Arsenic Uptake and Accumulation Mechanisms in Rice Species
Abstract
:1. Introduction
2. Arsenic Uptake and Transport by Rice Plants
2.1. Uptake of Inorganic Arsenic
2.2. Uptake of Organic Arsenic
2.3. Arsenic Species Translocation from Root to Shoot
2.4. Phloem and Xylem-Derived Pathways of As Species and As Loading in Grains
2.5. Phytotoxicity of Arsenic and Arsenic Detoxification Mechanism in Rice Plants
3. Effects of Different Factors on Reducing Arsenic Uptake by Plants
3.1. Soil pH
3.2. Soil Organic Matter
3.3. Concentration of Nitrogen, Phosphorous and Sulphate in Soil
3.4. Concentration of Iron and Manganese in Soil
4. Agronomic Methods for Reducing Uptake and Accumulation of Arsenic by Plants
5. Conclusions
- The accumulation of As in soils in Bangladesh (51,900 µg/L in root) and Taiwan (157,000 µg/L in root) is higher than that in other countries.
- AsV enters the root via Pi transporters, and AsIII, DMA and MMA enter the root through NIPs.
- AsV can be reduced to AsIII by HAC1. In addition, DMA is more mobile than other As species.
- Soil properties, such as pH, OM and the amounts of Fe, Mn, N, P and S, can affect As uptake by rice.
- Amongst the agronomic strategies for reducing the uptake and accumulation of As in rice, the use of microalgae and bacteria is the most efficient.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoang, T.V.; Xuan, V.K.T.; Rahman, M.M.; Choi, S.H.; Jeon, J.S. Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice. Plant Sci. 2019, 289, 110273. [Google Scholar] [CrossRef]
- Mousavian, M.T.H.; Karizaki, V.M. Determination of Mass Transfer Parameters during Deep Fat Frying of Rice Crackers. Rice Sci. 2012, 19, 64–69. [Google Scholar] [CrossRef]
- Ma, X.; Han, B.; Tang, J.; Zhang, J.; Cui, D.; Geng, L.; Zhou, H.; Li, M.; Han, L. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.). Plant Physiol. Biochem. 2019, 144, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Pathaichindachote, W.; Panyawut, N.; Sikaewtung, K.; Patarapuwadol, S.; Muangprom, A. Genetic Diversity and Allelic Frequency of Selected Thai and Exotic Rice Germplasm Using SSR Markers. Rice Sci. 2019, 26, 393–403. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.H.; Cao, Y.; Zhu, Y.G.; Rathinasabapathi, B.; Ma, L.Q. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice. Front. Plant Sci. 2017, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Kobya, M.; Soltani, R.D.C.; Omwene, P.I.; Khataee, A. A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environ. Technol. Innov. 2020, 17, 100519. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ. Technol. Innov. 2019, 16, 100462. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Akter, M.; Rahman, M.M.; Sikder, M.T.; Hosokawa, T.; Saito, T.; Kurasaki, M. Investigating the protective actions of D-pinitol against arsenic-induced toxicity in PC12 cells and the underlying mechanism. Environ. Toxicol. Pharm. 2020, 74, 103302. [Google Scholar] [CrossRef]
- Anwar, H.M.; Rengel, Z.; Damon, P.; Tibbett, M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. Environ. Pollut. 2018, 233, 1003–1012. [Google Scholar] [CrossRef]
- Yun, S.W.; Kim, D.H.; Kang, D.H.; Son, J.; Lee, S.Y.; Lee, C.K.; Lee, S.H.; Ji, W.H.; Baveye, P.C.; Yu, C. Effect of farmland type on the transport and spatial distribution of metal(loid)s in agricultural lands near an abandoned gold mine site: Confirmation of previous observations. J. Geochem. Explor. 2017, 181, 129–137. [Google Scholar] [CrossRef]
- Shrivastava, A.; Barla, A.; Majumdar, A.; Singh, S.; Bose, S. Arsenic mitigation in rice grain loading via alternative irrigation by proposed water management practices. Chemosphere 2020, 238, 124988. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Chauhan, R.; Srivastava, S.; Tripathi, R.D. The Journey of Arsenic from Soil to Grain in Rice. Front. Plant Sci. 2017, 8, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Wang, J.; Song, W.Y. Arsenic Uptake and Translocation in Plants. Plant Cell Physiol. 2016, 57, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Mitra, A.; Chatterjee, S.; Moogouei, R.; Gupta, D.K. Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review. Agronomy 2017, 7, 67. [Google Scholar] [CrossRef]
