Breeding Maize Maternal Haploid Inducers
Abstract
:1. Introduction
2. Status Quo of Inducer Development
3. Genetic Basis and Putative Biological Mechanisms of Haploid Induction
4. Breeding Goals in Developing Maize Maternal Haploid Inducers
4.1. Marker Traits
4.1.1. Color Traits
4.1.2. Morphological Traits
4.1.3. Oil Content
4.1.4. Transgenic Approaches
4.2. Agronomic Traits
4.2.1. Plant Height and Lodging Tolerance
4.2.2. Tassel Size
4.2.3. Pollen Production
4.2.4. Length of Pollen Shed
4.2.5. Seed Set and Tolerance to Ear Rots
5. Inducer Variety Types
5.1. Inbred Inducers
5.2. Hybrid Inducers
5.3. Synthetic Inducers
6. Breeding Procedures and Strategies for Inducer Development
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wędzony, M.; Forster, B.P.; Żur, I.; Golemiec, E.; Szechyńska-Hebda, M.; Dubas, E.; Gotębiowska, G. Progress in doubled haploid technology in higher plants. In Advances in Haploid Production in Higher Plants; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–33. [Google Scholar]
- Kermicle, J.L. Androgenesis conditioned by a mutation in maize. Science 1969, 166, 1422–1424. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, T.; Starr, D.; Richbourg, L.; Chintamanani, S.; Delzer, B.; Nuccio, M.L.; Green, J.; Chen, Z.; McCuiston, J.; Wang, W.; et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 2017, 542, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, X.; Meng, D.; Zhong, Y.; Chen, C.; Dong, X.; Xu, X.; Chen, B.; Li, W.; Li, L.; et al. A 4-bp Insertion at ZmPLA1 Encoding a Putative Phospholipase A Generates Haploid Induction in Maize. Mol. Plant 2017, 10, 520–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, L.M.; Khaled, A.; Laffaire, J.; Chaignon, S.; Gendrot, G.; Laplaige, J.; Bergès, H.; Beydon, G.; Bayle, V.; Barret, P.; et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 2017, 36, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.M.S. The indeterminate gametophyte1 Gene of Maize Encodes a LOB Domain Protein Required for Embryo Sac and Leaf Development. Plant Cell Online 2007, 19, 46–62. [Google Scholar] [CrossRef] [Green Version]
- Kindiger, B.; Hamann, S. Generation of Haploids in Maize: A Modification of the Indeterminate Gametophyte (ig) System. Crop Sci. 1993, 33, 342–344. [Google Scholar] [CrossRef]
- Rotarenco, V.; Georgeta, D.; State, D.; Fuia, S. New inducers of maternal haploids in maize. Maize Genet. Coop. Newsl. 2010, 84, 36–50. [Google Scholar]
- Lashermes, P.; Beckert, M. Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor. Appl. Genet. 1988, 76, 405–410. [Google Scholar] [CrossRef]
- Röber, F.K. Fortpflanzungsbiologische und Genetische Untersuchungen mit RFLP-Markern zur In-Vivo-Haploideninduktion bei Mais. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 1999. [Google Scholar]
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, W.; Zhong, Y.; Dong, X.; Hu, H.; Tian, X.; Wang, L.; Chen, B.; Chen, C.; Melchinger, A.E.; et al. Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theor. Appl. Genet. 2015, 128, 2507–2515. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, C.; Qi, X.; Jiao, Y.; Wang, D.; Wang, Y.; Liu, Z.; Chen, C.; Chen, B.; Tian, X.; et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 2019, 5, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Randolph, L.F. Some Effects of High Temperature on Polyploidy and Other Variations in Maize. Proc. Natl. Acad. Sci. USA 1932, 18, 222–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, S.S. Techniques for isolating haploid plants. Am. J. Bot. 1947, 34, 579–609. [Google Scholar]
- Hu, H.; Schrag, T.A.; Peis, R.; Unterseer, S.; Schipprack, W.; Chen, S.; Lai, J.; Yan, J.; Prasanna, B.M.; Nair, S.K.; et al. The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 2016, 202, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Chase, S.S.; Nanda, D.K. Screening for monoploids of maize by use of a purple embryo marker. Maize Genet. Coop. Newsl. 1965, 39, 59–60. [Google Scholar]
- Zabirova, E.; Chumak, M.V.; Shatskaia, O.A.; Scherbak, V.S. Technology of the mass accelerated production of homozygous lines. Kukuruza Sorgo 1996, 4, 17–19. [Google Scholar]
- Shatskaya, O.A. Haploinductors isolation in maize: Three cycles of selection on high frequency of induction of matroclinal haploids. Agric. Biol. 2010, 7, 79–86. [Google Scholar]
- Röber, F.K.; Gordillo, G.A.; Geiger, H.H. In vivo haploid induction in maize-Performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 2005, 50, 275–283. [Google Scholar]
- Chalyk, S.T. Creating new haploid-inducing lines of maize. Maize Genet. Coop. Newsl. 1999, 73, 53. [Google Scholar]
- Chen, S.J.; Song, T. Identifcation haploid with high oil xenia effect in maize. Acta Agron. Sin. 2003, 29, 587–590. [Google Scholar]
