]
- Ciliberti, N.; Fermaud, M.; Languasco, L.; Rossi, V. Influence of fungal strain, temperature, and wetness duration on infection of grapevine inflorescences and young berry clusters by Botrytis cinerea. Phytopathology 2015, 105, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, N.; Fermaud, M.; Roudet, J.; Rossi, V. Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology 2015, 105, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Ciliberti, N.; Fermaud, M.; Roudet, J.; Languasco, L.; Rossi, V. Environmental effects on the production of Botrytis cinerea conidia on different media, grape bunch trash, and mature berries. Aust. J. Grape Wine Res. 2016, 22, 262–270. [Google Scholar] [CrossRef]
- Latorre, B.; Rioja, M. The effect of temperature and relative humidity on conidial germination of Botrytis cinerea. Int. J. Agric. Natl. Resour. 2002, 29, 66–72. [Google Scholar] [CrossRef]
- Nair, N.; Allen, R. Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycol. Res. 1993, 97, 1012–1014. [Google Scholar] [CrossRef]
- Fedele, G.; González-Domínguez, E.; Delière, L.; Díez-Navajas, A.M.; Rossi, V. Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards. Plant Dis. 2020, 104, 1291–1297. [Google Scholar] [CrossRef]
- Abdelwahab, H.; Younis, R.A. Early detection of gray mold in grape using conventional and molecular methods. Afr. J. Biotechnol. 2012, 11, 15241–15245. [Google Scholar]
- Edwards, S.G.; Seddon, B. Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Lett. Appl. Microbiol. 2001, 32, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Dugan, F.M.; Lupien, S.L.; Grove, G.G. Incidence, Aggressiveness and In Planta Interactions of Botrytis cinerea and other Filamentous Fungi Quiescent in Grape Berries and Dormant Buds in Central Washington State. J. Phytopathol. 2002, 150, 375–381. [Google Scholar] [CrossRef]
- Jaspers, M.V.; Seyb, A.M.; Trought, M.C.T.; Balasubramaniam, R. Overwintering grapevine debris as an important source of Botrytis cinerea inoculum. Plant Pathol. 2013, 62, 130–138. [Google Scholar] [CrossRef]
- Mundy, D.C.; Agnew, R.H.; Wood, P.N. Grape tendrils as an inoculum source of Botrytis cinerea in vineyards a review. N. Z. Plant Prot. 2012, 65, 218–227. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Schena, L.; De Cicco, V.; Ippolito, A. Early detection of Botrytis cinerea latent infections as a tool to improve postharvest quality of table grapes. Postharvest Biol. Technol. 2012, 68, 64–71. [Google Scholar] [CrossRef]
- Capote, N.; Pastrana, A.M.; Aguado, A.; Sánchez-Torres, P. Molecular tools for detection of plant pathogenic fungi and fungicide resistance. Plant Pathol. 2012, 151–202. [Google Scholar] [CrossRef] [Green Version]
- Obanor, F.O.; Walter, M.; Waipara, N.W.; Cernusko, R. Rapid method for the detection and quantification of Botrytis cinerea in plant tissues. N. Z. Plant Prot. 2002, 55, 150–153. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, P.C.H. Flexible Microarray Construction and Fast DNA Hybridization Conducted on a Microfluidic Chip for Greenhouse Plant Fungal Pathogen Detection. J. Agric. Food Chem. 2007, 55, 10509–10516. [Google Scholar] [CrossRef]
- Rigotti, S.; Gindro, K.; Richter, H.; Viret, O. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragaria × ananassa Duch.) using PCR. FEMS Microbiol. Lett. 2002, 209, 169–174. [Google Scholar] [CrossRef]
- Gindro, K.; Pezet, R.; Viret, O.; Richter, H. Development of a rapid and highly sensitive direct-PCR assay to detect a single conidium of Botrytis cinerea Pers.: Fr in vitro and quiescent forms in planta. Vitis-Geilweilerhof 2005, 44, 139. [Google Scholar]
- Cadle-Davidson, L. Monitoring Pathogenesis of Natural Botrytis cinerea Infections in Developing Grape Berries. Am. J. Enol. Vitic. 2008, 59, 387. [Google Scholar]
- Celik, M.; Kalpulov, T.; Zutahy, Y.; Ish-shalom, S.; Lurie, S.; Lichter, A. Quantitative and qualitative analysis of Botrytis inoculated on table grapes by qPCR and antibodies. Postharvest Biol. Technol. 2009, 52, 235–239. [Google Scholar] [CrossRef]
