Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes
Abstract
:1. Introduction
2. Results
2.1. Wheat Yield Components: Grain Yield and Thousand-Grain Weight
2.2. Wheat Grain Nitrogen and Carbon Concentrations
2.3. Wheat Grain Carbohydrates Composition
2.4. Wheat Grain Gliadin and Glutenin Concentrations
2.5. Wheat Grain Mineral Composition
2.6. Wheat Grain Polyphenols and Anti-Radical Activity
3. Discussion
3.1. Grain and Thousand-Grain Weight Traits Were Used to Differentiate High- and Low-Yielding Durum Wheat Genotypes
3.2. A Supplementary Nitrogen Addition Post-Anthesis Slightly Improves Durum Wheat Grain Yield
3.3. A High Nitrogen Supply Increases Durum Wheat Grain Nitrogen but Decreases Nitrogen Use Efficiency
3.4. Durum Wheat Grain Carbohydrates Tend to Be Stored as Mono and Disaccharides (Glucose, Sucrose, and Maltose), Not as Starch, When the Applied N Is High
3.5. N Supply Stimulated the Synthesis of Storage Proteins, Gliadins and Glutenins, in Durum Wheat Grains but Only in the High-Yielding Genotypes
3.6. A High Nitrogen Supply Increases Durum Wheat Grain Mineral Concentrations
3.7. A High Nitrogen Supply Increases Total Grain Polyphenols, Due to the Hydrolysable Fraction, but with No Impact on the Anti-Radical Activity
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Grain Yield and Thousand-Grain Weight
4.3. Grain Carbon and Nitrogen Concentrations and Nitrogen Use Efficiency (NUE)
4.4. Grain Mineral Composition
4.5. Grain Carbohydrates Composition
4.6. Grain Gliadin and Glutenin Concentrations
4.7. Grain Polyphenol Fractions and Anti-Radical Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciudad-Mulero, M.; Barros, L.; Fernandes, A.; Ferreira, I.C.F.R.; Callejo, M.J.; Matallana-González, M.C.; Fernández-Ruiz, V.; Morales, P.; Carrillo, J.M. Potential health claims of durum and bread wheat flours as functional ingredients. Nutrients 2020, 12, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engert, N.; John, A.; Henning, W.; Honermeier, B. Effect of sprouting on the concentration of phenolic acids and antioxidative capacity in wheat cultivars (Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J. Appl. Bot. Food Qual. 2011, 84, 111–118. [Google Scholar]
- Colasuonno, P.; Marcotuli, I.; Blanco, A.; Maccaferri, M.; Condorelli, G.E.; Tuberosa, R.; Parada, R.; Costa de Camargo, A.; Schwember, A.R.; Gadaleta, A. Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): An overview of quantitative trait loci and candidate genes. Front. Plant Sci. 2019, 10, 1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [Green Version]
- Sissons, M.J.; Egan, N.E.; Gianibelli, M.C. New insights into the role of gluten on durum pasta quality using reconstitution method. Cereal Chem. 2005, 82, 601–608. [Google Scholar] [CrossRef]
- Asthir, B.; Jain, D.; Kaur, B.; Bains, N.S. Effect of nitrogen on starch and protein content in grain influence of nitrogen doses on grain starch and protein accumulation in diversified wheat genotypes. J. Environ. Biol. 2017, 38, 427–433. [Google Scholar] [CrossRef]
- Dolijanovic, Z.; Roljevic Nikolic, S.; Kovacevic, D.; Djurdjic, S.; Miodragovic, R.; Jovanovic Todorovic, M.; Popovic Djordjevic, J. Mineral profile of the winter wheat grain: Effects of soil tillage systems and nitrogen fertilization. Appl. Ecol. Environ. Res. 2019, 17, 11757–11771. [Google Scholar] [CrossRef]