- Xu, X.; Li, L.; Dong, X.; Jin, W.; Melchinger, A.E.; Chen, S. Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J. Exp. Bot. 2013, 64, 1083–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchinger, A.E.; Schipprack, W.; Würschum, T.; Chen, S.; Technow, F. Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize. Nat. Sci. Rep. 2013, 3, 2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melchinger, A.E.; Schipprack, W.; Utz, H.F.; Mirdita, V. In vivo haploid induction in maize: Identification of haploid seeds by their oil content. Crop Sci. 2014, 54, 1497–1504. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Pixley, K.; Warburton, M.L.; Xie, C.-X. Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breed. 2010, 26, 339–356. [Google Scholar] [CrossRef]
- Kebede, A.Z.; Dhillon, B.S.; Schipprack, W.; Araus, J.L.; Bänziger, M.; Semagn, K.; Alvarado, G.; Melchinger, A.E. Effect of source germplasm and season on the in vivo haploid induction rate in tropical maize. Euphytica 2011, 180, 219–226. [Google Scholar] [CrossRef]
- Prigge, V.; Schipprack, W.; Mahuku, G.; Atlin, G.N.; Melchinger, A.E. Development of in vivo haploid inducers for tropical maize breeding programs. Euphytica 2012, 185, 481–490. [Google Scholar] [CrossRef]
- Chaikam, V.; Nair, S.K.; Martinez, L.; Lopez, L.A.; Utz, H.F.; Melchinger, A.E.; Boddupalli, P.M. Marker-Assisted Breeding of Improved Maternal Haploid Inducers in Maize for the Tropical/Subtropical Regions. Front. Plant Sci. 2018, 9, 1527. [Google Scholar] [CrossRef] [Green Version]
- Kermicle, J.L.; Taba, S.; Evans, M.M.S. The Gametophyte-1 locus and reproductive isolation among Zea mays subspecies. Maydica 2006, 51, 219–225. [Google Scholar]
- Dong, X.; Xu, X.; Li, L.; Liu, C.; Tian, X.; Li, W.; Chen, S. Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Mol. Breed. 2014, 34, 1147–1158. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic Selection for Crop Improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Nakaya, A.; Isobe, S.N. Will genomic selection be a practical method for plant breeding? Ann. Bot. 2012, 110, 1303–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, J.; Yu, X.; Lübberstedt, T. Genomic prediction of seedling root length in maize (Zea mays L.). Plant J. 2015, 83, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.C.; Trentin, H.U.; Frei, U.K.; Lübberstedt, T. Genomic prediction of maternal haploid induction rate in maize. Plant Genome 2020, e20014. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, T.; Sprunck, S.; Wessel, G.M. Fertilization Mechanisms in Flowering Plants. Curr. Biol. 2016, 26, R125–R139. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, K.R.; Coe, E.H. A genetic analysis of the origin of maternal haploids in maize. Genetics 1966, 54, 453–464. [Google Scholar]
- Iwakawa, H.; Shinmyo, A.; Sekine, M. Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J. 2006, 45, 819–831. [Google Scholar] [CrossRef]
- Chen, Z.; Tan, J.L.H.; Ingouff, M.; Sundaresan, V.; Berger, F. Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 2008, 135, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Oh, S.A.; Brownfield, L.; Hong, S.H.; Ryu, H.; Hwang, I.; Twell, D.; Nam, H.G. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature 2008, 455, 1134–1137. [Google Scholar] [CrossRef]
- Sprague, G.F. The nature and extent of hetero-fertilization in maize. Genetics 1932, 17, 358–368. [Google Scholar]
- Gao, S.; Babu, R.; Lu, Y.; Martinez, C.; Hao, Z.; Krivanek, A.F.; Wang, J.; Rong, T.; Crouch, J.; Xu, Y. Revisiting the Hetero-Fertilization Phenomenon in Maize. PLoS ONE 2011, 6, e16101. [Google Scholar] [CrossRef]
- Beale, K.M.; Leydon, A.R.; Johnson, M.A. Gamete Fusion Is Required to Block Multiple Pollen Tubes from Entering an Arabidopsis Ovule. Curr. Biol. 2012, 22, 1090–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasahara, R.D.; Maruyama, D.; Hamamura, Y.; Sakakibara, T.; Twell, D.; Higashiyama, T. Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis. Curr. Biol. 2012, 22, 1084–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprunck, S.; Rademacher, S.; Vogler, F.; Gheyselinck, J.; Grossniklaus, U.; Dresselhaus, T. Egg Cell-Secreted EC1 Triggers Sperm Cell Activation During Double Fertilization. Science 2012, 338, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, D.; Hamamura, Y.; Takeuchi, H.; Susaki, D.; Nishimaki, M.; Kurihara, D.; Kasahara, R.D.; Higashiyama, T. Independent Control by Each Female Gamete Prevents the Attraction of Multiple Pollen Tubes. Dev. Cell 2013, 25, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Qin, Y.; Chen, B.; Liu, C.; Wang, L.; Li, X.; Dong, X.; Liu, L.; Chen, S. Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. J. Exp. Bot. 2018, 69, 4689–4701. [Google Scholar] [CrossRef]
