Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and Bioactive Compounds Content
2.2. Chemical Composition of HS-SPME
2.3. Microbial Load in the Raw Material
3. Materials and Methods
3.1. Pot Experimental Design
3.2. Determination of Ozonation Process Phytotoxicity
3.3. Ozone Treatment of the Plant Material
3.4. Content of Bioactive Compounds
3.5. Head Space-Solid Phase Microextraction (HS-SPME) and Chromatographic Analysis
3.6. Microbiological Analysis
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Strzelecka, H.; Kowalski, J. Encyclopedia of Herbalism and Herbology; PWN: Warszawa, Poland, 2000; pp. 314–315. [Google Scholar]
- Bina, F.; Rahimi, R. Sweet Marjoram: A Review of Ethnopharmacology, Phytochemistry, and Biological Activities. J. Evid. Based Integr. Med. 2016, 22, 175–185. [Google Scholar] [CrossRef]
- Lichterman, B.L. Aspirin: The Story of a WonderDrug. Br. Med. J. 2004, 329, 1408. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, B.; Satyanarayana, S.; Abedulla Khan, K.; Raja, K.; Mohanty, C. Phytochemical Screening and Antifungal Activity of Ethanol and Petroleum-Ether Leaf Extracts of Origanum Majorana. Int. J. Pharma. Res. Health Sci. 2016, 4, 1320–1323. [Google Scholar] [CrossRef]
- Senderski, M.E. Almost everything about herbs. Podkowa Leśna 2004, 1, 130–151. [Google Scholar]
- Wielgusz, K.; Seidler-Łożykowska, K. Fungi colonizing and damaging different parts of some medicinal plants. Herba Pol. 2017, 63, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Zimowska, B. Fungi colonizing and damaging dif-ferent parts of peppermint (Mentha piperita L.) cultivated in South-Eastern Poland. Herba Pol. 2007, 53, 97–105. [Google Scholar]
- Stojanovic, D.S.; Pavlovic, D.J.S.; Acimovic, G.M.; Aleksic, A.G.; Kuzmanovic, T.S.; Josic, L.J.D. Fungi associated with caraway fruit in Serbia. In Proceedings of the 8th CMAPSEEC, Durres, Albania, 19–22 May 2014; pp. 330–334. [Google Scholar]
- Rosińska, A.; Jarosz, M.; Szopińska, D.; Dorna, H.; Tylkowska, K. Comparison of methods for de-tecting fungi in Silybum marianum (L.) Gaertn. seeds. Folia Hort. 2013, 25, 107–115. [Google Scholar] [CrossRef]
- Kordana, S.; Załęcki, R. Effect of liming levels and forms of nitrogen fertilization on the yield, garden marjoram (Origanum majorana L.) varieties Miraż. Herba Pol. 1986, 3–4, 179–185. [Google Scholar]
- Góra, J.; Lis, A. Marjoram Oil, The Most Valuable Essential Oils; Wyd. Uniwersytetu Mikołaja Kopernika w Toruniu: Toruń, Poland, 2005; pp. 185–195. [Google Scholar]
- Góra, J.; Lis, A.; Piter, S. A comarative study on the content and chemical composition of essential oils in commercial aromatic seasonings. Herba Pol. 2007, 1, 21–26. [Google Scholar]
- Lewkowicz-Mosiej, T. The Lexicon of Medicinal Plants; Świat Książki: Warszawa, Poland, 2003; p. 156. [Google Scholar]
- Suhaj, M. Spice antioxidants isolation and their antiradical activity: A review. J. Food Comp. Anal. 2006, 19, 531–537. [Google Scholar] [CrossRef]
- Newerli-Guz, J. Antioxidant properties of marjoram Origanum majorana L. Probl. Hig. Epidemiol. 2012, 93, 834–837. [Google Scholar]