- Blandino, M.; Marinaccio, F.; Reyneri, A. Effect of late-season nitrogen fertilization on grain yield and on flour rheological quality and stability in common wheat under different production situations. Ital. J. Agron. 2016, 11, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Litke, L.; Gaile, Z.; Ruza, A. Effect of nitrogen fertilization on winter wheat yield and yield quality. Agron. Res. 2018, 16, 500–509. [Google Scholar] [CrossRef]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.K.; Bali, S.K. A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Lyngstad, I. Residual Effects of Fertilizer Nitrogen in Soil. Acta Agric. Scand. 1975, 25, 330–336. [Google Scholar] [CrossRef]
- Fageria, N.K. Nitrogen harvest index and its association with crop yields. J. Plant Nutr. 2014, 37, 795–810. [Google Scholar] [CrossRef]
- Zavalin, A.A.; Kurishbayev, A.K.; Ramazanova, R.K.; Tursinbaeva, A.E.; Kassipkhan, A. Fertilizer nitrogen use by spring triticale and spring wheat on dark-chestnut soil of the dry steppe zone of Kazakhstan. Russ. Agric. Sci. 2018, 44, 153–156. [Google Scholar] [CrossRef]
- Rodriguez-Felix, F.; Ramirez-Wong, B.; Torres-Chávez, P.I.; Alvarez-Avilés, A.; Moreno-Salazar, S.; Renteria-Martinez, M.E.; Bello-Perez, L.A. Yellow berry, protein and agronomic characteristics in bread wheat under different conditions of nitrogen and irrigation in northwest Mexico. Pak. J. Bot. 2014, 46, 221–226. [Google Scholar]
- González-Torralba, J.; Arazuri, S.; Jarén, C.; Arregui, L.M. Stable quality traits of soft Winter wheat under nonlimiting nitrogen conditions. Crop Sci. 2011, 51, 2820–2828. [Google Scholar] [CrossRef]
- Abedi, T.; Alemzadeh, A.; Abdolreza Kazemeini, S. Wheat yield and grain protein response to nitrogen amount and timing. Aust. J. Crop Sci. 2011, 5, 330–336. [Google Scholar]
- Makowska, A.; Obuchowski, W.; Sulewka, H.; Koziara, W.; Paschke, H. Effect of nitrogen fertilization of durum wheat varieties on some characteristics important for pasta production. Acta Sci. Pol. Technol. Aliment. 2008, 7, 29–39. [Google Scholar]
- Wingler, A.; Mares, M.; Pourtau, N. Spatial patterns and metabolic regulation of photosynthetic parameters during senescence. New Phytol. 2004, 161, 781–789. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, B.; Li, Q.; Kong, F.; Du, L.; Zhou, F.; Shi, H.; Ke, Y.; Liu, Q.; Feng, D.; et al. Non-structural carbohydrates in maize with different nitrogen tolerance are affected by nitrogen addition. PLoS ONE 2019, 14, e0225753. [Google Scholar] [CrossRef]
- Bala, S.; Asthir, B.; Bains, N.S. Activities of cell wall peroxidises in relation to lignifications in six wheat (Triticum aestivum L.) genotypes under heat and drought stress. J. Environ. Biol. 2016, 37, 437–442. [Google Scholar]
- Pan, J. Effect of Nitrogen on Characteristics of Accumulation and Translocation of Nonstructural Carbohydrates in Stems and Their Genetic Basis; Huazhong Agricultural University: Wuhan, China, 2010. (In Chinese) [Google Scholar]
- Svecnjak, Z.; Jenel, M.; Bujan, M.; Vitali, D.; Dragojevic, I.V. Trace element concentrations in the grain of wheat cultivars affected by nitrogen fertilization. Agric. Food Sci. 2013, 22, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Zhang, J.; Hou, J.; Li, Y.; Huang, X.; Wang, C.; Lu, H.; Zhu, Y.; Guo, T. Evaluation of yield, processing quality and nutritional quality in different-colored wheat grains under nitrogen and phosphorus fertilizer application. Crop Sci. 2018, 58, 402–415. [Google Scholar] [CrossRef]
- Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K. Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain. Front. Plant Sci. 2018, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.G.; Janzen, H.H.; Ellert, B.H. Effect of fertilizer and cropping system on grain nutrient concentrations in spring wheat. Can. J. Plant Sci. 2018, 98, 125–131. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Ma, D.; Sun, D.; Li, Y.; Wang, C.; Xie, Y.; Guo, T. Effect of nitrogen fertilization and irrigation on phenolic content, phenolic acid, composition and antioxidant activity of winter wheat grain. J. Sci. Food Agric. 2015, 95, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Su, L.; Yu, L.L. Phytochemicals and antioxidant properties in wheat bran. J. Agric. Food. Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