- Li, L.; Xu, X.; Jin, W.; Chen, S. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 2009, 230, 367–376. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.; Xie, H.; Chen, S.; Jin, W. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiol. 2013, 163, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.; Liang, Y.; Li, Y.; Liu, Y.; Wang, L.; Zheng, Y. Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Curr. Plant Biol. 2014, 1, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Kelliher, T.; Starr, D.; Su, X.; Tang, G.; Chen, Z.; Carter, J.; Wittich, P.E.; Dong, S.; Green, J.; Burch, E.; et al. One-step genome editing of elite crop germplasm during haploid induction. Nat. Biotechnol. 2019, 37, 287–292. [Google Scholar] [CrossRef]
- Zhang, Z.; Fazhan, Q.; Yongzhong, L.; Kejun, M.; Zaiyun, L.; Shangzhong, X. Chromosome elimination and in vivo haploid production induced by Stock 6-derived inducer line in maize (Zea mays L.). Plant Cell Rep. 2008, 27, 1851–1860. [Google Scholar] [CrossRef] [Green Version]
- Ravi, M.; Chan, S.W.L. Haploid plants produced by centromere-mediated genome elimination. Nature 2010, 464, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Geiger, H.H.; Gordillo, G.A. Doubled Haploids In Hybrid Maize Breeding. Maydica 2009, 54, 485–499. [Google Scholar]
- De La Fuente, G.N.; Frei, U.K.; Trampe, B.; Nettleton, D.; Zhang, W.; Lübberstedt, T. A diallel analysis of a maize donor population response to in vivo maternal haploid induction: I. inducibility. Crop Sci. 2018, 58, 1830–1837. [Google Scholar] [CrossRef] [Green Version]
- Pickering, R.A. The influence of genotype and environment on chromosome elimination in crosses between Hordeum vulgare L. × Hordeum bulbosum L. Plant Sci. Lett. 1984, 34, 153–164. [Google Scholar] [CrossRef]
- Pickering, R.A.; Morgan, P.W. The influence of temperature on chromosome elimination during embryo development in crosses involving Hordeum spp., wheat (Triticum aestivum L.) and rye (Secale cereale L.). Theor. Appl. Genet. 1985, 70, 199–206. [Google Scholar] [CrossRef]
- Chase, S. Monoploids and monoploid-derivatives of maize (Zea mays L.). Bot. Rev. 1969, 35, 117–168. [Google Scholar] [CrossRef]
- Seaney, R.R. Monoploids in maize. Maize Genet. Coop. Newsl. 1954, 28, 22. [Google Scholar]
- Tyrnov, V.S. Producing of parthenogenetic forms of maize. Maize Genet. Coop. Newsl. 1997, 71, 73. [Google Scholar]
- Chase, S.S. Utilization of haploids in plant breeding: Breeding diploid species. In Haploids in Higher Plants: Advances and Potentials, Proceedings of the First International Symposium; Guelph University Press: Guelph, ON, Canada, 1974; pp. 21–34. [Google Scholar]
- Rotarenco, V.A. Production of matroclinous maize haploids following natural and artificial pollination with a haploid inducer. Maize Genet. Coop. Newsl. 2002, 76, 16. [Google Scholar]
- Rotarenco, V.A.; Mihailov, M.E. The influence of ear age on the frequency of matemal haploids produced by a haploid-inducing line. Maize Genet. Coop. Newsl. 2007, 81, 9. [Google Scholar]
- Randolph, L.F. Note on haploid frequencies. Maize Genet. Coop. Newsl. 1940, 14, 23–24. [Google Scholar]
- Eder, J.; Chalyk, S. In vivo haploid induction in maize. Theor. Appl. Genet. 2002, 104, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Chase, S.S. Production of Homozygous Diploids of Maize from Monoploids 1. Agron. J. 1952, 44, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Coe, E.H. Anthocyanin Genetics. In The Maize Handbook; Springer: New York, NY, USA, 1994; pp. 279–281. [Google Scholar]
- Ford, R.H. Inheritance of Kernel Color in Corn: Explanations & Investigations. Am. Biol. Teach. 2000, 62, 181–188. [Google Scholar]
- Boote, B.W.; Freppon, D.J.; De La Fuente, G.N.; Lübberstedt, T.; Nikolau, B.J.; Smith, E.A. Haploid differentiation in maize kernels based on fluorescence imaging. Plant Breed. 2016, 135, 439–445. [Google Scholar] [CrossRef]
- De La Fuente, G.N.; Carstensen, J.M.; Edberg, M.A.; Lübberstedt, T. Discrimination of haploid and diploid maize kernels via multispectral imaging. Plant Breed. 2017, 136, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Prigge, V.; Sánchez, C.; Dhillon, B.S.; Schipprack, W.; Araus, J.L.; Bänziger, M.; Melchinger, A.E. Doubled haploids in tropical maize: I. effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci. 2011, 51, 1498–1506. [Google Scholar] [CrossRef]
- Chaikam, V.; Nair, S.K.; Babu, R.; Martinez, L.; Tejomurtula, J.; Boddupalli, P.M. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor. Appl. Genet. 2015, 128, 159–171. [Google Scholar] [CrossRef]