- Diguta, C.F.; Rousseaux, S.; Weidmann, S.; Bretin, N.; Vincent, B.; Guilloux-Benatier, M.; Alexandre, H. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol. Lett. 2010, 313, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.N.; Evans, K.J.; Beresford, R.M.; Dambergs, R.G. Comparison of methods for the quantification of botrytis bunch rot in white wine grapes. Aust. J. Grape Wine Res. 2014, 20, 432–441. [Google Scholar] [CrossRef]
- Saito, S.; Dunne, K.J.; Evans, K.J.; Barry, K.; Cadle-Davidson, L.; Wilcox, W.F. Optimisation of techniques for quantification of Botrytis cinerea in grape berries and receptacles by quantitative polymerase chain reaction. Aust. J. Grape Wine Res. 2013, 19, 68–73. [Google Scholar] [CrossRef]
- Si Ammour, M.; Fedele, G.; Morcia, C.; Terzi, V.; Rossi, V. Quantification of Botrytis cinerea in Grapevine Bunch Trash by Real-Time PCR. Phytopathology 2019, 109, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Giltrap, P.; Barton, V.; Hobden, E.; Tomlinson, J.; Barber, P. On-site real-time PCR detection of Phytophthora ramorum causing dieback of Parrotia persica in the UK. Plant Pathol. 2006, 55, 813. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, Y.-J.; Chang, T.-D.; Hong, L.-L.; Chen, T.-Y.; Chang, P.-F.L. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4. PLoS ONE 2016, 11, e0159681. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.A.; Boonham, N.; Hughes, K.J.D.; Griffin, R.L.; Barker, I. On-Site DNA Extraction and Real-Time PCR for Detection of Phytophthora ramorum in the Field. Appl. Environ. Microbiol. 2005, 71, 6702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, e63. [Google Scholar] [CrossRef] [Green Version]
- Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [Google Scholar] [CrossRef]
- Si Ammour, M.; Bilodeau, G.J.; Tremblay, D.M.; Van der Heyden, H.; Yaseen, T.; Varvaro, L.; Carisse, O. Development of Real-Time Isothermal Amplification Assays for On-Site Detection of Phytophthora infestans in Potato Leaves. Plant Dis. 2017, 101, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Thiessen, L.D.; Keune, J.A.; Neill, T.M.; Turechek, W.W.; Grove, G.G.; Mahaffee, W.F. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. Plant Pathol. 2016, 65, 238–249. [Google Scholar] [CrossRef]
- Villari, C.; Mahaffee, W.F.; Mitchell, T.K.; Pedley, K.F.; Pieck, M.L.; Hand, F.P. Early Detection of Airborne Inoculum of Magnaporthe oryzae in Turfgrass Fields Using a Quantitative LAMP Assay. Plant Dis. 2017, 101, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Kawana, T.; Fukushima, E.; Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 2007, 70, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Niessen, L.; Bechtner, J.; Fodil, S.; Taniwaki, M.H.; Vogel, R.F. LAMP-based group specific detection of aflatoxin producers within Aspergillus section Flavi in food raw materials, spices, and dried fruit using neutral red for visible-light signal detection. Int. J. Food Microbiol. 2018, 266, 241–250. [Google Scholar] [CrossRef]
- Fan, F.; Hahn, M.; Li, G.-Q.; Lin, Y.; Luo, C.-X. Rapid detection of benzimidazole resistance in Botrytis cinerea by loop-mediated isothermal amplification. Phytopathol. Res. 2019, 1, 10. [Google Scholar] [CrossRef]
- Hu, X.R.; Dai, D.J.; Wang, H.D.; Zhang, C.Q. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea. Sci. Rep. 2017, 7, 13861. [Google Scholar] [CrossRef]
- Tomlinson, J.A.; Dickinson, M.J.; Boonham, N. Detection of Botrytis cinerea by loop-mediated isothermal amplification. Lett. Appl. Microbiol. 2010, 51, 650–657. [Google Scholar] [CrossRef]
- Duan, Y.-B.; Ge, C.-Y.; Zhang, X.-K.; Wang, J.-X.; Zhou, M.-G. Development and Evaluation of a Novel and Rapid Detection Assay for Botrytis cinerea Based on Loop-Mediated Isothermal Amplification. PLoS ONE 2014, 9, e111094. [Google Scholar] [CrossRef]
- Mehli, L.; Kjellsen, T.D.; Dewey, F.M.; Hietala, A.M. A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of comonitoring both partners at genomic and mRNA level. New Phytol. 2005, 168, 465–474. [Google Scholar] [CrossRef]
- Kong, X.; Qin, W.; Huang, X.; Kong, F.; Schoen, C.D.; Feng, J.; Wang, Z.; Zhang, H. Development and application of loop-mediated isothermal amplification (LAMP) for detection of Plasmopara viticola. Sci. Rep. 2016, 6, 28935. [Google Scholar] [CrossRef] [PubMed]