- Duletić-Laušević, S.; Alimpić Aradski, A.; Kolarević, S.; Vuković-Gačić, B.; Oalđe, M.; Živković, J.; Šavikin, K.; Marin, P. Antineurodegenerative, antioxidant and antibacterial activities and phenolic components of Origanum majorana L. (Lamiaceae) extracts. J. Appl. Bot. Food Qual. 2018, 91, 126–134. [Google Scholar] [CrossRef]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Matłok, N.; Gorzelany, J.; Piechowiak, T.; Balawejder, M. Influence of drying temperature on the content of bioactive compounds in scots pine (Pinus sylvestris L.) Shoots as well as yield and composition of essential oils. Acta Univ. Cibiniensis Ser. E Food Technol. 2020, 1, 15–24. [Google Scholar] [CrossRef]
- Piechowiak, T.; Antos, P.; Kosowski, P.; Skrobacz, K.; Józefczyk, R.; Balawejder, M. Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci. 2019, 28, 35–44. [Google Scholar] [CrossRef]
- Oksanen, E.; Häikiö, E.; Sober, J.; Karnosky, D. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol. 2004, 161, 791–799. [Google Scholar] [CrossRef]
- Karaca, H.; Velioglu, S. Effects of ozone treatments on microbial quality and some chemical properties of lettuce, spinach, and parsley. Postharvest Biol. Technol. 2014, 88, 46–53. [Google Scholar] [CrossRef]
- Sachadyn-Król, M.; Agriopoulou, S. Ozonation as a Method of Abiotic Elicitation Improving the Health-Promoting Properties of Plant Products—A Review. Molecules 2020, 25, 2416. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Gorzelany, J.; Zardzewiały, M.; Balawejder, M. Effect of ozone fumigation on physiological processes and bioactive compounds of red-veined sorrel (Rumex sanguineus). Agronomy 2020, 10, 1726. [Google Scholar] [CrossRef]
- Piechowiak, T.; Balawejder, M. Impact of ozonation process on the level of selected oxidative stress markers in raspberries stored at room temperature. Food Chem. 2019, 298, 125093. [Google Scholar] [CrossRef]
- Gutiérrez, D.R.; Lemos, L.; Rodríguez, S.C. Effect of UV-C and ozone on the bioactive compounds and antioxidant capacity of minimally processed rocket (Eruca Sativa Mill.). Int. J. New Technol. Res. 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Trytek, M.; Paduch, M.; Fiedurek, M.; Kandefer-Szerszeñ, M. Monoterpeny—Stare związki, nowe zastosowania i biotechnologiczne metody ich otrzymywania. Biotechnologia 2007, 1, 135–155. [Google Scholar]
- Bocci, V.A. Scientific and Medical Aspects of Ozone Therapy: State of the Art. Arch. Med. Res. 2006, 37, 425–435. [Google Scholar] [CrossRef]
- Torlak, E.; Sert, D.; Ulca, P. Efficacy of gaseous ozone against Salmonella and microbial population on dried oregano. Int. J. Food Microbiol. 2013, 165, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Kazi, M.; Parlapani, F.F.; Boziaris, I.S.; Vellios, E.K.; Lykas, C. Effect of ozone on the microbiological status of five dried aromatic plants. J. Sci. Food Agric. 2018, 98, 1369–1373. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, A.J.; Śmigielski, K. Ozonation—An alternative decontamination method for raw plant materials. Biotechnol. Food Sci. 2013, 77, 37–43. [Google Scholar]