- Kabir, M.S.; Salam, M.A.; Paul, D.N.R.; Hossain, M.I.; Rahman, N.M.F.; Aziz, A.; Latif, M.A. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study. Sci. World J. 2016, 2186069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakma, S.; Rahman, M.M.; Islam, P.; Awal, M.A.; Roy, U.K.; Haq, M.R. Arsenic in rice and rice straw. Bangladesh Vet. 2012, 29, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Hasegawa, H.; Rahman, M.M.; Rahman, M.A.; Miah, M.A.M. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere 2007, 69, 942–948. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Rahman, M.M.; Islam, M.R.; Naidu, R. Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Sci. Total Environ. 2017, 601, 122–131. [Google Scholar] [CrossRef]
- Shah, A.L.; Naher, U.A.; Hasan, Z.; Islam, S.M.M.; Rahman, M.S.; Panhwar, Q.A.; Shamshuddin, J. Arsenic Management in Contaminated Irrigation Water for Rice Cultivation. Trop. Agric. Sci. 2016, 39, 155–166. [Google Scholar]
- Ma, L.; Wang, L.; Jia, Y.; Yang, Z. Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. Sci. Total Environ. 2016, 557, 438–444. [Google Scholar] [CrossRef]
- Li, J.; Dong, F.; Lu, Y.; Yan, Q.; Shim, H. Mechanisms Controlling Arsenic Uptake in Rice Grown in Mining Impacted Regions in South China. PLoS ONE 2014, 9, e108300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Xie, K.; Yue, B.; Gong, Y.; Shao, Y.; Shang, X.; Wu, Y. Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population. Sci. China Chem. 2015, 58, 1898–1905. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, F.; Deacon, C.; Chen, H.J.; Raab, A.; Meharg, A.A. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ. Pollut. 2010, 158, 1536–1541. [Google Scholar] [CrossRef]
- Lin, S.C.; Chang, T.K.; Huang, W.D.; Lur, H.S.; Shyu, G.S. Accumulation of arsenic in rice plant: A study of an arsenic-contaminated site in Taiwan. Paddy Water Environ. 2015, 13, 11–18. [Google Scholar] [CrossRef]
- Patel, K.S.; Shirvas, K.; Brandt, R.; Jakubowski, N.; Hoffmann, P. Arsenic contamination in water, soil, sediment and rice of central India. Environ. Geochem. Health 2005, 27, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Brar, M.S.; Sharma, P.; Malhi, S.S. Arsenic in water, soil and rice plants in the Indo-Gangetic Plains of Northwestern India. Commun. Soil Sci. Plant Anal. 2010, 41, 1350–1360. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Arsenic Contamination in Rice, Wheat, Pulses, and Vegetables: A Study in an Arsenic Affected Area of West Bengal, India. Water Air Soil Pollut. 2010, 213, 3–13. [Google Scholar] [CrossRef]
- Sidhu, S.S.; Brar, J.S.; Biswas, A.; Banger, K.; Saroa, G.S. Arsenic Contamination in Soil–Water–Plant (Rice, Oryza sativa L.) Continuum in Central and Sub-mountainous Punjab, India. Bull. Environ. Contam. Toxicol. 2012, 89, 1046–1050. [Google Scholar] [CrossRef]
- Juen, L.L.; Aris, A.Z.; Ying, L.W.; Haris, H. Bioconcentration and Translocation Efficiency of Metals in Paddy (Oryza sativa): A Case Study from Alor Setar, Kedah, Malaysia. Sains Malays. 2014, 43, 521–528. [Google Scholar]
- Zulkafflee, N.S.; Redzuan, N.A.M.; Hanafi, Z.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Razis, A.F.A. Heavy Metal in Paddy Soil and its Bioavailability in Rice Using In Vitro Digestion Model for Health Risk Assessment. Int. J. Environ. Res. Public Health 2019, 16, 4769. [Google Scholar] [CrossRef] [Green Version]
- Ruangwises, S.; Saipan, P.; Tengjaroenku, B.; Ruangwises, N. Total and Inorganic Arsenic in Rice and Rice Bran Purchased in Thailand. J. Food Prot. 2012, 75, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Kuramata, M.; Abe, T.; Matsumoto, S.; Ishikawa, S. Arsenic accumulation and speciation in Japanese paddy rice cultivars. Soil Sci. Plant Nutr. 2011, 57, 248–258. [Google Scholar] [CrossRef]
- Makino, T.; Ishikawa, S.; Murakami, M.; Arao, T. Spatial Distribution and Risk Management of Heavy Metal Contamination in Japan. In Proceedings of the Monsoon Asia Agro-Environmental Research Consortium (MARCO) Symposium, Tsukuba, Japan, 26–28 August 2015; Available online: https://www.naro.affrc.go.jp/archive/niaes/marco/marco2015/text/ws3-6_t_makino.pdf (accessed on 22 December 2019).
