The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site
Abstract
:1. Introduction
2. Results
2.1. The Active Sites of TPS4 and TPS10 Differ in 17 Amino Acid Residues
2.2. Combined Mutation of the 17 Active Site Residues in TPS4 Alters the Product Specificity of the Enzyme Towards That of TPS10
2.3. The Differences in Product Specificity of TPS4 and TPS4-c17 Are not Determined Exclusively by Amino Acids in the Helices G1 and G2
2.4. Residues Adjacent to Active Site Amino Acids Can Fine-Tune Product Specificity and Alter Turnover Number
3. Discussion
4. Materials and Methods
4.1. cDNA Clones
4.2. Modeling
4.3. Site-Directed Mutagenesis
4.4. Subcloning of Tps Genes into the Expression Vector pHIS8-3
4.5. Protein Overexpression and Enzyme Assay
4.6. Gas Chromatography
4.7. Antibodies, Gel Electrophoresis and Immunoblotting
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef] [PubMed]
- Karunanithi, P.S.; Zerbe, P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. Front. Plant Sci. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köllner, T.G.; Schnee, C.; Gershenzon, J.; Degenhardt, J. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell 2004, 16, 1115–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köllner, T.G.; Schnee, C.; Gershenzon, J.; Degenhardt, J. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distribution. Phytochemistry 2004, 65, 1895–1902. [Google Scholar] [CrossRef]
- Schnee, C.; Köllner, T.G.; Held, M.; Turlings, T.C.J.; Gershenzon, J.; Degenhardt, J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. USA 2006, 103, 1129–1134. [Google Scholar] [CrossRef] [Green Version]
- Köllner, T.G.; Gershenzon, J.; Degenhardt, J. Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 2009, 70, 1139–1145. [Google Scholar] [CrossRef]
- Vedula, L.S.; Rynkiewicz, M.J.; Pyun, H.J.; Coates, R.M.; Cane, D.E.; Christianson, D.W. Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants. Biochemistry 2005, 44, 6153–6163. [Google Scholar] [CrossRef]
- Christianson, D.W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 2006, 106, 3412–3442. [Google Scholar] [CrossRef]
- Köllner, T.G.; O’Maille, P.E.; Gatto, N.; Boland, W.; Gershenzon, J.; Degenhardt, J. Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch. Biochem. Biophys. 2006, 448, 83–92. [Google Scholar] [CrossRef]
- Starks, C.M.; Back, K.W.; Chappell, J.; Noel, J.P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 1997, 277, 1815–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhagen, B.T.; O’Maille, P.E.; Noel, J.P.; Chappell, J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc. Natl. Acad. Sci. USA 2006, 103, 9826–9831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Maille, P.E.; Malone, A.; Dellas, N.; Hess, B.A.; Smentek, L.; Sheehan, I.; Greenhagen, B.T.; Chappell, J.; Manning, G.; Noel, J.P. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nat. Chem. Biol. 2008, 4, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.J.; Croteau, R.B. Alternative termination chemistries utilized by monoterpene cyclases: Chimeric analysis of bornyl diphosphate, 1,8-cineole, and sabinene synthases. Arch. Biochem. Biophys. 2003, 417, 203–211. [Google Scholar] [CrossRef]
- Yoshikuni, Y.; Ferrin, T.E.; Keasling, J.D. Designed divergent evolution of enzyme function. Nature 2006, 440, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Yoshikuni, Y.; Martin, V.J.J.; Ferrin, T.E.; Keasling, J.D. Engineering cotton (+)-delta-cadinene synthase to an altered function: Germacrene D-4-ol synthase. Chem. Biol. 2006, 13, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Garms, S.; Chen, F.; Boland, W.; Gershenzon, J.; Köllner, T.G. A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor. Phytochemistry 2012, 75, 6–13. [Google Scholar] [CrossRef]