- Aguayo, E.; Escalona, V.H.; Ertes, F. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biol. Technol. 2006, 39, 169–177. [Google Scholar] [CrossRef]
- Matłok, N.; Gorzelany, J.; Stępiń, A.E.; Figiel, A.; Balawejder, M. Effect of Fertilization in Selected Phytometric Features and Contents of Bioactive Compounds in Dry Matter of Two Varieties of Basil (Ocimum basilicum L.). Sustainability 2019, 11, 6590. [Google Scholar] [CrossRef] [Green Version]
- Matłok, N.; Stępień, A.E.; Gorzelany, J.; Wojnarowska-Nowak, R.; Balawejder, M. Effects of Organic and Mineral Fertilization on Yield and Selected Quality Parameters for Dried Herbs of Two Varieties of Oregano (Origanum vulgare L.). Appl. Sci. 2020, 10, 5503. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium Macrocarpon L). J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef]
No. | RT [min] | Peak Share in the Chromatogram (%) Depending on the Time Ozonation | Ordinary Substance Name | Systematic Substance Name | No CAS | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 min | 1 min | 3 min | 5 min | 7 min | 10 min | |||||
1 | 5.13 | 0.072 a | trace | trace | trace | trace | trace | - | 2-hexenal | 6728-26-3 |
2 | 7.36 | 1.46 b | 2.75 c | 0.69 a | 1.07 b | 2.65 c | 1.33 b | α-Pinene | 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 80-56-8 |
3 | 8.35 | 25.16 a | 27.88 a | 24.60 a | 26.63 a | 34.49 b | 34.28 b | sabinene | 4-methylidene-1-propan-2-ylbicyclo[3.1.0]hexane | 3387-41-5 |
4 | 8.74 | 5.40 ab | 6.87 c | 4.26 a | 4.79 a | 5.67 b | 6.11 c | β-Pinene | 2,2,6-trimethyl bicyclo(3.1.1)hept-2-ene | 127-91-3 |
5 | 9.29 | 1.79 bc | 0.92 a | 2.00 c | 1.53 b | 1.37 b | 1.49 b | α-terpinene | 1-methyl-4-propan-2-ylcyclohexa-1,3-diene | 99-86-5 |
6 | 9.44 | 1.29 b | 0.56 a | 2.32 c | 2.76 | 1.09 b | 1.32 b | α-Phellandrene | 2-methyl-5-propan-2-ylcyclohexa-1,3-diene | 99-83-2 |
7 | 9.54 | 13.21 a | 16.53 b | 12.27 a | 14.70 | 12.06 a | 12.81 a | 3-Carene | 3,7,7-trimethylbicyclo[4.1.0]hept-3-ene | 13466-78-9 |
8 | 10.15 | 3.07 b | 2.77 a | 4.30 c | 3.16 b | 2.35 a | 2.58 a | γ-terpinene | 1-methyl-4-propan-2-ylcyclohexa-1,4-diene | 99-85-4 |
9 | 10.31 | 4.36 c | 3.51 b | 5.70d | 4.14 c | 2.91 a | 2.78 a | sabinene hydrate | (2R,5R)-2-Methyl-5-propan-2-ylbicyclo[3.1.0]hexan-2-ol | 17699-16-0 |
10 | 10.73 | 0.91 a | 1.56 b | 1.25 b | 1.05 a | 0.74 a | 0.80 a | terpinolene | 1-methyl-4-propan-2-ylidenecyclohexene | 586-62-9 |
11 | 10.94 | 17.00 c | 13.76 b | 14.07 b | 14.47 b | 11.83 a | 11.74 a | 1-terpinenol | 1-methyl-4-propan-2-ylcyclohex-3-en-1-ol | 586-82-3 |
12 | 12.27 | 0.48 b | 0.27 a | 1.56 d | 0.89 c | 0.43 b | 0.46 b | 4-carvomenthenol | R)-1-Isopropyl-4-methyl-3-cyclohexen-1-ol | 562-74-3 |
13 | 12.48 | 0.94 b | 2.08 d | 1.58 c | 1.24 | 0.65 a | 0.78 a | (-)-α-terpineol | 2-[(1S)-4-methyl-1-cyclohex-3-enyl]propan-2-ol | 10482-56-1 |
14 | 13.46 | 6.86 b | 5.68 a | 7.77 c | 9.01 d | 5.77 a | 5.40 a | ocimenyl acetate | [(5E)-2,6-dimethylocta-5,7-dien-2-yl] acetate | 72214-23-4 |