- Burr, F.A.; Burr, B.; Scheffler, B.E.; Blewitt, M.; Wienand, U.; Matz, E.C. The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing. Plant Cell 1996, 8, 1249–1259. [Google Scholar]
- Della Vedova, C.B.; Lorbiecke, R.; Kirsch, H.; Schulte, M.B.; Scheets, K.; Borchert, L.M.; Scheffler, B.E.; Wienand, U.; Cone, K.C.; Birchler, J.A. The dominant inhibitory chalcone synthase allele C2-Idf (Inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 2005, 170, 1989–2002. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ares, J.; Ghosal, D.; Saedler, H. Molecular analysis of the C1-I allele from Zea mays: A dominant mutant of the regulatory C1 locus. EMBO J. 1990, 9, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Melchinger, A.E.; Schipprack, W.; Mi, X.; Mirdita, V. Oil Content is Superior to Oil Mass for Identification of Haploid Seeds in Maize Produced with High-Oil Inducers. Crop Sci. 2015, 55, 188. [Google Scholar] [CrossRef]
- Smelser, A.; Blanco, M.; Lübberstedt, T.; Schechert, A.; Vanous, A.; Gardner, C. Weighing in on a method to discriminate maize haploid from hybrid seed. Plant Breed. 2015, 134, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, J.; Xu, X.; Huang, Q.; Chen, S.; Yang, P.; Chen, S.; Song, Y. Fully-automated high-throughput NMR system for screening of haploid kernels of maize (corn) by measurement of oil content. PLoS ONE 2016, 11, e0159444. [Google Scholar] [CrossRef] [Green Version]
- Johal, G.S. Disease Lesion Mimics Mutants of Maize. APSnet Featur. Artic. 2007. [Google Scholar] [CrossRef]
- Frei, U.K. Personal Communication; Iowa State University: Ames, IA, USA, 2015. [Google Scholar]
- Hu, G.; Yalpani, N.; Briggs, S.P.; Johal, G.S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 1998, 10, 1095–1105. [Google Scholar] [CrossRef]
- Chaikam, V.; Martinez, L.; Melchinger, A.E.; Schipprack, W.; Boddupalli, P.M. Development and validation of red root marker-based haploid inducers in maize. Crop Sci. 2016, 56, 1678–1688. [Google Scholar] [CrossRef]
- Wu, P.; Ren, J.; Li, L.; Chen, S. Early spontaneous diploidization of maternal maize haploids generated by in vivo haploid induction. Euphytica 2014, 200, 127–138. [Google Scholar] [CrossRef]
- Molenaar, W.S.; de Oliveira Couto, E.G.; Piepho, H.-P.; Melchinger, A.E. Early diagnosis of ploidy status in doubled haploid production of maize by stomata length and flow cytometry measurements. Plant Breed. 2019, 138, 266–276. [Google Scholar] [CrossRef]
- Da Silva, H.A.; Scapim, C.A.; Vivas, J.M.S.; do Amaral Júnior, A.T.; Pinto, R.J.B.; Mourão, K.S.M.; Rossi, R.M.; Baleroni, A.G. Effect of ploidy level on guard cell length and use of stomata to discard diploids among putative haploids in maize. Crop Sci. 2020, 1–11. [Google Scholar] [CrossRef]
- Bartels, P.G.; Hilton, J.L. Comparison of trifluralin, oryzalin, pronamide, propham, and colchicine treatments on microtubules. Pestic. Biochem. Physiol. 1973, 3, 462–472. [Google Scholar] [CrossRef]
- Chaikam, V.; Mahuku, G.; Prasanna, B.M. Chromosome doubling of maternal haploids. In Doubled Haploid Technology in Maize Breeding: Theory and Practice; CIMMYT: Mexico City, Mexico, 2012; pp. 24–29. [Google Scholar]
- Wan, Y.; Duncan, D.R.; Rayburn, A.L.; Petolino, J.F.; Widholm, J.M. The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Theor. Appl. Genet. 1991, 81, 205–211. [Google Scholar] [CrossRef]
- Melchinger, A.E.; Molenaar, W.S.; Mirdita, V.; Schipprack, W. Colchicine alternatives for chromosome doubling in maize haploids for doubled-haploid production. Crop Sci. 2016, 56, 559–569. [Google Scholar] [CrossRef]
- Denney, J.O. Xenia Includes Metaxenia. HortScience 1992, 27, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ma, H.; Zhang, P.; Yan, J.; Guo, Y.; Song, T.; Li, J. Characterization of QTL for oil content in maize kernel. Theor. Appl. Genet. 2012, 125, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Preciado-Ortiz, R.E.; García-Lara, S.; Ortiz-Islas, S.; Ortega-Corona, A.; Serna-Saldivar, S.O. Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crop. Res. 2013, 142, 27–35. [Google Scholar] [CrossRef]
- Winter, F.L. The mean and variability as affected by continuous selection for composition in corn. Seventy Gener. Sel. Oil Protein Maize 1974, 95–119. [Google Scholar] [CrossRef]
- Langade, D.M.; Shahi, J.P.; Agrawal, V.K.; Sharma, A. Maize as emerging source of oil in India: An overview. Maydica 2013, 58, 224–230. [Google Scholar]
- Moreno-Gonzalez, J.; Dudley, J.W.; Lambert, R.J. A Design III Study of Linkage Disequilibrium for Percent Oil in Maize. Crop Sci. 1975, 15, 840–843. [Google Scholar] [CrossRef]
- Berke, T.G.; Rocheford, T.R. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci. 1995, 35, 1542–1549. [Google Scholar] [CrossRef]