- Okarter, N.; Liu, C.S.; Sorrells, M.E.; Liu, R.H. Phytochemical content and antioxidant activity of six diverse varieties of whole wheat. Food Chem. 2010, 119, 249–257. [Google Scholar] [CrossRef]
- Klikocha, H.; Cybulska, M.; Barczak, B.; Narolski, B.; Szostak, B.; Kobialka, A.; Nowak, A.; Wojcik, E. The effect of sulphur and nitrogen fertilization on grain yield and technological quality of spring wheat. Plant Soil Environ. 2016, 62, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Bielski, S.; Romaneckas, K.; Sarauskis, E. Impact of nitrogen and boron fertilization on winter triticale productivity parameters. Agronomy 2020, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Li, L.; Xie, J.; Wang, X.; Coulter, J.A.; Liu, C.; Wang, L. Effect of long-term nitrogen addition on wheat yield, nitrogen use efficiency and residual soil nitrate in a semiarid area of the Loess Plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H.; Morita, S.; Kusuda, O. Effect of nitrogen application rate and timing on grain yield and protein content of the bread wheat cultivar ‘Minaminokaori’ in southwestern Japan. Plant Prod. Sci. 2008, 11, 151–157. [Google Scholar] [CrossRef]
- Li, C.; Cao, W.; Dai, T. Dynamic characteristics of floret primordium development in wheat. Field Crop Res. 2001, 71, 71–76. [Google Scholar] [CrossRef]
- Garrido-Lestache, E.; López-Bellido, R.J.; López-Bellido, L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 2005, 23, 265–278. [Google Scholar] [CrossRef]
- Visioli, G.; Bonas, U.; Dal Cortivo, C.; Pasini, G.; Marmiroli, N.; Mosca, G.; Vamerali, T. Variations in yield and gluten proteins in durum wheat varieties under late season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. J. Sci. Food Agric. 2018, 98, 2360–2369. [Google Scholar] [CrossRef] [Green Version]
- Blandino, M.; Vaccino, P.; Reyneri, A. Late-season nitrogen increases improver common and durum wheat quality. Agron. J. 2015, 107, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Belete, F.; Dechassa, N.; Molla, A.; Tana, T. Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the vertisols of central highlands of Ethiopia. Agric. Food Secur. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Lopez-Bellido, R.; Shepherd, C.; Barraclough, P. Predicting post-anthesis N requirements of bread wheat with a Minolta SPAD meter. Eur. J. Agron. 2004, 20, 313–320. [Google Scholar] [CrossRef]
- Ye, Y.; Liang, X.; Chen, Y.; Li, L.; Ji, Y.; Zhu, C. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late season rice under different water and nitrogen managements. PLoS ONE 2014, 9, e101776. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Shangguan, Z. The relationships and sensibility of wheat C:N:P stoichiometry and water use efficiency under nitrogen fertilization. Plant Soil Environ. 2015, 61, 201–207. [Google Scholar] [CrossRef]
- Haile, D.; Nigussie, D.; Ayana, A. Nitrogen use efficiency of bread wheat: Effects of nitrogen rate and time of application. J. Soil Sci. Plant Nutr. 2012, 12, 389–409. [Google Scholar] [CrossRef]
- Ierna, A.; Lombardos, G.M.; Mauromicale, G. Yield, nitrogen use efficiency and grain quality in durum wheat as affected by nitrogen. Exp. Agric. 2016, 52, 314–329. [Google Scholar] [CrossRef]