- Rahman, M.A.; Rahman, M.M.; Reichman, S.M.; Lim, R.P.; Naidu, R. Arsenic Speciation in Australian-Grown and Imported Rice on Sale in Australia: Implications for Human Health Risk. J. Agric. Food Chem. 2014, 62, 6016–6024. [Google Scholar] [CrossRef] [PubMed]
- Fransisca, Y.; Small, D.M.; Morrison, P.D.; Spencer, M.J.S.; Ball, A.S.; Jones, O.A.H. Assessment of arsenic in Australian grown and imported rice varieties on sale in Australia and potential links with irrigation practises and soil geochemistry. Chemosphere 2015, 138, 1008–1013. [Google Scholar] [CrossRef]
- Williams, P.N.; Villada, A.; Deacon, C.; Raab, A.; Figuerola, J.; Green, A.J.; Feldmann, J.; Meharg, A.A. Greatly Enhanced Arsenic Shoot Assimilation in Rice Leads to Elevated Grain Levels Compared to Wheat and Barley. Environ. Sci. Technol. 2007, 41, 6854–6859. [Google Scholar] [CrossRef]
- Sommella, A.; Deacon, C.; Norton, G.; Pigna, M.; Violante, A.; Meharg, A.A. Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type. Environ. Pollut. 2013, 181, 38–43. [Google Scholar] [CrossRef]
- Atiaga-Franco, O.L.; Otero, X.L.; Gallego-Picó, A.; Escobar-Castañeda, L.A.; Bravo-Yagüe, J.C.; Carrera-Villacrés, D. Analysis of total arsenic content in purchased rice from Ecuador. Czech J. Food Sci. 2019, 37, 1–7. [Google Scholar] [CrossRef]
- Mondal, D.; Periche, R.; Tineo, B.; Bermejo, L.A.; Rahman, M.M.; Siddique, A.B.; Rahman, M.A.; Solis, J.L.; Cruz, G.J.F. Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. Chemosphere 2020, 241, 125070. [Google Scholar] [CrossRef]
- Abedin, M.J.; Feldmann, J.; Meharg, A.A. Uptake Kinetics of Arsenic Species in Rice Plants. Plant Physiol. 2002, 128, 1120–1128. [Google Scholar] [CrossRef] [Green Version]
- Luan, M.; Liu, J.; Liu, Y.; Han, X.; Sun, G.; Lan, W.; Luan, S. Vacuolar Phosphate Transporter 1 (VPT1) Affects Arsenate Tolerance by Regulating Phosphate Homeostasis in Arabidopsis. Plant Cell Physiol. 2018, 59, 1345–1352. [Google Scholar] [CrossRef]
- Mishra, S.; Mattusch, J.; Wennrich, R. Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci. Rep. 2017, 7, 40522. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yuan, J.; Chang, X.; Yang, M.; Zhang, L.; Lian, X. The Phosphate Transporter Gene OsPht1;4 Is Involved in Phosphate Homeostasis in Rice. PLoS ONE 2015, 10, e0126186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pommerrenig, B.; Diehn, T.A.; Bienert, G.P. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci. 2015, 238, 212–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitani, N.; Yamaji, N.; Ma, J.F. Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflüg. Arch. Eur. J. Physiol. 2008, 456, 679–686. [Google Scholar] [CrossRef]
- Pommerrenig, B.; Diehn, T.A.; Bernhardt, N.; Bienert, D.; Mitani-Ueno, N.; Fuge, J.; Bieber, A.; Spitzer, C.; Bräutigam, A.; Ma, J.F.; et al. Functional evolution of nodulin 26-like intrinsic proteins: From bacterial arsenic detoxification to plant nutrient transport. New Phytol. 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Thorsen, M.; Schüssler, M.D.; Nilsson, H.R.; Wagner, A.; Tamás, M.J.; Jahn, T.P. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Suriyagoda, L.D.B.; Ditteret, K.; Lambers, H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains. Agric. Ecosyst. Environ. 2018, 253, 23–37. [Google Scholar] [CrossRef]
- Zhao, F.J.; Zhu, Y.G.; Meharg, A.A. Methylated Arsenic Species in Rice: Geographical Variation, Origin, and Uptake Mechanisms. Environ. Sci. Technol. 2013, 47, 3957–3966. [Google Scholar] [CrossRef]
- Guillod-Magnin, R.; Brüschweiler, B.J.; Aubert, R.; Haldimann, M. Arsenic species in rice and rice-based products consumed by toddlers in Switzerland. Food Addit. Contam. Part A 2018, 35, 1164–1178. [Google Scholar] [CrossRef] [Green Version]
- Muehe, E.M.; Wang, T.; Kerl, C.F.; Planer-Friedrich, B.; Fendorf, S. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 2019, 10, 4985. [Google Scholar] [CrossRef] [Green Version]
- Kalita, J.; Pradhan, A.K.; Shandilya, Z.M.; Tanti, B. Arsenic Stress Responses and Tolerance in Rice: Physiological, Cellular and Molecular Approaches. Rice Sci. 2018, 25, 235–249. [Google Scholar] [CrossRef]