- Môro, G.V.; Santos, M.F.; Bento, D.A.V.; Aguiar, A.M.; de Souza, C.L. Genetic analysis of kernel oil content in tropical maize with design III and QTL mapping. Euphytica 2012, 185, 419–428. [Google Scholar] [CrossRef]
- Laurie, C.C.; Chasalow, S.D.; Ledeaux, J.R.; Mccarroll, R.; Bush, D.; Hauge, B.; Lai, C.; Clark, D.; Rocheford, T.R.; Dudley, J.W. The Genetic Architecture of Response to Long-Term Artificial Selection for Oil Concentration in the Maize Kernel. Genetics 2004, 2155, 2141–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotarenco, V.A.; Kirtoca, I.H.; Jacota, A.G. The possibility of identifying kernels with haploid embryos using oil content. Maize Genet. Coop. Newsl. 2007, 81, 11. [Google Scholar]
- Geiger, H.H.; Roux, S.R.; Deimling, S. Herbicide resistance as a marker in screening for maternal haploids. Maize Genet. Coop. Newsl. 1994, 68, 99. [Google Scholar]
- Yu, W.; Birchler, J.A. A green fluorescent protein-engineered haploid inducer line facilitates haploid mutant screens and doubled haploid breeding in maize. Mol. Breed. 2016, 36, 1–12. [Google Scholar] [CrossRef]
- Fischer, E. Molekulargenetische Untersuchungen zum Vorkommen Paternaler DNA-Übertragung bei der In-Vivo-Haploideninduktion bei Mais (Zea mays L.). Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 1999. [Google Scholar]
- Vidal-Martinez, V.A. Pollen Production in Relation to Genotypic and Environmental Influences in Maize. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 1997. [Google Scholar]
- Fonseca, A.E. Quantitative Assessment of Kernel Set and Risk of Out-Crossing in Maize Based on Flowering Dynamics. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2004. [Google Scholar]
- Flint-Garcia, S.A.; McMullen, M.D.; Darrah, L.L. Genetic relationship of stalk strength and ear height in maize. Crop Sci. 2003, 43, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R.G.; Helentjaris, T. The Maize Dwarf3 Gene Encodes a Cytochrome P450-Mediated Early Step in Gibberellin Biosynthesis. Plant Cell 2007, 7, 1307. [Google Scholar]
- Multani, D.S.; Briggs, S.P.; Chamberlin, M.A.; Blakeslee, J.J.; Murphy, A.S.; Johal, G.S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef]
- Lawit, S.J.; Wych, H.M.; Xu, D.; Kundu, S.; Tomes, D.T. Maize della proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol. 2010, 51, 1854–1868. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, T.; Chuck, G.S.; Fujioka, S.; Klempien, A.; Weizbauer, R.; Prasad, D.; Potluri, V. Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. USA 2011, 108, 19814–19819. [Google Scholar] [CrossRef] [Green Version]
- Peiffer, J.A.; Romay, M.C.; Gore, M.A.; Flint-Garcia, S.A.; Zhang, Z.; Millard, M.J.; Gardner, C.A.C.; Mcmullen, M.D.; Holland, J.B.; Bradbury, P.J.; et al. The genetic architecture of maize height. Genetics 2014, 196, 1337–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Q.; Xu, Y.; Li, K.; Peng, Y.; Zhan, W.; Li, W.; Li, L.; Yan, J. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol. 2017, 175, 858–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karl, J.R. The maximum leaf quantity of the maize subspecies. Maize Genet. Coop. Newsl. 2012, 86, 1–8. [Google Scholar]
- Mccaw, M.E.; Wallace, J.G.; Albert, P.S.; Buckler, E.S.; James, A. Fast-Flowering Mini-Maize: Seed to Seed in 60 Days. Genetics 2016, 3, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Dietiker, D.; Oehen, B.; Ochsenbein, C.; Westgate, M.E.; Stamp, P. Field simulation of transgenic seed admixture dispersion in maize with a blue kernel color marker. Crop Sci. 2011, 51, 829–837. [Google Scholar] [CrossRef]
- Jarosz, N.; Loubet, B.; Durand, B.; McCartney, A.; Foueillassar, X.; Huber, L. Field measurements of airborne concentration and deposition rate of maize pollen. Agric. For. Meteorol. 2003, 119, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Raynor, G.S.; Ogden, E.C.; Hayes, J.V. Dispersion and Deposition of Corn Pollen from Experimental Sources. Agron. J. 1972, 64, 420. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Flint-Garcia, S.A.; De Leon, N.; McMullen, M.D.; Kaeppler, S.M.; Buckler, E.S. The Genetic Architecture of Maize Stalk Strength. PLoS ONE 2013, 8, e67066. [Google Scholar] [CrossRef] [Green Version]
- Gallavotti, A.; Zhao, Q.; Kyozuka, J.; Meeley, R.B.; Ritter, M.K.; Doebley, J.F.; Pè, M.E.; Schmidt, R.J. The role of barren stalk1 in the architecture of maize. Nature 2004, 432, 630–635. [Google Scholar] [CrossRef]
- Gallavotti, A.; Malcomber, S.; Gaines, C.; Stanfield, S.; Whipple, C.; Kellogg, E.; Schmidt, R.J. BARREN STALK FASTIGIATE1 Is an AT-Hook Protein Required for the Formation of Maize Ears. Plant Cell 2011, 23, 1756–1771. [Google Scholar] [CrossRef] [Green Version]