- Zadeh, A.N.; Amiri, E.; Shariffar, A.; Tayefe, M.; Hashemi, S.A. Effect of chemical and biological fertilizer on rice yield, growth and quality in paddy soil of Guilan province (Iran). J. Biodivers. Environ. Sci. 2013, 3, 61–68. [Google Scholar]
- Ning, P.; Peng, Y.; Fritschi, F.B. Carbohydrate dynamics in maize leaves and developing ears in response to nitrogen application. Agronomy 2018, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Galani, H.N.; Lomte, M.H.; Choudhari, S.D. Juice yield and brix as affected by genotype, plant density and N levels in high-energy sorghum. Bharatiy Sugar 1991, 16, 23–24. [Google Scholar]
- Almodares, A.; Jafarinia, M.; Hadi, M.R. The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. Am-Eurasian J. Agric. Environ. Sci. 2009, 6, 441–446. [Google Scholar]
- Chiavaroli, L.; Kendall, C.W.C.; Braunstein, C.R.; Blanco Mejia, S.; Leiter, L.A.; Jenkins, D.J.A.; Sievenpiper, J.L. Effect of pasta in the context of low-glycaemic index dietary patterns on body weight and markers of adiposity: A systematic review and meta-analysis of randomised controlled trials in adults. BMJ Open 2018, 8, e019438. [Google Scholar] [CrossRef] [Green Version]
- Wieser, H.; Kieffer, R. Correlations of the amount of gluten protein types to the technological properties of wheat flours determined on a micro-scale. J. Cereal Sci. 2001, 34, 19–27. [Google Scholar] [CrossRef]
- Zhang, P.; He, Z.; Chen, D.; Zhanga, Y.; Larroquee, O.R.; Xia, X. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J. Cereal Sci. 2007, 46, 1–10. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhu, R.J.; Tian, J.C. Influence of wheat protein contents and fractions on dough rheological properties as determined by using a reconstitution method. Agric. Sci. China 2008, 7, 395–404. [Google Scholar] [CrossRef]
- Stepien, A.; Wojtkowiak, K. Composition of gluten proteins in spring and winter wheat grain cultivated under conditions of varied fertilization. Acta Agric. Scand. B Soil Plant Sci. 2013, 63, 588–594. [Google Scholar] [CrossRef]
- Altenbach, S.B.; Tanaka, C.K.; Hurkman, W.J.; Whitehand, L.C.; Vensel, W.H.; Dupont, F.M. Differential effects of a post-anthesis fertilizer regimen on the wheat flour proteome determined by quantitative 2-DE. Proteome Sci. 2011, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, E.; Prieto-Linde, M.L.; Jönsson, J.O. Effects of wheat cultivar and nitrogen application on storage protein composition and breadmaking quality. Cereal Chem. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Jia, Y.Q.; Masbou, V.; Aussenac, T.; Fabre, J.L.; Debaeke, P. Effects of nitrogen fertilization and maturation conditions on protein aggregates and on the breadmaking quality of Soissons, a common wheat cultivar. Cereal Chem. 1996, 73, 123–130. [Google Scholar]
- Kharel, T.P.; Clay, D.E.; Clay, S.A.; Beck, D.; Reese, C.; Carlson, G.; Park, H. Nitrogen and water stress affect winter wheat yield and dough quality. Agron. J. 2011, 103, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Pechanek, U.; Karger, A.; Gröger, S.; Charvart, B.; Schöggl, G.; Lelley, T. Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat. Cereal Chem. 1997, 74, 800–805. [Google Scholar] [CrossRef]
- Wieser, H.; Seilmeier, W. The influence of nitrogen fertilisation on quantities and proportions of different protein types in wheat flour. J. Sci. Food Agric. 1998, 76, 49–55. [Google Scholar] [CrossRef]
- Feil, B.; Bänziger, M. Nitrogen and cultivar effects on the mineral element concentration in the grain of spring wheat. Eur. J. Agron. 1993, 2, 205–212. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Baenziger, P.S.; Frels, K.; Carver, B.; Arnall, B.; Waters, B.M. Variation for grain mineral concentration in a diversity panel of current and historical great plains hard winter wheat germplasm. Crop Sci. 2015, 55, 1035–1052. [Google Scholar] [CrossRef]