- Ye, Y.; Li, P.; Xu, T.; Zeng, L.; Cheng, D.; Yang, M.; Luo, J.; Lian, X. OsPT4 Contributes to Arsenate Uptake and Transport in Rice. Front. Plant Sci. 2017, 8, 2197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.J.; Ago, Y.; Mitani, N.; Li, R.L.; Sy, Y.H.; Yamaji, N.; McGrath, S.P.; Ma, J.F. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol. 2010, 186, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sun, Z.; Li, Z.; Xue, R.; Cui, W.; Sun, S.; Liu, T.; Zeng, R.; Song, Y. Deficiency in Silicon Transporter Lsi1 Compromises Inducibility of Anti-herbivore Defense in Rice Plants. Front. Plant Sci. 2019, 10, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detmann, K.C.; Araújo, W.L.; Martins, S.C.V.; Sanglard, L.M.V.; Reis, J.V.; Detmann, E.; Rodrigues, F.A.; Nunes-Nesi, A.; Fernie, A.R.; DaMatta, F.M. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 2012, 196, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Sun, D.; Mei, H.; Liu, X.; Sun, S.; Xu, G.; Liu, Y.; Chen, Y. Knocking Out OsPT4 Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environ. Sci. Technol. 2017, 51, 12131–12138. [Google Scholar] [CrossRef]
- Yang, W.T.; Baek, D.; Yun, D.J.; Lee, K.S.; Hong, S.Y.; Bae, K.D.; Chung, Y.S.; Kwon, Y.S.; Kim, D.H.; Jung, K.H.; et al. Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter. PLoS ONE 2018, 13, e0194628. [Google Scholar] [CrossRef]
- Carey, A.M.; Scheckel, K.G.; Lombi, E.; Newville, M.; Choi, Y.; Norton, G.J.; Charnock, J.M.; Feldmann, J.; Proce, A.H.; Meharg, A.A. Grain Unloading of Arsenic Species in Rice. Plant Physiol. 2010, 152, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Sun, S.K.; Tang, Z.; Liu, G.; Moore, K.L.; Maathuis, J.M.; Miller, A.J.; McGrath, S.P.; Zhao, F.J. The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. J. Exp. Bot. 2017, 68, 3007–3016. [Google Scholar] [CrossRef] [Green Version]
- Chao, D.Y.; Chen, Y.; Chen, J.; Shi, S.; Chen, Z.; Wang, C.; Danku, J.M.; Zhao, F.J. Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants. PLoS ONE 2014, 12, e1002009. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Chen, Y.; Chen, F.; Ji, Y.; Zhao, F.J. OsPTR7 (OsNPF8.1), a Putative Peptide Transporter in Rice, is Involved in Dimethylarsenate Accumulation in Rice Grain. Plant Cell Physiol. 2017, 58, 904–913. [Google Scholar] [CrossRef] [PubMed]
- Kumarathilaka, P.; Seneweera, S.; Meharg, A.; Bundschuh, J. Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci. Total Environ. 2018, 642, 485–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, G.L.; Hu, Y.; Schneider, S.; McDermott, J.; Chen, J.; Sauer, N.; Rosen, B.P.; Daus, B.; Liu, Z.; Zhu, Y.G. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. Nat. Plants 2016, 2, 15202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosa, K.A.; Kumar, K.; Chhikara, S.; Mcdermott, J.; Liu, Z.; Musante, C.; White, J.C.; Dhankher, O.P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgen. Res. 2012, 21, 1265–1277. [Google Scholar] [CrossRef]
- Song, W.Y.; Yamaki, T.; Yamaji, N.; Ko, D.; Jung, K.H.; Fujii-Kashino, M.; An, G.; Martinoia, E.; Lee, Y.; Ma, F.J. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. PNAS 2014, 111, 15699–15704. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, M.B.; Riaz, M.; Niazi, N.K.; Ali, S.; Rizwan, M.; Arif, M.S.; Arif, M. Chapter 18—Recent Advances in Arsenic Accumulation in Rice. In Advances in Rice Research for Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Nahar, K., Biswas, J.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.K.; Chen, Y.; Che, J.; Konishi, N.; Tang, Z.; Miller, A.J.; Ma, J.F.; Zhao, F.J. Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol. 2018, 219, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Chang, Z.; Jin, M.; Yan, W.; Chen, H.; Qju, S.; Fu, S.; Xia, J.; Liu, Y.; Chen, Z.; Wu, J.; et al. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice 2018, 11, 58. [Google Scholar] [CrossRef]
- Meadows, R. How Plants Control Arsenic Accumulation. PLoS Biol. 2014, 12, e1002008. [Google Scholar] [CrossRef] [Green Version]
- Salt, D.E. Would the real arsenate reductase please stand up? New Phytol. 2017, 215, 1090–1101. [Google Scholar] [CrossRef] [Green Version]
- Shri, M.; Singh, P.K.; Kidiwai, M.; Gautam, N.; Dubey, S.; Verma, G.; Chakrabarty, D. Recent advances in arsenic metabolism in plants: Current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice. Metallomics 2019, 11, 519–532. [Google Scholar] [CrossRef]
