Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil
Abstract
:1. Introduction
2. Results
2.1. Nematode Densities in Soil in Net-House-Pot Experiments
2.2. Survival Rate and Growth Indicators of Young Robusta Trees in Net-House-Pot Experiments
2.3. Nematode Densities in Soil in Replanted Field Experiments
2.4. Survival Rates and Growth Indicators of Young Robusta Trees in Replanted Field Experiments
3. Discussion
4. Materials and Methods
4.1. Field Sight
4.2. Materials
4.3. Evaluation of the Effect of Mycorrhizal Symbiosis and Grafting Techniques on Nematode Densities in Net-House-Pots
4.4. Evaluation of the Effect of Mycorrhizal Symbiosis and Grafting Techniques on Nematode Densities in Replanted Coffee Fields
4.5. Data Collection and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thuy, P.T.; Niem, L.D.; Ho, T.M.H.; Burny, P.; Lebailly, P. Economic Analysis of Perennial Crop Systems in DakLak Province, Vietnam. Sustainability 2019, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.Q. Economic Analysis of Sustainable Coffee Production in Vietnam; Queensland University of Technology: Brisbane, Australia, 2018. [Google Scholar]
- Lindskog, E.; Dow, K.; Axberg, G.N.; Miller, F.; Hancock, A. When Rapid Changes in Environmental, Social and Economic Conditions Converge: Challenges to Sustainable Livelihoods in Dak Lak, Vietnam; Stockholm Environment Institute (SEI): Stockholm, Sweden, 2005. [Google Scholar]
- Nguyen, T.V.; Nguyen, N.C.; Bosch, O.J. Contribution of the systems thinking approach to reduce production cost and improve the quality of Vietnamese coffee. Int. J. Mark. Bus. Syst. 2015, 1, 53–69. [Google Scholar] [CrossRef]
- Steps Toward Green: Policy Responses to the Environmental Footprint of Commodity Agriculture in East and Southeast Asia. Available online: https://www.researchgate.net/publication/282768221_Steps_Toward_Green_Policy_Responses_to_the_Environmental_Footprint_of_Commodity_Agriculture_in_East_and_Southeast_Asia (accessed on 31 January 2015).
- Zhao, Q.; Xiong, W.; Xing, Y.; Sun, Y.; Lin, X.; Dong, Y. Long-Term Coffee Monoculture Alters Soil Chemical Properties and Microbial Communities. Sci. Rep. 2018, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Ntalli, N.G.; Caboni, P. Botanical nematicides: A review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Menkissoglu-Spiroudi, U. Pesticides of Botanical Origin: A Promising Tool Plant Protection, Pesticides—Formulations, Effects, Fate; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011; pp. 1–23. [Google Scholar]
- Le, V.T.; Bach, L.G.; Pham, T.T.; Le, N.T.T.; Ngoc, U.T.P.; Tran, D.-H.N.; Nguyen, D.H. Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. J. Macromol. Sci. Part A 2019, 56, 522–528. [Google Scholar] [CrossRef]
- Ngoc, U.T.P.; Nguyen, D.H. Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum. Green Process. Synth. 2018, 7, 132–138. [Google Scholar] [CrossRef]
- Trinh, P.Q.; de la Peña, E.; Nguyen, C.N.; Nguyen, H.X.; Moens, M. Plant-parasitic nematodes associated with coffee in Vietnam. Russ. J. Nematol. 2009, 17, 73. [Google Scholar]
- Huyen, P.T.T.; Giang, P.Q.; Van Toan, N. Correlation between the Distribution of Nematodes and Soil Physicochemical Characteristics in Coffee Rejuvenation Areas. EnvironmentAsia 2018, 11, 141–156. [Google Scholar]
- Latef, A.A.H.A.; Hashem, A.; Rasool, S.; Abd_Allah, E.F.; Alqarawi, A.; Egamberdieva, D.; Jan, S.; Anjum, N.A.; Ahmad, P. Arbuscular mycorrhizal symbiosis and abiotic stress in plants: A review. J. Plant Biol. 2016, 59, 407–426. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Andrade, S.; Mazzafera, P.; Schiavinato, M.; Silveira, A. Arbuscular mycorrhizal association in coffee. J. Agric. Sci. 2009, 147, 105–115. [Google Scholar] [CrossRef]