- Jaskulska, I.; Jaskulski, D.; Galezewski, L.; Knapowski, T.; Kozera, W.; Waclawowicz, R. Mineral composition and baking value of the winter wheat grain under varied environmental and agronomic conditions. J. Chem. 2018, 5013825. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.X.; He, M.R.; Wang, Z.L.; Wang, Y.F.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. C. R. Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Tietel, Z.; Simhon, E.; Gashu, K.; Ananth, D.A.; Schwartz, B.; Saranga, Y.; Yermiyahu, U. Nitrogen availability and genotype affect major nutritional quality parameters of tef grain grown under irrigation. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Elhanafi, L.; Houhou, M.; Rais, C.; Mansouri, I.; Elghadraoui, L.; Greche, H. Impact of excessive nitrogen fertilization on the biochemical quality, phenolic compounds, and antioxidant power of Sesamum indicum L. seeds. J. Food Qual. 2019, 9428092. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, B.; Yan, F.; Honermeier, B. Influence of nitrogen fertilization on yield and phenolic compounds in wheat grains (Triticum aestivum L. ssp. aestivum). J. Plant Nutr. Soil Sci. 2019, 182, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Langenkämper, G.; Zorb, C.; Seifert, M.; Mader, P.; Fretzdorff, B.; Betsche, T. Nutritional quality of organic and conventional wheat. Appl. Bot. Food Qual. 2006, 80, 150–154. [Google Scholar]
- Margana, U. Control at the level of substrate supply—An alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 1977, 16, 419–426. [Google Scholar] [CrossRef]
- Taie, H.A.A.; El-Mergawi, R.; Radwan, S. Isoflavonoids, flavonoids, phenolic acids profiles and antioxidant activity of soybean seeds as affected by organic and bioorganic fertilization. Am. Eurasian J. Agric. Environ. Sci. 2008, 4, 207–213. [Google Scholar]
- Kosik, T.; Lacko-Bartosova, M.; Kobida, L. Free phenol content and antioxidant activity of winter wheat in sustainable farming systems. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 247–249. [Google Scholar]
- Hawkesford, M.J.; Riche, A.B. Impacts of G x E x M on nitrogen use efficiency in wheat and future prospects. Front. Plant Sci. 2020, 11, 1157. [Google Scholar] [CrossRef]
- Triboi, E.; Abad, A.; Michelena, A.; Lloveras, J.; Ollier, J.L.; Daniel, C. Environmental effects on the quality of two wheat genotypes: 1. Quantitative and qualitative variation of storage proteins. Eur. J. Agron. 2000, 13, 47–64. [Google Scholar] [CrossRef]
- Gao, L.; Wang, S.; Oomah, B.D.; Mazza, G. Wheat quality: Antioxidant activity of wheat millstreams. In Wheat Quality Elucidation; Ng, P., Wrigley, C.W., Eds.; AACC International: St. Paul, MN, USA, 2002; pp. 219–233. [Google Scholar]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Sd, M.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Glahn, R.P.; Lee, O.A.; Yeung, A.; Goldman, M.I.; Miller, D.D. Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J. Nutr. 1998, 128, 1555–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angioloni, A.; Collar, C. Polyphenol composition and ‘in vitro’ antiradical activity of single and multigrain breads. J. Cereal Sci. 2011, 53, 90–96. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Collar, C.; Jiménez, T.; Conte, P.; Fadda, C. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads. Carbohydr. Polym. 2014, 113, 149–158. [Google Scholar] [CrossRef] [Green Version]
Genotypes | Grain Yield (g/Plant) | TGW (g) | ||
---|---|---|---|---|
High N | Low N | High N | Low N | |
18 | 9.43 a ± 0.58 | 8.22 ab ± 0.28 | 58.63 a ± 1.88 | 56.50 a ± 2.49 |