- Bommert, P.; Nardmann, J.; Vollbrecht, E.; Running, M.; Jackson, D.; Hake, S.; Werr, W. thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 2005, 132, 1235–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollbrecht, E.; Springer, P.S.; Goh, L.; Buckler, E.S., IV; Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 2005, 436, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Bortiri, E.; Chuck, G.; Vollbrecht, E.; Rocheford, T.; Martienssen, R.; Hake, S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 2006, 18, 574–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh-Nagasawa, N.; Nagasawa, N.; Malcomber, S.; Sakai, H.; Jackson, D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 2006, 441, 227–230. [Google Scholar] [CrossRef]
- Chuck, G.; Whipple, C.; Jackson, D.; Hake, S.; Chuck, G.; Whipple, C.; Jackson, D.; Hake, S. The maize SBP-box transcription factor encoded by tasselsheath4 regulates bract development and the establishment of meristem boundaries. Dev. Stem Cells 2010, 1585, 1243–1250. [Google Scholar]
- Taguchi-Shiobara, F.; Yuan, Z.; Hake, S.; Jackson, D. The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev. 2001, 15, 2755–2766. [Google Scholar] [CrossRef] [Green Version]
- Bomblies, K.; Wang, R.-L.; Ambrose, B.A.; Schmidt, R.J.; Meeley, R.B.; Doebley, J. Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 2003, 130, 2385–2395. [Google Scholar] [CrossRef] [Green Version]
- Gage, J.L.; Miller, N.D.; Spalding, E.P.; Kaeppler, S.M.; Leon, N. De TIPS: A system for automated image-based phenotyping of maize tassels. Plant Methods 2017, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Duvick, D.N. What is yield? Dev. Drought Low N Toler. Maize 1997, 50131, 332–335. [Google Scholar]
- Fonseca, A.E.; Westgate, M.E.; Grass, L.; Dornbos, D.L. Tassel Morphology as an Indicator of Potential Pollen Production in Maize. Crop Manag. 2003, 2. [Google Scholar] [CrossRef]
- Dong, X.; Xu, X.; Miao, J.; Li, L.; Zhang, D.; Mi, X.; Liu, C.; Tian, X.; Melchinge, A.E.; Chen, S. Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theor. Appl. Genet. 2013, 126, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Chuck, G.; Meeley, R.B.; Hake, S. The control of maize spikelet meristem fate by theAPETALA2-like gene indeterminate spikelet1. Genes Dev. 1998, 12, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- McSteen, P.; Hake, S. Barren inflorescence2 regulates axillary meristem development in the maize inflorescence. Development 2001, 128, 2881–2891. [Google Scholar]
- Chuck, G.; Muszynski, M.; Kellogg, E.; Hake, S.; Schmidt, R.J. The control of spikelet meristem identity by the branched silkless1 gene in maize. Science 2002, 298, 1238–1241. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Rustgi, S.; Kumar, N. Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 2006, 49, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannah, L.C.; Shaw, J.R.; Clancy, M.A.; Georgelis, N.; Boehlein, S.K. A brittle-2 transgene increases maize yield by acting in maternal tissues to increase seed number. Plant Direct 2017, 1, e00029. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.R.C.; Andrade, F.H.; Sadras, V.O.; Uhart, S.A.; Valentinuz, O.R. Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci. 2001, 41, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Clements, M.J.; Maragos, C.M.; Pataky, J.K.; White, D.G. Sources of resistance to fumonisin accumulation in grain and Fusarium ear and kernel rot of corn. Phytopathology 2004, 94, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Eller, M.S.; Holland, J.B.; Payne, G.A. Breeding for improved resistance to fumonisin contamination in maize. Toxin Rev. 2008, 27, 371–389. [Google Scholar] [CrossRef]
- Eller, M.S.; Payne, G.A.; Holland, J.B. Selection for reduced Fusarium ear rot and fumonisin content in advanced backcross maize lines and their topcross hybrids. Crop Sci. 2010, 50, 2249–2260. [Google Scholar] [CrossRef]
- Enrico Pè, M.; Gianfranceschi, L.; Taramino, G.; Tarchini, R.; Angelini, P.; Dani, M.; Binelli, G. Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol. Gen. Genet. 1993, 241, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.L.; Taylor, J.H.; Jie, L.; Sun, G.; William, M.; Kasha, K.J.; Reid, L.M.; Pauls, K.P. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 2005, 48, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Tembo, L.; Asea, G.; Gibson, P.T.; Okori, P. Quantitative Trait Loci for Resistance to Stenocarpella maydis and Fusarium graminearum Cob Rots in Tropical Maize. J. Crop Improv. 2014, 28, 214–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M.; Zhang, J.; Zhang, L.; Li, C.; Kan, X.; Sun, Q.; Deng, D.; Yin, Z. Confirmation and fine mapping of a major QTL for aflatoxin resistance in maize using a combination of linkage and association mapping. Toxins 2016, 8, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emerson, R.A. The Genetic Relations of Plant Colors in Maize; Cornell University: Ithaca, NY, USA, 1921; Volume 39. [Google Scholar]