- Li, J.X.; Fang, X.; Zhao, Q.; Ruan, J.X.; Yang, C.Q.; Wang, L.J.; Miller, D.J.; Faraldos, J.A.; Allemann, R.K.; Chen, X.Y.; et al. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: Product specificity and catalytic efficiency. Biochem. J. 2013, 451, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, V.; Touchet, S.; Grundy, D.J.; Faraldos, J.A.; Allemann, R.K. Evolutionary and Mechanistic Insights from the Reconstruction of alpha-Humulene Synthases from a Modern (+)-Germacrene A Synthase. J. Am. Chem. Soc. 2014, 136, 14505–14512. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, N.H.; Wu, R.B. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS. J. Chem. Inf. Model. 2016, 56, 877–885. [Google Scholar] [CrossRef]
- Prosser, I.M.; Adams, R.J.; Beale, M.H.; Hawkins, N.D.; Phillips, A.L.; Pickett, J.A.; Field, L.M. Cloning and functional characterisation of a cis-muuroladiene synthase from black peppermint (Mentha x piperita) and direct evidence for a chemotype unable to synthesise farnesene. Phytochemistry 2006, 67, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, F.; Hartwig, S.; Scheper, T.; Beutel, S. Catalytical Specificity, Reaction Mechanisms, and Conformational Changes during Catalysis of the Recombinant SUMO (+)-Zizaene Synthase from Chrysopogon zizanioides. Acs Omega 2019, 4, 6199–6209. [Google Scholar] [CrossRef]
- Cane, D.E.; Chiu, H.T.; Liang, P.H.; Anderson, K.S. Pre-steady-state kinetic analysis of the trichodiene synthase reaction pathway. Biochemistry 1997, 36, 8332–8339. [Google Scholar] [CrossRef] [PubMed]
- Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003, 31, 3381–3385. [Google Scholar] [CrossRef] [Green Version]
- Jez, J.M.; Ferrer, J.L.; Bowman, M.E.; Dixon, R.A.; Noel, J.P. Dissection of malonyl-coenzyme A decarboxylation from polyketide formation in the reaction mechanism of a plant polyketide synthase. Biochemistry 2000, 39, 890–902. [Google Scholar] [CrossRef]
Product Name | TPS4-c17 (%) | TPS4-c17 R442K (%) | TPS4-c17 I411F (%) | TPS4-c17 R442K + I411F (%) | TPS10 (%) |
---|---|---|---|---|---|
7-epi-sesquithujene | 0.18 ± 0.06 | 0.35 ± 0.09 | 0.56 ± 0.07 | 0.28 ± 0.05 | 0.51 ± 0.03 |
(E)-α-bergamotene | 14.41 ± 0.20 | 16.06 ± 1.15 | 18.78 ± 0.19 | 20.97 ± 1.02 | 35.85 ± 0.30 |
sesquisabinene A | 1.85 ± 0.13 | 1.10 ± 0.16 | 1.39 ± 0.10 | 1.21 ± 0.08 | 2.08 ± 0.03 |
(E)-β-farnesene | 61.54 ± 0.42 | 59.67 ± 0.55 | 56.16 ± 0.15 | 56.52 ± 1.28 | 50.41 ± 0.34 |
zingiberene | 4.37 ± 0.25 | 3.68 ± 0.48 | 4.23 ± 0.06 | 3.92 ± 0.06 | 1.61 ± 0.04 |
β-bisabolene | 9.91± 0.06 | 9.99 ± 0.71 | 7.48 ± 0.23 | 7.44 ± 0.26 | 2.24 ± 0.10 |
β-sesquiphellandrene | 7.74 ± 0.14 | 9.15 ± 0.38 | 11.40 ± 0.44 | 9.67 ± 0.13 | 7.31 ± 0.14 |
Kinetic Parameter | TPS4 | TPS4-c17 | TPS4-c17 R442K + I411F | TPS10 |
---|---|---|---|---|
Km (µM) | 3.8 ± 0.5 | 2.1 ± 0.3 | 2.3 ± 0.3 | 3.2 ± 0.5 |
kcat (s−1) | (1.05 ± 0.06) × 10−2 | (4.55 ± 0.27) × 10−3 | (2.42 ± 0.02) × 10−2 | (2.04 ± 0.13) × 10−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köllner, T.G.; Degenhardt, J.; Gershenzon, J. The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site. Plants 2020, 9, 552. https://doi.org/10.3390/plants9050552
Köllner TG, Degenhardt J, Gershenzon J. The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site. Plants. 2020; 9(5):552. https://doi.org/10.3390/plants9050552
Chicago/Turabian StyleKöllner, Tobias G., Jörg Degenhardt, and Jonathan Gershenzon. 2020. "The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site" Plants 9, no. 5: 552. https://doi.org/10.3390/plants9050552
APA StyleKöllner, T. G., Degenhardt, J., & Gershenzon, J. (2020). The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site. Plants, 9(5), 552. https://doi.org/10.3390/plants9050552