4 | 9.09 ab ± 0.57 | 6.57 defg ± 0.49 | 50.75 cd ± 1.69 | 47.14 e ± 0.61 |
6 | 8.68 abc ± 0.46 | 7.85 abc ± 0.54 | 57.25 ab ± 0.54 | 51.38 cd ± 2.43 |
5 | 8.40 abcd ± 0.45 | 6.94 cdef ± 0.52 | 48.75 de ± 0.53 | 47.69 de ± 1.23 |
8 | 8.33 abcd ± 0.48 | 7.72 abcd ± 0.47 | 51.06 cd ± 1.02 | 52.50 bc ± 1.05 |
15 | 7.98 abcdef ± 0.82 | 8.27 a ± 0.50 | 51.00 cd ± 1.67 | 51.81 bc ± 0.91 |
14 | 7.96 bcde ± 0.42 | 6.92 cdef ± 0.34 | 46.56 efg ± 1.34 | 48.94 cde ± 1.52 |
10 | 7.41 cdefg ± 0.31 | 7.36 abcdef ± 0.39 | 52.88 c ± 1.00 | 52.13 bc ± 1.42 |
1 | 7.31 cdefg ± 0.34 | 6.37 efgh ± 0.55 | 46.38 efg ± 1.41 | 42.88 fg ± 1.83 |
13 | 7.17 defg ± 0.36 | 7.55 abcde ± 0.45 | 53.50 bc ± 0.73 | 50.00 cde ± 1.33 |
2 | 7.16 defg ± 0.39 | 6.90 cdef ± 0.40 | 43.56 g ± 1.13 | 42.44 g ± 1.45 |
12 | 7.06 defgh ± 0.45 | 6.23 fgh ± 0.45 | 54.25 bc ± 1.88 | 50.38 cde ± 1.22 |
19 | 6.86 efgh ± 0.52 | 7.05 bcdef ± 0.38 | 43.56 g ± 1.02 | 50.63 cde ± 0.69 |
7 | 6.83 efgh ± 0.75 | 5.19 h ± 0.35 | 43.94 fg ± 1.52 | 52.06 bc ± 0.65 |
11 | 6.78 efgh ± 0.64 | 6.52 efg ± 0.44 | 58.56 a ± 1.16 | 55.69 ab ± 1.57 |
20 | 6.70 efgh ± 0.30 | 7.77 abcd ± 0.33 | 47.56 def ± 1.48 | 50.38 cde ± 0.91 |
3 | 6.53 efgh ± 0.37 | 6.28 fgh ± 0.49 | 44.06 fg ± 1.59 | 42.13 g ± 1.26 |
16 | 6.43 fgh ± 0.53 | 6.17 fgh ± 0.43 | 50.69 cd ± 0.87 | 46.69 ef ± 0.97 |
9 | 6.27 gh ± 0.53 | 5.40 gh ± 0.34 | 48.81 de ± 1.98 | 49.19 cde ± 0.64 |
17 | 5.74 h ± 0.26 | 7.37 abcdef ± 0.38 | 54.19 bc ± 2.22 | 52.88 abc ± 1.97 |
Two-way ANOVA | ||||
p-value (G effect) | <0.001 | <0.001 | ||
p-value (T effect) | 0.03 | 0.34 | ||
p-value (G × T) | 0.75 | 0.40 |
Genotypes | N (%) | C (%) | C/N | NUE | ||||
---|---|---|---|---|---|---|---|---|
High N | Low N | High N | Low N | High N | Low N | High N | Low N | |
Genotype 18 (HYG) | 2.8 d ± 0.07 | 2.2 b ± 0.08 | 41.0 cd ± 0.11 | 39.7 c ± 0.09 | 14.6 a ± 0.34 | 18.1 a ± 0.64 | 35.70 a ± 0.92 | 45.55 a ± 1.56 |
Genotype 6 (HYG) | 2.9 cd ± 0.04 | 2.1 b ± 0.06 | 40.9 d ± 0.08 | 40.5 b ± 0.06 | 13.9 ab ± 0.17 | 19.4 a ± 0.51 | 34.03 ab ± 0.45 | 47.98 a ± 1.27 |
Genotype 10 (HYG) | 3.1 bc ± 0.09 | 2.1 b ± 0.04 | 41.6 b ± 0.06 | 41.2 a ± 0.07 | 13.6 b ± 0.38 | 19.5 a ± 0.37 | 32.69 bc ± 0.88 | 47.23 a ± 0.88 |
Genotype 3 (LYG) | 3.2 ab ± 0.12 | 2.6 a ± 0.13 | 41.3 c ± 0.11 | 40.7 b ± 0.14 | 13.1 bc ± 0.48 | 15.9 b ± 0.71 | 31.77 bcd ± 1.20 | 39.19 b ± 1.84 |
Genotype 9 (LYG) | 3.4 a ± 0.10 | 2.7 a ± 0.10 | 41.2 c ± 0.06 | 40.3 b ± 0.15 | 12.2 c ± 0.36 | 14.8 b ± 0.55 | 29.52 d ± 0.87 | 36.78 b ± 1.44 |
Genotype 16 (LYG) | 3.2 ab ± 0.06 | 2.7 a ± 0.14 | 42.6 a ± 0.09 | 40.3 b ± 0.30 | 13.2 b ± 0.24 | 15.5 b ± 0.80 | 31.05 cd ± 0.57 | 38.40 b ± 2.00 |
N effect (%) | +29.24 *** | +2.43 *** | −21.89 *** | −23.66 *** | ||||
Two-way ANOVA | ||||||||
p-value (G effect) | <0.001 | <0.001 | <0.001 | <0.001 | ||||
p-value (T effect) | <0.001 | <0.001 | <0.001 | <0.001 | ||||
p-value (G × T) | 0.194 | <0.001 | <0.001 | 0.005 |
N Level | Genotypes | Total Gliadin ((mv*min)/mg) | Total Glutenin ((mv*min)/mg) | |||
---|---|---|---|---|---|---|
ω | α-β | γ | HMW | LMW | ||
High N | Genotype 18 (HYG) | 25.32 ab ± 2.14 | 302.07 ab ± 8.59 | 180.31 cd ± 5.71 | 89.42 b ± 3.1 | 458.55 c ± 8.59 |
Genotype 6 (HYG) | 19.00 b ± 1.17 | 248.07 c ± 12.63 | 192.42 c ± 3.49 | 101.72 ab ± 2.98 | 474.39 bc ± 2.45 | |
Genotype 10 (HYG) | 26.44 a ± 2.28 | 294.67 ab ± 24.52 | 222.74 ab ± 10.31 | 110.82 a ± 7.96 | 465.72 bc ± 13.57 | |
Genotype 3 (LYG) | 25.57 a ± 1.65 | 321.29 a ± 11.17 | 200.51 bc ± 5.9 | 105.30 ab ± 2.94 | 522.25 a ± 12.28 | |
Genotype 9 (LYG) | 19.54 b ± 2.22 | 261.51 bc ± 15.67 | 246.03 a ± 9.43 | 89.37 b ± 7.03 | 498.18 ab ± 1.50 | |