- Posada, R.; Sieverding, E. Arbuscular mycorrhiza in Colombian coffee plantations fertilized with coffee pulps as organic manure. J. Appl. Bot. Food Qual. 2014, 87, 243–248. [Google Scholar]
- Beenhouwer, M.D.; Geel, M.V.; Ceulemans, T.; Muleta, D.; Lievens, B.; Honnay, O. Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol. Biochem. 2015, 91, 7. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, E.; Romero, L.; Ruiz, J.M. Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. J. Plant Growth Regul. 2013, 32, 12. [Google Scholar] [CrossRef]
- Novaes, P.; Souza, J.P.; Prado, C.H.B.A. Grafting for improving net photosynthesis of coffea arabica in field in Southeast of Brazil. Exp. Agric. 2011, 47, 16. [Google Scholar] [CrossRef]
- Daivasikamani, S.; Kannan, S.; Ramachandran, M.; Samuel, S. Abnormal growth of shoots on scions of arabica coffee grafted on to robusta root stock. J. Coffee Res. 2004, 32, 117–119. [Google Scholar]
- Wiryadiputra, S.; Tran, L.K. Indonesia and Vietnam; Springer: New York, NY, USA, 2008. [Google Scholar]
- Chapman, K.R. Collaborative Study of Coffee Rejuvenation Strategies in Viet Nam -Technical Aspects-; FAO: Bangkok, Thailand, 2014. [Google Scholar]
- Júnior, S.d.A.; Alexandre, R.S.; Schmildt, E.R.; Partelli, F.L.; Ferrão, M.A.G.; Mauri, A.L. Comparison between grafting and cutting as vegetative propagation methods for conilon coffee plants. Agron. Mar. 2013, 35, 9. [Google Scholar] [CrossRef] [Green Version]
- Anzueto, F.; Baumann, T.W.; Graziosi, G.; Piccin, C.R.; Ndahl, M.R.S.; Vossen, H.A.M.v.d. Espresso Coffee—Chapter 2: The Plant; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Schouteden, N.; De Waele, D.; Panis, B.; Vos, C.M. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Pinochet, J.; Calvet, C.; Camprubi, A.; Fernandez, C. Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: A review. Plant Soil 1996, 185, 183–190. [Google Scholar] [CrossRef]
- Akhtar, M.; Panwar, J. Arbuscular mycorrhizal fungi and opportunistic fungi: Efficient root symbionts for the management of plant parasitic nematodes. Adv. Sci. Eng. Med. 2011, 3, 165–175. [Google Scholar] [CrossRef]
- El-Nagdi, W.M.; Youssef, M.M.; El-Khair, H.A.; Abd-Elgawad, M.M. Effect of certain organic amendments and Trichoderma species on the root-knot nematode, Meloidogyne incognita, infecting pea (Pisum sativum L.) plants. Egypt. J. Biol. Pest Control 2019, 29, 75. [Google Scholar] [CrossRef]
- Masadeh, B.; Von Alten, H.; Grunewaldt-Stoecker, G.; Sikora, R. Biocontrol of root-knot nematodes using the arbuscular mycorrhizal fungus Glomus intraradices and the antagonist Trichoderma viride in two tomato cultivars differing in their suitability as hosts for the nematodes/Biologische Bekämpfung von Gallennematoden unter Verwendung des arbusculären Mykorrhizapilzes Glomus intraradices und des Antagonisten Trichoderma viride in zwei Tomatensorten mit unterschiedlicher Wirtseignung für Gallennematoden. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/J. Plant Dis. Prot. 2004, 111, 322–333. [Google Scholar]
- Bitterlich, M.; Rouphael, Y.; Graefe, J.; Franken, P. Arbuscular Mycorrhizas: A Promising Component of Plant Production Systems Provided Favorable Conditions for Their Growth. Front. Plant Sci. 2018, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.D.; Neal, A.L.; Wees, S.C.M.v.; Ton, J. Mycorrhiza-induced resistance: More than the sum of its parts? Trends Plant Sci. 2013, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Ishwar, S.; Bhoopander, G. Arbuscular Mycorrhiza Mediated Control of Plant Pathogens; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Babaj, I.; Sallaku, G.; Balliu, A. The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum l) under common commercial greenhouse conditions. Albanian J. Agric. Sci. 2014, 13, 24. [Google Scholar]