- Chandler, V.L.; Radicella, J.P.; Robbins, T.P.; Chen, J.; Turks, D. Two regulatory genes of the maize anthocyanin pathway are homologous: Isolation of B utilizing R genomic sequences. Plant Cell 1989, 1, 1175–1183. [Google Scholar]
- Chuck, G.S.; Brown, P.J.; Meeley, R.; Hake, S. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc. Natl. Acad. Sci. USA 2014, 111, 18775–18780. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, X.; Huang, C.; Xu, D.; Li, D.; Tian, J.; Chen, Q.; Wang, C.; Liang, Y.; Wu, Y.; et al. Complex genetic architecture underlies maize tassel domestication. New Phytol. 2017, 214, 852–864. [Google Scholar] [CrossRef] [Green Version]
- Jorgenson, L.R. Brown Midrib in Maize and its Linkage Relations1. Agron. J. 1931, 23, 549. [Google Scholar] [CrossRef] [Green Version]
- Langham, D.G. Brittle stalk-2 (bk2). Maize Genet. Coop. Newsl. 1940, 14, 21–22. [Google Scholar]
- Zheng, P.; Allen, W.B.; Roesler, K.; Williams, M.E.; Zhang, S.; Li, J.; Glassman, K.; Ranch, J.; Nubel, D.; Solawetz, W.; et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 2008, 40, 367–372. [Google Scholar] [CrossRef]
- Moose, S.P.; Dudley, J.W.; Rocheford, T.R. Maize selection passes the century mark: A unique resource for 21st century genomics. Trends Plant Sci. 2004, 9, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Allen, W.B.; Zheng, P.; Li, C.; Glassman, K.; Ranch, J.; Nubel, D.; Tarczynski, M.C. Expression of ZmLEC1 and ZmWRI1 Increases Seed Oil. Plant Physiol. 2010, 153, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Cook, J.P.; Mcmullen, M.D.; Holland, J.B.; Tian, F.; Bradbury, P.; Ross-ibarra, J.; Buckler, E.S.; Flint-garcia, S.A. Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels. Plant Physiol. 2012, 158, 824–834. [Google Scholar] [CrossRef] [Green Version]
- López-ribera, I.; Luis, J.; Paz, L.; Repiso, C.; García, N.; Miquel, M.; Hernández, M.L.; Martínez-rivas, J.M.; Vicient, C.M. The Evolutionary Conserved Oil Body Associated Protein OBAP1 Participates in the Regulation of Oil Body Size. Plant Physiol. 2014, 164, 1237–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasanna, B.M.; Chaikam, V.; Mahuku, G. Doubled Haploid Technology in Maize Breeding: Theory and Practice; CIMMYT: Mexico City, Mexico, 2012. [Google Scholar]
- Dreher, K.; Morris, M.; Khairallah, M.; Ribaut, J.-M.; Pandey, S.; Srinivasan, G. Is marker-assisted selection cost-effective compared to conventional plant breeding methods? The case of quality protein maize. In Proceedings of the 4th Annual Conference of the International Consortium on Agricultural Biotechnology Research (ICABR’00), Ravello, Italy, 24–28 August 2000; pp. 203–236. [Google Scholar]
- Fox, R.L.; Hayden, M.J.; Mekuria, G.; Eglinton, J.K. Cost analysis of molecular techniques for marker assisted selection within a barley breeding program. In Proceedings of the 12th Australian Annual Barley Technical Symposium, Hobart, TAS, Australia, 12–14 September 2005. [Google Scholar]
- Barret, P.; Brinkmann, M.; Beckert, M. A major locus expressed in the male gametophyte with incomplete penetrance is responsible for in situ gynogenesis in maize. Theor. Appl. Genet. 2008, 117, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Jannink, J.-L. Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome J. 2011, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Heffner, E.L.; Jannink, J.; Sorrells, M.E. Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program. Plant Genome 2011, 4, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.P.R.; Pires, L.P.M.; de Castro Vasconcellos, R.C.; Pereira, G.S.; Von Pinho, R.G.; Balestre, M. Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. BMC Genet. 2016, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Eathington, S.R.; Crosbie, T.M.; Edwards, M.D.; Reiter, R.S.; Bull, J.K. Molecular markers in a commercial breeding program. Crop Sci. 2007, 47, S154–S163. [Google Scholar] [CrossRef]
- Scheben, A.; Batley, J.; Edwards, D. Genotyping-by-sequencing approaches to characterize crop genomes: Choosing the right tool for the right application. Plant Biotechnol. J. 2017, 15, 149–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spindel, J.E.; Begum, H.; Akdemir, D.; Collard, B.; Redoña, E.; Jannink, J.L.; McCouch, S. Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 2016, 116, 395–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trait | Genetic Control | Known Genes or QTLs | Gene Action | Trait Range | Breeding Goal | Why It Is Desirable | Reference |