Genotype 16 (LYG) | 24.80 ab ± 2.67 | 310.00 a ± 14.58 | 165.66 d ± 10.92 | 106.50 a ± 6.22 | 475.62 bc ± 20.17 | |
Low N | Genotype 18 (HYG) | 11.36 c ± 0.23 | 198.23 c ± 3.06 | 153.13 cd ± 2.36 | 51.46 c ± 2.18 | 334.15 c ± 3.47 |
Genotype 6 (HYG) | 12.36 c ± 1 | 204.05 c ± 14.89 | 151.81 d ± 7.13 | 51.53 c ± 1.94 | 336.48 c ± 6.84 | |
Genotype 10 (HYG) | 13.11 c ± 0.56 | 180.28 c ± 4.64 | 162.68 cd ± 3.64 | 55.14 c ± 3.19 | 335.60 c ± 10.96 | |
Genotype 3 (LYG) | 25.77 a ± 0.26 | 316.52 a ± 1.73 | 215.58 b ± 0.62 | 113.02 a ± 0.65 | 520.89 a ± 11.73 | |
Genotype 9 (LYG) | 24.13 a ± 0.73 | 303.38 a ± 6.13 | 237.23 a ± 2.21 | 101.13 b ± 2.08 | 453.27 b ± 3.41 | |
Genotype 16 (LYG) | 17.12 b ± 2.82 | 258.01 b ± 14.87 | 165.69 c ± 6.99 | 117.08 a ± 7.23 | 462.10 b ± 12.67 | |
N effect (%) | +35.48 *** | +18.97 *** | +11.19 *** | +23.25 *** | +18.51 *** | |
Two-way ANOVA | ||||||
p-value (G effect) | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | |
p-value (T effect) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
p-value (G × T) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
N Level | Genotypes | K (mg/100 g) | P (mg/100 g) | Mg (mg/100 g) | S (mg/100 g) | Na (mg/100 g) | Ca (mg/100 g) | Mn (mg/100 g) | Fe (mg/100 g) | Zn (mg/100 g) | Cu (mg/100 g) | Al (mg/100 g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
High N | Genotype 18 (HYG) | 513.82 bc ± 30.39 | 367.42 bc ± 21.03 | 113.76 b ± 6.85 | 99.25 b ± 5.45 | 40.04 b ± 1.71 | 20.45 d ± 0.94 | 4.91 c ± 0.05 | 2.24 c ± 0.11 | 1.56 e ± 0.02 | 0.44 d ± 0.03 | 0.40 b ± 0.07 |
Genotype 6 (HYG) | 504.41 c ± 19.93 | 353.91 c ± 13.44 | 112.85 b ± 4.40 | 110.96 ab ± 6.96 | 39.23 b ± 2.24 | 25.07 c ± 0.86 | 5.26 bc ± 0.22 | 2.65 b ± 0.07 | 1.79 d ± 0.03 | 0.53 b ± 0.02 | 1.18 a ± 0.09 | |
Genotype 10 (HYG) | 554.13 ab ± 5.96 | 404.93 b ± 4.18 | 128.86 a ± 1.24 | 109.13 ab ± 0.89 | 51.62 a ± 2.74 | 24.76 c ± 1.18 | 5.44 ab ± 0.04 | 2.43 bc ± 0.05 | 1.61 e ± 0.06 | 0.46 cd ± 0.00 | 0.55 b ± 0.13 | |
Genotype 3 (LYG) | 595.62 a ± 9.73 | 442.43 a ± 8.02 | 136.54 a ± 2.06 | 114.96 a ± 1.90 | 51.38 a ± 1.90 | 30.25 b ± 0.59 | 5.76 a ± 0.08 | 3.35 a ± 0.20 | 2.55 a ± 0.05 | 0.61 a ± 0.01 | 0.58 b ± 0.04 | |
Genotype 9 (LYG) | 553.28 ab ± 9.67 | 402.62 b ± 6.81 | 139.21 a ± 2.51 | 116.79 a ± 1.64 | 53.55 a ± 2.90 | 34.82 a ± 0.95 | 5.42 b ± 0.07 | 3.26 a ± 0.09 | 2.24 b ± 0.02 | 0.54 b ± 0.01 | 0.99 a ± 0.06 | |
Genotype 16 (LYG) | 552.34 ab ± 5.97 | 405.25 b ± 4.21 | 129.55 a ± 1.12 | 100.62 b ± 1.43 | 43.32 b ± 0.73 | 30.94 b ± 0.73 | 5.53 ab ± 0.07 | 3.15 a ± 0.18 | 2.11 c ± 0.04 | 0.50 bc ± 0.01 | 0.32 b ± 0.08 | |
Low N | Genotype 18 (HYG) | 549.15 a ± 4.64 | 354.80 bc ± 2.17 | 102.10 b ± 0.51 | 85.46 b ± 0.76 | 36.63 b ± 2.35 | 19.12 cd ± 0.47 | 4.81 bc ± 0.04 | 2.78 ab ± 0.24 | 1.91 bc ± 0.03 | 0.46 b ± 0.00 | 0.40 b ± 0.05 |
Genotype 6 (HYG) | 563.80 a ± 24.31 | 345.24 c ± 14.11 | 105.69 b ± 4.45 | 88.59 b ± 3.80 | 38.44 b ± 0.82 | 19.06 cd ± 1.25 | 4.81 bc ± 0.20 | 2.32 b ± 0.08 | 1.85 c ± 0.10 | 0.53 a ± 0.02 | 0.73 a ± 0.09 | |
Genotype 10 (HYG) | 503.84 b ± 3.03 | 356.51 bc ± 1.98 | 103.05 b ± 0.91 | 88.43 b ± 0.56 | 40.83 ab ± 0.28 | 16.16 d ± 0.18 | 4.56 c ± 0.05 | 2.64 ab ± 0.23 | 1.55 d ± 0.02 | 0.45 bc ± 0.01 | 0.39 bc ± 0.00 | |
Genotype 3 (LYG) | 567.74 a ± 6.06 | 403.63 a ± 3.66 | 123.32 a ± 1.49 | 95.35 b ± 0.82 | 43.07 a ± 2.58 | 26.74 a ± 2.74 | 5.09 b ± 0.04 | 2.76 ab ± 0.18 | 2.06 b ± 0.07 | 0.56 a ± 0.01 | 0.16 d ± 0.02 | |
Genotype 9 (LYG) | 481.11 bc ± 6.70 | 373.31 b ± 5.47 | 121.81 a ± 1.64 | 110.78 a ± 6.38 | 42.97 a ± 0.74 | 23.90 ab ± 0.66 | 5.78 a ± 0.07 | 2.96 a ± 0.01 | 2.63 a ± 0.04 | 0.54 a ± 0.00 | 0.23 d ± 0.02 | |