- Kogovšek, P.; Hodgetts, J.; Hall, J.; Prezelj, N.; Nikolić, P.; Mehle, N.; Lenarčič, R.; Rotter, A.; Dickinson, M.; Boonham, N.; et al. LAMP assay and rapid sample preparation method for on-site detection of flavescence dorée phytoplasma in grapevine. Plant Pathol. 2015, 64, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, C.S.; Anchieta, A.; Ochoa, L.; Dhar, N.; Kunjeti, S.G.; Subbarao, K.V.; Klosterman, S.J. Detection of Latent Peronospora effusa Infections in Spinach. Plant Dis. 2018, 102, 1766–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drais, M.I.; Maheshwari, Y.; Selvaraj, V.; Varvaro, L.; Yokomi, R.; Djelouah, K. Development and validation of a loop-mediated isothermal amplification technique (LAMP) for the detection of Spiroplasma citri, the causal agent of citrus stubborn disease. Eur. J. Plant Pathol. 2019, 155, 125–134. [Google Scholar] [CrossRef]
- Panno, S.; Matić, S.; Tiberini, A.; Caruso, A.G.; Bella, P.; Torta, L.; Stassi, R.; Davino, S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. Plants 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.K.; Roberts, D.M.; Lynott, J.; Sullivan, L.; Brierley, J.L. Real-Time PCR and LAMP Assays for the Detection of Spores of Alternaria solani and Sporangia of Phytophthora infestans to Inform Disease Risk Forecasting. Plant Dis. 2019, 103, 3172–3180. [Google Scholar] [CrossRef]
- Thiessen, L.D.; Neill, T.M.; Mahaffee, W.F. Development of a quantitative loop-mediated isothermal amplification assay for the field detection of Erysiphe necator. PeerJ 2018, 6, e4639. [Google Scholar] [CrossRef] [Green Version]
- Droby, S.; Lichter, A. Post-harvest Botrytis infection: Etiology, development and management. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Springer: Dordrecht, The Netherland, 2007; pp. 349–367. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Plant Physiology and Development. Available online: http://6e.plantphys.net/index.html# (accessed on 20 October 2020).
- Rossi, V.; Caffi, T.; Salinari, F. Helping farmers face the increasing complexity of decision-making for crop protection. Phytopathol. Mediterr. 2012, 51, 457–479. [Google Scholar] [CrossRef]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Bisiach, M.; Zerbetto, F.; Cortesi, P. Attività fungicida della miscela cyprodinil+ fludioxonil contro Botrytis cinerea su vite da vino. ATTI Giornate Fitopatol. 1996, 2, 363–368. [Google Scholar]
- Corvi, F.; Tullio, V. Un biennio di prove di lotta contro la muffa grigia dell’uva (Botrytis cinerea Pers.) nelle marche (II contributo). Giornate Fitopatol. 1980, 2, 553–560. [Google Scholar]
Genus and Species | Isolate Code | LAMP Result a |
---|---|---|
Alternaria alternata | 5 | - |
Alternaria sp. | 23 | - |
Aspergillus flavus | 4 | - |
Aspergillus niger | A1 | - |
Botrytis cinerea | 213T and 351V | + |
Erysiphe necator | FP b 2017 | - |
Guignardia bidwellii | Q15 | - |
Monilia laxa | 11 | - |
Penicillium sp. | 2 | - |
Phomopsis viticola | Pho-6 | - |
Plasmopara viticola | FP 2018 | - |
Rhizopus sp. | 26 | - |
Rhizopus stolonifer | MUCL38013 | - |
Sclerotinia sclerotiorum | 22 | - |
Stemphylium sp. | 14 | - |
Vitis vinifera | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si Ammour, M.; Castaldo, E.; Fedele, G.; Rossi, V. Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines. Plants 2020, 9, 1538. https://doi.org/10.3390/plants9111538
Si Ammour M, Castaldo E, Fedele G, Rossi V. Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines. Plants. 2020; 9(11):1538. https://doi.org/10.3390/plants9111538
Chicago/Turabian StyleSi Ammour, Melissa, Eleonora Castaldo, Giorgia Fedele, and Vittorio Rossi. 2020. "Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines" Plants 9, no. 11: 1538. https://doi.org/10.3390/plants9111538
APA StyleSi Ammour, M., Castaldo, E., Fedele, G., & Rossi, V. (2020). Use of LAMP for Assessing Botrytis cinerea Colonization of Bunch Trash and Latent Infection of Berries in Grapevines. Plants, 9(11), 1538. https://doi.org/10.3390/plants9111538