- Brinke, A.; Reifferscheid, G.; Klein, R.; Feiler, U.; Buchinger, S. Transcriptional changes measured in rice roots after exposure to arsenite-contaminated sediments. Environ. Sci. Pollut. Res. 2018, 25, 2707–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.I.; Kong, M.S.; Lee, B.R.; Kim, T.H.; Cae, M.J.; Lee, E.J.; Jung, G.B.; Lee, C.H.; Sung, J.K.; Kim, Y.H. Exogenous Glutathione Increases Arsenic Translocation into Shoots and Alleviates Arsenic-Induced Oxidative Stress by Sustaining Ascorbate–Glutathione Homeostasis in Rice Seedlings. Front. Plant Sci. 2019, 10, 1089. [Google Scholar] [CrossRef] [PubMed]
- Hossain, K.; Quaik, S.; Pant, G.; Yada, S.; Maruthi, Y.A.; Rafatullah, M.; Nasir, M.; Ismail, N. Arsenic Fate in the Ground Water and its Effect on Soil-Crop Systems. Res. J. Environ. Toxicol. 2015, 9, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Bakhat, H.F.; Zia, Z.; Abbas, S.; Hammad, H.M.; Shah, G.M.; Khalid, S.; Shahid, N.; Sajjad, M.; Fahad, S. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems. Groundw. Sustain. Dev. 2019, 9, 100263. [Google Scholar] [CrossRef]
- Quazi, S.; Datta, R.; Sarkar, D. Effects of soil types and forms of arsenical pesticide on rice growth and development. Int. J. Environ. Technol. 2011, 8, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Tu, S.; Ma, L.Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ. Exp. Bot. 2003, 50, 243–251. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Esteban, E.; Peñalosa, J.M. The Fate of Arsenic in Soil-Plant Systems. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: Berlin, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Syu, C.H.; Wu, P.R.; Lee, C.H.; Juang, L.W.; Lee, D.Y. Arsenic phytotoxicity and accumulation in rice seedlings grown in arsenic-contaminated soils as influenced by the characteristics of organic matter amendments and soils. J. Plant Nutr. Soil Sci. 2019, 182, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Suda, A.; Makino, T. Effect of organic amendments on arsenic solubilization in soils during long-term flooded incubation. Int. J. Environ. Sci. Technol. 2016, 13, 2375–2382. [Google Scholar] [CrossRef] [Green Version]
- Norton, G.J.; Adomako, E.E.; Deacon, C.M.; Carey, A.M.; Price, A.H.; Mehang, A.A. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ. Pollut. 2013, 177, 38–47. [Google Scholar] [CrossRef]
- Qiao, J.T.; Li, X.M.; Hu, M.; Li, F.; Young, L.Y.; Sun, W.; Huang, W.; Cui, J. Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil. Environ. Sci. Technol. 2018, 51, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Pathare, V.S.; Sounderajan, S.; Suprasanna, P. Nitrogen supply influences arsenic accumulation and stress responses of rice (Oryza sativa L.) seedlings. J. Hazard. Mater. 2019, 267, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.J.; Cotter-Howells, J.; Meharg, A.A. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 2002, 240, 311–319. Available online: https://www.jstor.org/stable/24121150 (accessed on 20 December 2019). [CrossRef]
- Pigna, M.; Cozzolino, V.; Caporale, A.G.; Mora, M.L.; Meo, V.D.; Jara, A.A.; Violante, A. Effects of Phosphorus Fertilization on Arsenic Uptake by Wheat Grown in Polluted Soils. J. Soil Sci. Plant Nutr. 2010, 14, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Boye, K.; Lezama-Pacheco, J.; Fendorf, S. Relevance of Reactive Fe:S Ratios for Sulfur Impacts on Arsenic Uptake by Rice. Soils 2017, 1, 1. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Akkarakaran, J.J.; Sounderajan, S.; Shrivastava, M.; Suprasanna, P. Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: Impact on the expression of transporters and thiol metabolism. Geoderma 2016, 270, 33–42. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Q.Z.; Duan, G.L.; Huang, Y.C. Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ. Exp. Bot. 2011, 72, 34–40. [Google Scholar] [CrossRef]
- Liu, W.L.; Zhu, Y.G.; Smith, F.A. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 2005, 277, 127–138. [Google Scholar] [CrossRef]
- Ultra, V.U.; Nakayama, A.; Tanaka, S.; Kang, Y.; Sakurai, K.; Iwasaki, K. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments. Soil Sci. Plant Nutr. 2009, 55, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Hsieh, Y.C.; Lin, T.H.; Lee, D.Y. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 2013, 363, 231–241. [Google Scholar] [CrossRef]
- Yu, H.Y.; Li, F.B.; Liu, C.S.; Huang, W.; Liu, T.X.; Yu, W.M. Chapter Five—Iron Redox Cycling Coupled to Transformation and Immobilization of Heavy Metals: Implications for Paddy Rice Safety in the Red Soil of South China. Adv. Agron. 2016, 137, 279–317. [Google Scholar] [CrossRef]