Genotype 16 (LYG) | 456.41 c ± 20.07 | 337.84 c ± 13.54 | 107.96 b ± 4.89 | 81.16 b ± 3.31 | 41.08 ab ± 0.78 | 21.54 bc ± 0.98 | 4.48 c ± 0.19 | 2.36 b ± 0.14 | 1.63 d ± 0.06 | 0.42 c ± 0.02 | 0.26 cd ± 0.05 | |
N effect (%) | +4.85 ** | +9.45 *** | +14.59 *** | +18.55 *** | +14.86 *** | +31.44 *** | +9.39 *** | +7.98 * | (ns) | +3.69 * | +84.77 *** | |
Two-way ANOVA | ||||||||||||
p-value (G effect) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
p-value (T effect) | 0.008 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.023 | 0.25 | 0.033 | <0.001 | |
p-value (G × T) | <0.001 | 0.107 | 0.08 | 0.51 | 0.046 | 0.001 | <0.001 | 0.001 | <0.001 | 0.008 | <0.001 |
Soluble Polyphenols | Hydrolysable Polyphenols | Total Polyphenols | Bio-Accessible Polyphenols | Anti-Radical Activity † | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N Level | Genotypes | mg Gallic Acid/100 g Flour | % of Total Polyphenols | mg Gallic Acid/100 g Flour | % of Total Polyphenols | mg Gallic Acid/100 g Flour | mg Gallic Acid/100 g Flour | % of Total Polyphenols | Remaining µmol DPPH at Steady State | % |
High N | Genotype 18 (HYG) | 224 b ± 6.77 | 19 | 928 a ± 33.66 | 81 | 1152 a ± 31.00 | 540 abc ± 13.13 | 47 | 0.220 c ± 0.004 | 55 |
Genotype 6 (HYG) | 172 c ± 6.12 | 19 | 719 b ± 27.31 | 81 | 892 b ± 26.86 | 586 a ± 21.91 | 66 | 0.212 c ± 0.006 | 57 | |
Genotype 10 (HYG) | 200 bc ± 8.25 | 21 | 745 b ± 30.83 | 79 | 949 b ± 41.17 | 552 ab ± 20.74 | 58 | 0.215 c ± 0.003 | 56 | |
Genotype 3 (LYG) | 294 a ± 9.68 | 24 | 924 a ± 35.81 | 76 | 1218 a ± 36.94 | 575 ab ± 14.59 | 47 | 0.206 c ± 0.009 | 58 | |
Genotype 9 (LYG) | 265 a ± 17.90 | 23 | 905 a ± 85.29 | 78 | 1159 a ± 80.31 | 531 bc ± 23.40 | 46 | 0.257 b ± 0.006 | 48 | |
Genotype 16 (LYG) | 205 bc ± 17.08 | 18 | 924 a ± 52.25 | 82 | 1129 a ± 45.49 | 494 c ± 13.87 | 44 | 0.278 a ± 0.009 | 44 | |
Low N | Genotype 18 (HYG) | 297 ab ± 19.29 | 32 | 619 a ± 40.72 | 68 | 916 a ± 20.35 | 543 cd ± 9.33 | 59 | 0.248 a ± 0.002 | 50 |
Genotype 6 (HYG) | 297 a ± 14.89 | 34 | 573 a ± 25.42 | 66 | 873 ab ± 17.10 | 517 d ± 21.13 | 59 | 0.243 ab ± 0.005 | 51 | |
Genotype 10 (HYG) | 293 a ± 12.58 | 34 | 559 a ± 36.03 | 66 | 851 ab ± 51.15 | 541 cd ± 14.89 | 64 | 0.253 a ± 0.011 | 49 | |
Genotype 3 (LYG) | 284 ab ± 12.52 | 32 | 602 a ± 50.13 | 68 | 886 ab ± 45.07 | 601 ab ± 14.89 | 68 | 0.206 c ± 0.009 | 58 | |
Genotype 9 (LYG) | 255 b ± 5.55 | 29 | 622 a ± 51.08 | 71 | 876 ab ± 52.72 | 647 a ± 18.43 | 74 | 0.219 c ± 0.006 | 56 | |
Genotype 16 (LYG) | 263 ab ± 5.48 | 33 | 525 a ± 23.87 | 67 | 788 b ± 23.38 | 587 bc ± 21.87 | 74 | 0.223 bc ± 0.010 | 55 | |
N effect (%) | −19.36 *** | +47.03 *** | +25.21 *** | −4.62 * | ns | |||||
Two-way ANOVA | ||||||||||
p-value (G effect) | <0.001 | 0.01 | <0.001 | 0.02 | <0.001 | |||||
p-value (T effect) | <0.001 | <0.001 | <0.001 | 0.01 | 0.91 | |||||
p-value (G × T) | <0.001 | 0.06 | 0.002 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Mariem, S.; González-Torralba, J.; Collar, C.; Aranjuelo, I.; Morales, F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants 2020, 9, 1636. https://doi.org/10.3390/plants9121636
Ben Mariem S, González-Torralba J, Collar C, Aranjuelo I, Morales F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants. 2020; 9(12):1636. https://doi.org/10.3390/plants9121636
Chicago/Turabian StyleBen Mariem, Sinda, Jon González-Torralba, Concha Collar, Iker Aranjuelo, and Fermín Morales. 2020. "Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes" Plants 9, no. 12: 1636. https://doi.org/10.3390/plants9121636
APA StyleBen Mariem, S., González-Torralba, J., Collar, C., Aranjuelo, I., & Morales, F. (2020). Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants, 9(12), 1636. https://doi.org/10.3390/plants9121636