- Batlle, A.; Lavina, A.; Sabate, J.; Camprubi, A.; Estaun, V.; Calvet, C. Tolerance increase to Candidatus phytoplasma prunorum in mycorrhizal plums fruit trees. Bull. Insectol. 2011, 64, 125–126. [Google Scholar]
- Garita, S.A.; Bernardo, V.F.; Guimarães, M.D.A.; Arango, M.C.; Ruscitti, M.F. Mycorrhization and grafting improve growth in the tomato and reduce the population of Nacobbus aberrans. Rev. Ciência Agronômica 2019, 50, 609–615. [Google Scholar] [CrossRef]
- Van Bezooijen, J. Methods and Techniques for Nematology; Wageningen University Wageningen: Wageningen, The Netherlands, 2006. [Google Scholar]
- Elele, K. The use of selected plant tissues [Carrot (Daucus carota, Linnaeus, 1753), Pineapple (Anana comosus, Merill, 1917) and yam (Dioscorea spp. Linnaeus, 1753)] for in vitro nematode propagation (Meloidogyne spp. Goeldi, 1892 and Rotylenchulus reniformis, Lindford and Oliveira, 1940). Adv. Agric. Sci. Eng. Res. 2012, 2, 388–400. [Google Scholar]
- De Grisse, A.T. Redescription ou Modifications de Quelques Technique Utilis [a] es Dan L’etude des n [a] Ematodes Phytoparasitaires; Mededelingen Rijksfakulteit Landbouwwetenschappen: Ghent, Belgium, 1969. [Google Scholar]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management; Brill: Leiden, The Netherlands, 2007; Volume 6. [Google Scholar]
Treatment | Survival Rate (%) | Growth Indicators | |||
---|---|---|---|---|---|
Tree Height (cm) | Stump Diameter (cm) | Canopy Diameter (cm) | No. of 1st Branch Pairs | ||
C.H | 66.7 a | 130.2 a | 2.37 a | 135.0 a | 8.75 a |
M.H | 78.2 b | 138.3 a | 2.40 a | 138.0 a | 9.82 a |
G.H | 72.3 b | 138.2 a | 2.54 a | 133.5 a | 9.43 a |
MG.H | 100 c | 147.4 b | 2.73 b | 145.9 b | 10.63 b |
CV (%) | 2.69 | 4.16 | 3.41 | 4.25 | 4.26 |
LSD0.05 | 3.523 | 4.274 | 0.458 | 6.58 | 2.366 |
Treatment | Survival Rate (%) | |
---|---|---|
First Year | Second Year | |
C.F | 73.8 a | 60.5 a |
M.F | 80.5 b | 71.2 b |
G.F | 79.5 b | 69.5 b |
MG.F | 95.8 c | 93.7 c |
CV (%) | 4.37 | 4.02 |
LSD0.05 | 3.152 | 2.781 |
Treatment | Tree Height (cm) | Stump Diameter (cm) | Canopy Diameter (cm) | Number of 1st Branch Pairs |
---|---|---|---|---|
C.F | 112.6 a | 2.41 a | 126.7 a | 10.5 a |
M.F | 116.8 a | 2.58 a | 129.4 a | 10.4 a |
G.F | 128.6 b | 3.72 b | 142.7 b | 10.4 a |
MG.F | 128.9 b | 3.84 b | 143.2 b | 10.9 b |
Treatment | Description |
---|---|
C.H | Control (neither mycorrhizal symbiosis nor grafting) in net-house-pot |
M.H | Mycorrhizal symbiosis treatment in net-house-pot |
G.H | Grafting treatment in net-house-pot |
MG.H | Combined mycorrhizal symbiosis and grafting in net-house-pot |
Treatment | Description |
---|---|
C.F | Control (neither mycorrhizal symbiosis nor grafting) in replanted fields |
M.F | Mycorrhizal symbiosis treatment in replanted fields |
G.F | Grafting treatment in replanted fields |
MG.F | Combined mycorrhizal symbiosis and grafting in replanted fields |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.T.; Giang, B.L.; Nguyen, N.H.; Dong Yen, P.N.; Minh Hoang, V.D.; Lien Ha, B.T.; Le, N.T.T. Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil. Plants 2020, 9, 555. https://doi.org/10.3390/plants9050555
Pham TT, Giang BL, Nguyen NH, Dong Yen PN, Minh Hoang VD, Lien Ha BT, Le NTT. Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil. Plants. 2020; 9(5):555. https://doi.org/10.3390/plants9050555
Chicago/Turabian StylePham, The Trinh, Bach Long Giang, Ngoc Hoi Nguyen, Pham Nguyen Dong Yen, Vo Do Minh Hoang, Bui Thi Lien Ha, and Ngoc Thuy Trang Le. 2020. "Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil" Plants 9, no. 5: 555. https://doi.org/10.3390/plants9050555
APA StylePham, T. T., Giang, B. L., Nguyen, N. H., Dong Yen, P. N., Minh Hoang, V. D., Lien Ha, B. T., & Le, N. T. T. (2020). Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil. Plants, 9(5), 555. https://doi.org/10.3390/plants9050555