- Srivastava, S.; Srivastava, S.; Bist, V.; Awashti, S.; Chauhan, R.; Chaudhry, V.; Singh, P.C.; Dwivedi, S.; Niranjan, A.; Agrawal, L.; et al. Chlorella vulgaris and Pseudomonas putida interaction modulates phosphate trafficking for reduced arsenic uptake in rice (Oryza sativa L.). J. Hazard. Mater. 2018, 351, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, M.L.; Charnock, J.M.; Livens, F.R.; Vaughan, D.J. Mechanisms of Arsenic Uptake from Aqueous Solution by Interaction with Goethite, Lepidocrocite, Mackinawite, and Pyrite: An X-ray Absorption Spectroscopy Study. Environ. Sci. Technol. 2002, 36, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Limmer, M.A.; Mann, J.; Amaral, D.C.; Vargas, R.; Seyfferth, A.L. Silicon-rich amendments in rice paddies: Effects on arsenic uptake and biogeochemistry. Sci. Total Environ. 2018, 624, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wei, L.; Zhang, S.; Xu, X.; Li, F. Effects of nanoscale silica sol foliar application on arsenic uptake, distribution and oxidative damage defense in rice (Oryza sativa L.) under arsenic stress. RSC Adv. 2014, 4, 57227–57234. [Google Scholar] [CrossRef]
- Cui, J.; Li, Y.; Jin, Q.; Li, F. Silica nanoparticles inhibit arsenic uptake into rice suspension cells via improving pectin synthesis and the mechanical force of the cell wall. Environ. Sci. Nano 2019, in press. [Google Scholar] [CrossRef]
- Parveen, A.; Mehrotra, S.; Singh, N. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots. Chemosphere 2017, 184, 1327–1333. [Google Scholar] [CrossRef]
- Markley, C.T.; Herbert, B.E. Modeling Phosphate Influence on Arsenate Reduction Kinetics by a Freshwater Cyanobacterium. Environ. Model. Assess. 2009, 15, 361–368. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.Q.; Lv, K.; Cheng, J.J.; Chen, X.L.; Ge, Y.; Yu, X.Y. Soil microalgae modulate grain arsenic accumulation by reducing dimethylarsinic acid and enhancing nutrient uptake in rice (Oryza sativa L.). Plant Soil 2018, 430, 99–111. [Google Scholar] [CrossRef]
- Upadhyay, A.K.; Singh, N.K.; Singh, R.; Rai, U.N. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol. Environ. Saf. 2016, 124, 68–73. [Google Scholar] [CrossRef]
- Xiao, A.W.; Li, W.C.; Ye, Z.H. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 2020, 242, 125136. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Shantharaj, D.; Li, G.; Seyfferth, A.L.; Sherrier, D.J.; Bais, H.P. A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 2015, 242, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Nookongbut, P.; Kantachote, D.; Megharaj, M.; Naidu, R. Reduction in arsenic toxicity and uptake in rice (Oryza sativa L.) by As-resistant purple nonsulfur bacteria. Environ. Sci. Pollut. Res. 2018, 25, 36530–36544. [Google Scholar] [CrossRef] [PubMed]
- Dolphen, R.; Thiravetyan, P. Reducing arsenic in rice grains by leonardite and arsenic–resistant endophytic bacteria. Chemosphere 2019, 223, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.L.; Khan, M.A.; McGrath, S.P.; Zhao, F.J. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environ. Pollut. 2011, 159, 3739–3743. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, G.; Singh, A.P.; Dwivedi, S.; Srivastava, S.; Mishra, K.; Tripathi, R.D. Selenate mitigates arsenite toxicity in rice (Oryza sativa L.) by reducing arsenic uptake and ameliorates amino acid content and thiol metabolism. Ecotoxicol. Environ. Saf. 2016, 133, 350–359. [Google Scholar] [CrossRef]
- Wan, Y.; Camara, A.Y.; Huang, Q.; Yu, Y.; Wang, Q.; Li, H. Arsenic uptake and accumulation in rice (Oryza sativa L.) with selenite fertilization and water management. Ecotoxicol. Environ. Saf. 2018, 156, 67–74. [Google Scholar] [CrossRef]
- Fleck, A.T.; Mattusch, J.; Schenk, M.K. Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J. Plant Nutr. Soil Sci. 2013, 176, 785–794. [Google Scholar] [CrossRef]
- Lin, L.; Gao, M.; Qiu, W.; Huang, Q.; Song, Z. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environ. Pollut. 2017, 231, 479–486. [Google Scholar] [CrossRef]
- Mlangeni, A.T.; Perez, M.; Raab, A.; Krupp, E.M.; Norton, G.J.; Feldmann, J. Simultaneous stimulation of arsenic methylation and inhibition of cadmium bioaccumulation in rice grain using zero valent iron and alternate wetting and drying water management. Sci. Total Environ. 2019, in press. [Google Scholar] [CrossRef]
Plant’s Parts | As (µg/Kg); Average or Range | Remarks | Area | Reference |
---|---|---|---|---|