15 | 14.15 | 0.16 b | 0.14 b | trace | trace | 0.08 a | 0.09 a | terpinyl propionate | 2-(4-methyl-1-cyclohex-3-enyl)propan-2-yl propanoate | 80-27-3 |
16 | 14.71 | 0.63 c | 0.27 a | 0.43 b | 0.46 b | 0.48 b | 0.32 a | Bicyclogermacrene | (4E,8E)-4,8,11,11-tetramethylbicyclo[8.1.0]undeca-4,8-diene | 100762-46-7 |
17 | 14.99 | 0.20 b | 0.33 c | 0.33 c | 0.25 b | 0.15 a | 0.15 a | neryl acetate | [(2Z)-3,7-dimethylocta-2,6-dienyl] acetate | 141-12-8 |
18 | 15.25 | 0.35 c | 0.15 a | 0.62 e | 0.44 d | 0.27 b | 0.26 b | lavandulyl acetate | (5-methyl-2-prop-1-en-2-ylhex-4-enyl) acetate | 25905-14-0 |
19 | 15.91 | 11.46 b | 9.14 a | 9.85 a | 10.87 b | 12.93 c | 12.44 c | β-caryophyllene | (−)-trans-Caryophyllene, trans-(1R,9S)-8-Methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene | 87-44-5 |
20 | 16.33 | 0.44 b | 0.36 a | 0.44 b | 0.57 c | 0.49 b | 0.46 b | γ-Elemene | 1-ethenyl-1-methyl-2,4-di(propan-2-ylidene)cyclohexane | 339154-91-5 |
TOTAL | 95.24 b | 95.53 b | 94.04 a | 98.03 d | 96.41 c | 95.60 b |
No. | RT [min] | Peak Share in the Chromatogram [%] Depending on the Time Ozonation | Ordinary Substance Name | Systematic Substance Name | No CAS | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 min | 1 min | 3 min | 5 min | 7 min | 10 min | |||||
1 | 5.13 | 0.08 a | trace | trace | trace | trace | trace | - | 2-hexenal | 6728-26-3 |
2 | 7.36 | 1.34 b | trace | 1.18 b | 1.39 b | 2.39 c | 0.66 a | α-Pinene | 2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene | 80-56-8 |
3 | 8.35 | 26.21 b | 23.78 a | 23.54 a | 25.93 b | 26.14 b | 23.93 a | sabinene | 4-methylidene-1-propan-2-ylbicyclo[3.1.0]hexane | 3387-41-5 |
4 | 8.74 | 5.37 a | 6.64 b | 4.68 a | 4.62 a | 6.54 a | 6.45 b | β-Pinene | 2,2,6-trimethyl bicyclo(3.1.1)hept-2-ene | 127-91-3 |
5 | 9.29 | 1.97 b | 1.16 a | 1.34 a | 1.04 a | 1.74 ab | 1.16 a | α-terpinene | 1-methyl-4-propan-2-ylcyclohexa-1,3-diene | 99-86-5 |
6 | 9.44 | 1.09 b | 1.06 b | 1.52 c | 0.69 a | 0.87 a | 0.98 ab | α-Phellandrene | 2-methyl-5-propan-2-ylcyclohexa-1,3-diene | 99-83-2 |
7 | 9.54 | 13.99 a | 17.46 b | 18.13 c | 14.82 a | 14.11 a | 17.47 b | 3-Carene | 3,7,7-trimethylbicyclo[4.1.0]hept-3-ene | 13466-78-9 |
8 | 10.15 | 3.11 b | 2.32 a | 2.55 ab | 1.90 a | 2.97 b | 2.04 a | γ-terpinene | 1-methyl-4-propan-2-ylcyclohexa-1,4-diene | 99-85-4 |
9 | 10.31 | 4.19 c | 4.11 c | 3.54 b | 2.44 a | 3.41 b | 3.91 b | sabinene hydrate | (2R,5R)-2-Methyl-5-propan-2-ylbicyclo[3.1.0]hexan-2-ol | 17699-16-0 |
10 | 10.73 | 0.96 b | 0.77 a | 0.75 a | 0.67 a | 0.70 a | 0.70 a | terpinolene | 1-methyl-4-propan-2-ylidenecyclohexene | 586-62-9 |
11 | 10.94 | 16.88 b | 15.52 a | 19.25 c | 16.62 b | 15.10 a | 15.58 a | 1-terpinenol | 1-methyl-4-propan-2-ylcyclohex-3-en-1-ol | 586-82-3 |
12 | 12.27 | 0.48 b | 0.77 c | 0.79 c | 0.27 a | 0.44 b | 0.73 c | 4-carvomenthenol | R)-1-Isopropyl-4-methyl-3-cyclohexen-1-ol | 562-74-3 |
13 | 12.48 | 0.91 b | 1.34 c | 1.06 b | 0.52 a | 0.65 a | 1.77 d | (-)-α-terpineol | 2-[(1S)-4-methyl-1-cyclohex-3-enyl]propan-2-ol | 10482-56-1 |