---|---|---|---|---|---|---|---|
Purple embryo marker | Monogenic | R1-nj | Dominant | Fixation | Haploid selection at the seed stage | [17] | |
Red root | Monogenic | Pl1 | Dominant | Fixation | Haploid selection at the seedlings stage | [144] | |
Purple sheaths, husks and culm | Bigenic | B1 & Pl1 | Dominant | Fixation | Haploid selection before flowering stage | [145] | |
Haploid induction in maternal inducers | Monogenic | mtl/nld/zmpla1, zmdmp | Recessive | Fixation | Required for haploid embryo formation | [3,4,5,13] | |
HIR of maternal inducers | Polygenic | qhir2-7, zmdmp | Mostly recessive | <0.1–14.5% | Fixation for high HIR | Determines the efficiency in which haploid seeds are created | [11,12,13,15,25] |
HIR of paternal inducers | Monogenic | ig1 | Recessive | 0.0–6.0% | Fixation for high HIR | Determines the efficiency in which haploid seeds are created | [2,7,9] |
Plant height | Polygenic | >40. E.g.: Br2, D3, D8, D9, na1 and more | Additive, dominant & recessive | 0.7–10.4 m | Depend on the method of haploid seed production | Influence the performance on isolation fields and ergonomics in induction nurseries | [106,107,108,109,110,111,112,113] |
Tassel size | Polygenic | >24. E.g.: ba1, baf1, bif2, fea2, ra1, ra2, ra3, td1, tsh4, ub2, ub3, zfl1, zfl2 and more | Mostly recessive | 21.1–53.8 cm | Higher values are better | Tassel size influences pollen production, which is important to ensure good seed set in cross-pollinations | [107,109,118,119,120,121,122,123,124,125,126,127,132,146,147] |
Seed set in self and cross-pollinations | Polygenic | ra1, ra2, ra3, ba1, bif2, bd1, bt2, fea2, ids1, td1 | Mostly recessive | 0–1348 seeds | Higher values are better | High seeds set in self and cross-pollinations decrease maintenance and DH line production costs, respectively | [118,120,121,122,123,125,131,132,133,134,135,136] |
Lodging | Polygenic | bmr, bk2, gl1, gl15, tp1, tp2 and more | Mostly recessive | 0–100% | Higher resistance is better | Lodged plants may produce lower seed set in isolation fields and reduce ergonomics in induction nurseries | [105,148,149] |
Oil content | Polygenic | lec1, DGAT1-2, OBAP1, WRI1 | Mainly additive | 1.7–27.2% | Higher values are better | Higher oil content improves the accuracy of automated discrimination of haploid and diploid seeds | [95,96,97,98,150,151,152,153,154] |
Trait/Inducer Variety Types | Inbred | Synthetic * | Hybrid |
---|---|---|---|
Easiness of production | High | Medium | Low |
Suitability for OC-based discrimination | High | Medium | Low |
Uniformity and stability | High | Medium | High |
Length of pollen shed | Smaller | Higher | Smaller |
Pollen yield | Low | Medium | High |
Disease tolerance | Low | Medium | High |
Performance on isolation fields | Low | Medium | High |
Ergonomics for hand-pollinations | High | Medium | Low |
Exotic Inducer | Adapted Inbred Lines |
---|---|
R1-nj (purple embryo marker) | r1-nj |
Pl1 (red root marker) | pl1 |
mtl | MTL |
zmdmp | ZmDMP |
Poor agronomic performance | Good agronomic performance |
Poor environmental adaptation | Good environmental adaptation |
Generation | Selection Applied | Resulting Breeding Lines |
---|---|---|
Parental | Selection of elite inbred lines for crossing with exotic inducer | F1 |
F1 | Discard of F1 families with undesirable characteristics | F2 |
F2 | Discard F2 seeds lacking the purple embryo pigmentation. With MAS, fix mtl and discard pl1/pl1 or ZmDMP/ZmDMP genotypes. | F3 fixed for mtl |
F3 | Fix R1-nj by harvesting ears of F2 plants that only have colored seeds. Fix Pl1 and zmdmp with MAS. The HIR of the selected genotypes can be evaluated through crosses with one donor | F4 fixed for mtl, R1-nj, Pl1 and zmdmp |
F4,5,6… | Phenotypic and/or genotypic selection for polygenic traits of importance to inducers | F5,6,7… |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uliana Trentin, H.; Frei, U.K.; Lübberstedt, T. Breeding Maize Maternal Haploid Inducers. Plants 2020, 9, 614. https://doi.org/10.3390/plants9050614
Uliana Trentin H, Frei UK, Lübberstedt T. Breeding Maize Maternal Haploid Inducers. Plants. 2020; 9(5):614. https://doi.org/10.3390/plants9050614
Chicago/Turabian StyleUliana Trentin, Henrique, Ursula K. Frei, and Thomas Lübberstedt. 2020. "Breeding Maize Maternal Haploid Inducers" Plants 9, no. 5: 614. https://doi.org/10.3390/plants9050614
APA StyleUliana Trentin, H., Frei, U. K., & Lübberstedt, T. (2020). Breeding Maize Maternal Haploid Inducers. Plants, 9(5), 614. https://doi.org/10.3390/plants9050614