Grains | 230 | * Boro rice | Sadar Upazila (subdistrict), Faridpur, Bangladesh | [15] |
Straw | 2890 | |||
Husk | 750 | |||
Grains | 235 | White rice | Comilla district, Bangladesh | [16] |
Straw | 1149 | |||
Grains | 600 | BRRI dhan28 | Satkhira district, Bangladesh | [17] |
Straw | 1700 | |||
Root | 46,300 | |||
Grains | 700 | BRRI hybrid dhan1 | ||
Straw | 1900 | |||
Root | 51,900 | |||
Grains | 78 ± 26 | White rice | Barisal, Bangladesh | [18] |
185 ± 82 | Chandpur, Bangladesh | |||
189 ± 72 | Comilla, Bangladesh | |||
180 ± 65 | Dhaka, Bangladesh | |||
177 ± 52 | Munshiganj, Bangladesh | |||
210 ± 95 | Narayanganj, Bangladesh | |||
Grains | 170 to 260 | Boro | Bhanga and Faridpur in Bangladesh | [19] |
Straw | 390 to 3430 | |||
Whole grains | 20 to 130 | Oryza sativa var. kalijira | MATLAB, Bangladesh | |
Grains | 129.4 | White rice | Huang, China | [20] |
Grains | 250 ± 51 | White rice | Renhua, China | [21] |
Straw | 3300 ± 1300 | |||
Root | 25,600 ± 12,500 | |||
Grains | 280 ± 67 | White rice | Lechang, China | [21] |
Straw | 5800 ± 2800 | |||
Root | 35,000 ± 9400 | |||
Grains | 147 | Indica | Fujian, China | [22] |
202 | Indica | Guangdong, China | ||
302 | Indica | Guangxi, China | ||
200 | Indica | Yunnan, China | ||
184 | Indica | Chongqing, China | ||
218 | Indica | Sichuan, China | ||
187 | Japonica | Jiangsu, China | ||
277 | Indica | Zhejiang, China | ||
309 | Indica | Jiangxi, China | ||
216 | Japonica | Henan, China | ||
308 | Indica | Hunan, China | ||
246 | Indica | Hubei, China | ||
263 | Indica | Anhui, China | ||
196 | Japonica | Liaoning, China | ||
426 | Japonica | Jilin, China | ||
(Unpolished samples) | ||||
Grains | 0.127 to 0.275 | Indica | Huahang-Simiao, China | [23] |
Husk | 0.314 to 0.985 | |||
Shoot | 0.93 to 6.19 | |||
Root | 35.4 to 327.3 | |||
Grains | 230 ± 240 | Taikeng No. 8 | Gaudan Plan, Taiwan | [24] |
Straw | 4700 ± 1400 | |||
Root | 266,000 ± 98,000 | |||
Grain | 150 ± 50 | Tain Nan No. 11 | ||
Straw | 3200 ± 400 | |||
Root | 157,000 ± 27,000 | |||
* Rice Types | Ambagarh Chouki, India | [25] | ||
Husk | 432 | IR-64 | ||
147 | Culture | |||
411 | Shyamla | |||
415 | G. Gurmatia | |||
235 | Masuri | |||
167 | Purnima | |||
144 | Mahamaya | |||
446 | Kalinga | |||
324 | Luchai | |||
18 | Safari | |||
Grains | 3.30 to 4.91 | ** NR the rice species | Punjab, India | [26] |
Straw | 7.30 to 9.89 | |||
Grains | 451 | Boro rice | West Bengal, India | [27] |
Grains | 334 | Aman rice | ||
Grains | 8.78 | Oryza sativa L. | Central and sub-mountainous Punjab, India | [28] |
Straw | 3.94 | |||
Grains | 290 ± 580 | Oryza sativa | Alor Setar, Kedah, Malaysia | [29] |
Straw | 80 ± 150 | |||
Root | 23,100 ± 12,670 | |||
Grains | 189 to 541 | Oryza sativa | Besut, Sekinchan, Tanjung Karang and Sabak Bernam; Malaysia | [30] |
Grains | 124 to 136 | Polished rice (White) | Thailand | [31] |
186 to 198 | Brown rice (White) | |||
832 to 963 | Rice bran (White) | |||
(Samples collected from markets (Thailand-grown) | ||||
Grains | 107 to 166 | White rice | Japan; Low-As soils | [32] |
Grains | ||||
Grains | 160 | Brown rice | Japan (average of the country) | [33] |
Grains | 283 ± 18 | * White rice (organic) | Australia (not specified) | [34] |
241 ± 07 | White rice (long-grain) | |||
438 ± 23 | Brown rice (organic) | |||
287 ± 03 | Brown rice (whole) | |||
198 ± 41 | Brown rice (long-grain) | |||
Samples collected from markets (Australian-grown) | ||||
Grains | 170 ± 30 | * Mahatma | Australia (not specified) | [35] |
100 ± 30 | Brown | |||
120 ± 30 | White | |||
90 ± 20 | Medium grain white | |||
220 ± 20 | Sushi | |||
220 ± 20 | Arborio | |||
210 ± 30 | Medium grain Arborio | |||
Samples collected from markets (Australian-grown) | ||||
Grains | 0.13 | Oryza sativa | California, US | [36] |
Straw | 0.7 | |||
Grains | 0.2 | Oryza sativa | Arkansas, US | [36] |
Straw | 1.5 | |||
Grains | 230 ± 10 | * Arborio | Lombardia, Piemonte, Emilia Romagna, and Calabria in Italy | [37] |
230 ± 20 | Carnaroli | |||
180 ± 10 | Ribe | |||
200 ± 10 | Ribe/Roma parboiled | |||
190 ± 10 | Roma | |||
280 ± 30 | Vialone Nano | |||
190 ± 30 | Originario | |||
Grains | 0.32 | Oryza sativa | Carmargue, France | [36] |
Straw | 10.2 | |||
Grains | 232 ± 21 | Brown rice | Guayas, Ecuador | [38] |
174 ± 14 | White rice | Guayas, Ecuador | ||
186 ± 17 | White rice | Los Rios, Ecuador | ||
Samples collected from markets (Ecuadorian-grown) | ||||
Grains | 167.94 | Around Tumbes river basin in Peru | [39] |