14 | 13.46 | 6.72 a | 6.33 a | 7.19 b | 6.77 a | 7.09 b | 7.48 b | ocimenyl acetate | [(5E)-2,6-dimethylocta-5,7-dien-2-yl] acetate | 72214-23-4 |
15 | 14.15 | 0.19 a | trace | trace | 0.07 a | 0.44 b | trace | terpinyl propionate | 2-(4-methyl-1-cyclohex-3-enyl)propan-2-yl propanoate | 80-27-3 |
16 | 14.71 | 0.59 a | 0.65 a | 0.56 a | 1.38 b | 1.7 bc | 1.95 c | Bicyclogermacrene | (4E,8E)-4,8,11,11-tetramethylbicyclo[8.1.0]undeca-4,8-diene | 100762-46-7 |
17 | 14.99 | 0.26 b | 0.28 b | 0.19 a | 0.26 b | 0.20 a | 0.17 a | neryl acetate | [(2Z)-3,7-dimethylocta-2,6-dienyl] acetate | 141-12-8 |
18 | 15.25 | 0.37 a | 0.49 b | 0.33 a | 0.44 ab | 0.35 a | 0.34 a | lavandulyl acetate | (5-methyl-2-prop-1-en-2-ylhex-4-enyl) acetate | 25905-14-0 |
19 | 15.91 | 11.21 a | 12.03 b | 12.34 b | 12.23 b | 14.28 c | 10.87 a | β-caryophyllene | (−)-trans-Caryophyllene, trans-(1R,9S)-8-Methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene | 87-44-5 |
20 | 16.33 | 0.44 a | 0.84 b | 0.98 b | 0.71 b | 0.53 a | 1.09 b | γ-Elemene | 1-ethenyl-1-methyl-2,4-di(propan-2-ylidene)cyclohexane | 339154-91-5 |
TOTAL | 96.36 c | 95.55 b | 99.92 d | 92.77 a | 99.68 | 97.28 c |
Date of Measurement | Ozonation Time | Count of Aerobic Bacteria (cfu g−1) | Count of Yeast and Mould (cfu g−1) | Count of Mesophilic Lactic Acid Bacteria (cfu g−1) | Presence of Anaerobic Spore Bacteria (cfu g−1) |
---|---|---|---|---|---|
1 day after ozonation | 0 | 7.4 × 107 cB | 6.4 × 103 cB | 1.2 × 102 bA | absence |
1 | 5.5 × 106 bA | 4.9 × 103 cB | <1.0 × 101 aA | absence | |
3 | 1.8 × 106 bA | 1.2 × 103 cB | <1.0 × 101 aA | absence | |
5 | 1.4 × 106 bB | 7.7 × 102 bB | <1.0 × 101 aA | absence | |
7 | 5.9 × 105 aB | 4.7 × 102 bB | <1.0 × 101 aA | absence | |
10 | 5.5 × 101 aB | <1.0 × 101 aA | <1.0 × 101 aA | absence | |
5 days after ozonation | 0 | 4.4 × 107 dA | 5.5 × 103 cA | 1.8 × 102 bB | absence |
1 | 5.7 × 106 cB | 1.6 × 103 cA | <1.0 × 101 aA | absence | |
3 | 1.8 × 106 cA | 6.2 × 102 bA | <1.0 × 101 aA | absence | |
5 | 9.8 × 105 bA | 5.2 × 102 bA | <1.0 × 101 aA | absence | |
7 | 4.7 × 105 bA | 3.2 × 102 bA | <1.0 × 101 aA | absence | |
10 | 6.6 × 105 aA | 6.4 × 101 aB | <1.0 × 101 aA | absence |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matłok, N.; Piechowiak, T.; Zardzewiały, M.; Gorzelany, J.; Balawejder, M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants 2020, 9, 1637. https://doi.org/10.3390/plants9121637
Matłok N, Piechowiak T, Zardzewiały M, Gorzelany J, Balawejder M. Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants. 2020; 9(12):1637. https://doi.org/10.3390/plants9121637
Chicago/Turabian StyleMatłok, Natalia, Tomasz Piechowiak, Miłosz Zardzewiały, Józef Gorzelany, and Maciej Balawejder. 2020. "Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants" Plants 9, no. 12: 1637. https://doi.org/10.3390/plants9121637
APA StyleMatłok, N., Piechowiak, T., Zardzewiały, M., Gorzelany, J., & Balawejder, M. (2020). Effects of Ozone Treatment on Microbial Status and the Contents of Selected Bioactive Compounds in Origanum majorana L. Plants. Plants, 9(12), 1637. https://doi.org/10.3390/plants9121637