Name | Category | As species | Remarks | Reference |
---|---|---|---|---|
OsPT1 | P transporter | AsV | AsV transporter to root | [57] |
OsPT2 | P transporter | AsV | AsV transporter root to shoot | [57] |
OsNIP2;1 (Lsi1) | NIPs | AsIII, DMA, MMA | AsIII, DMA and MMA transporter to root | [63] |
OsNIP2;2 (Lsi2) | ||||
OsNIP1;1 | ||||
OsNIP3;1 | ||||
OsNIP3;2 | ||||
OsNIP3;3 | ||||
OsPIP1;2 | PIP (plasma membrane intrinsic protein) | AsIII | AsIII transport root to shoot | [65] |
OsPIP1;3 | ||||
OsPIP2;4 | ||||
OsPIP2;6 | ||||
OsPIP2;7 | ||||
OsNRAMP1 | NRAMP (natural resistance-associated macrophage protein) | AsIII | AsIII transport root to shoot | [5] |
OsHAC1;1 | NIPs | DMA, MMA, AsV | DMA and MMA transporter to root | [63] |
OsHAC1;2 | AsV reduction to AsIII in root | |||
OsHAC4 | ||||
OsNPF8;1 (OsPTR7) | Putative Peptide Transporter | DMA | Translocation of DMA in plant, including xylem, phloem and grains | [62] |
OsABCC1 | ATP-binding cassette transporter | As | Detoxifying | [66] |
Decreasing of As Uptake | Method | Remarks | Reference |
---|---|---|---|
43% to 70% | Using Anabaena azotica (Microalgae) | (i) Decreasing translocation of As from root to grains; (ii) decreasing DMA in grains and roots and (iii) enhancing nutrient uptake and rice growth | [102] |
40% | Using Chlorella vulgaris and Nannochloropsis sp. (Microalgae) | (i) Increasing root and shoot length and biomass and (ii) reduction in cellular toxicity and antioxidant enzyme | [103] |
48.1% to 77.7% | Using Chlorella vulgaris (Microalgae) and Pseudomonas putida (Bacteria) | (i) Reducing As accessibility; (ii) modulating the As uptake and (iii) enhancing detoxification mechanism. | [95] |
3.5% to 26.0% | Using rhizobacteria (PGPR) | (i) Improving rice growth and (ii) decreasing As accumulation | [104] |
79% (in shoots) | Using Pantoea sp (Bacteria; EA106) | (i) improving Fe uptake by root; (ii) decreasing As accumulation | [105] |
52.3% to 64.5% | Using Rhodopseudomonas palustris C1 and Rubrivivax benzoatilyticus C31(Nonsulfur bacteria) | (i) Improving the rice growth; (ii) increasing chlorophyll a and b and (iii) reducing As accumulation | [106] |
31% (in grains; just leonardite); | Using leonardite + Bacillus pumilus, Pseudomonas sp and Bacillus thuringiensis | (i) High efficiency of leonardite in adsorption of arsenic and (ii) increasing productivity and reducing arsenic in grains | [107] |
92 % (in grains; leonardite + Bacillus pumilus) | |||
91% (in grains; leonardite + Pseudomonas sp) | |||
91% (in grains; leonardite + Bacillus thuringiensis) | |||
17% to 82% (in straw) | Using Pteris vittata (Plant) | (i) Decreasing phosphate extractable; (ii) decreasing methylated As in grains more than inorganic As | [108] |
22% to 58% (in grains) | |||
179% (in root) | Using selenium amendments | (i) Enhancing the essential amino acids; and (ii) increasing non-protein thiols and phytochelatins in rice | [109] |
144% (in shoot) | |||
46% (in straw) | Using Si-rich amendments | (i) Decreasing As accumulation and (ii) reducing CH4 emissions from soil | [97] |
27.5 (in grains) | Using selenite fertilization | (i) Decreasing the soil solution As in flooded condition; (ii) decreasing As uptake by rice in aerobic and (iii) decreasing the proportion of As in rice shoots. | [110] |
50% (straw, flag leaf and husk) | Using silicon | (i) Increasing the Si, Fe and P in soil solution | [111] |
68.9% to 78.3% (in grains) | Using ferromanganese oxide and biochar | (i) increasing the Fe and Mn plaque content and (ii) improving the biomass weight of the rice | [112] |
32% (in grains under low water) | Using zero valent iron | (i) Increasing percentage productive tillers and grain yield and (ii) reducing the cadmium bioaccumulation in rice grains | [113] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abedi, T.; Mojiri, A. Arsenic Uptake and Accumulation Mechanisms in Rice Species. Plants 2020, 9, 129. https://doi.org/10.3390/plants9020129
Abedi T, Mojiri A. Arsenic Uptake and Accumulation Mechanisms in Rice Species. Plants. 2020; 9(2):129. https://doi.org/10.3390/plants9020129
Chicago/Turabian StyleAbedi, Tayebeh, and Amin Mojiri. 2020. "Arsenic Uptake and Accumulation Mechanisms in Rice Species" Plants 9, no. 2: 129. https://doi.org/10.3390/plants9020129
APA StyleAbedi, T., & Mojiri, A. (2020). Arsenic Uptake and Accumulation Mechanisms in Rice Species. Plants, 9(2), 129. https://doi.org/10.3390/plants9020129