Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review
Abstract
:1. Solanaceous Plants as Host of Viral Pathogens
2. Impact of Global Environmental Changes on Plant Virus Fitness
3. Covering All Infection Pathways by Taking into Account the Agro-Ecological Interface
4. Narrowing Down Virus Life Strategies to Solanaceae Family Phylogenetic Level
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gebhardt, C. The historical role of species from the Solanaceae plant family in genetic research. Theor. Appl. Genet. 2016, 129, 2281–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olmstead, R.G.; Bohs, L.; Migid, H.A.; Santiago-Valentin, E.; Garcia, V.F.; Collier, S.M. A molecular phylogeny of the Solanaceae. Taxon 2008, 57, 1159–1181. [Google Scholar] [CrossRef]
- Singh, B. Survey and indexing of weeds growing around potato fields for their role as an inoculum source for Potato leafroll virus (PLRV). Br. Biotechnol. J. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Beijerinck, M.W. Concerning a contagium vivum fluidum as cause of the spot disease of tobacco leaves. In Phytopatologial Classics; Johnson, J., Ed.; American Phytopathological Society, St.: Paul, MN, USA, 1942; Volume 7, pp. 33–52. [Google Scholar]
- Scholthof, K.B.G. Tobacco mosaic virus: A model system for plant biology. Annu. Rev. Phytopathol. 2004, 42, 13–34. [Google Scholar] [CrossRef] [Green Version]
- ICTV Master Species List 2018b.v2. Available online: https://talk.ictvonline.org/files/master-species-lists/m/msl/8266 (accessed on 6 May 2019).
- Pecman, A.; Kutnjak, D.; Gutiérrez-Aguirre, I.; Adams, I.; Fox, A.; Boonham, N.; Ravnikar, M. Next generation sequencing for detection and discovery of plant viruses and viroids: Comparison of two approaches. Front. Microbiol. 2017, 8, 1998. [Google Scholar] [CrossRef] [Green Version]
- Villamor, D.E.V.; Ho, T.; Al Rwahnih, M.; Martin, R.R.; Tzanetakis, I.E. High throughput sequencing for plant virus detection and discovery. Phytopathology 2019, 109, 716–725. [Google Scholar] [CrossRef]
- Xu, C.; Sun, X.; Taylor, A.; Jiao, C.; Xu, Y.; Cai, X.; Wang, X.; Ge, C.; Pan, G.; Wang, Q.; et al. Diversity, distribution, and evolution of tomato viruses in China uncovered by small RNA sequencing. J. Virol. 2017, 91, e00173-17. [Google Scholar] [CrossRef] [Green Version]
- Lotos, L.; Olmos, A.; Orfanidou, C.; Efthimiou, K.; Avgelis, A.; Katis, N.I.; Maliogka, V.I. Insights into the etiology of polerovirus-induced pepper yellows disease. Phytopathology 2017, 107, 1567–1576. [Google Scholar] [CrossRef] [Green Version]
- Ng, J.C.K.; Perry, K.L. Transmission of plant viruses by aphid vectors. Mol. Plant Pathol. 2004, 5, 505–511. [Google Scholar] [CrossRef]
- Mondal, S.; Wenninger, E.J.; Hutchinson, P.J.S.; Whitworth, J.L.; Shrestha, D.; Eigenbrode, S.D.; Bosque-Pérez, N.A.; Snyder, W.E. Responses of aphid vectors of Potato leaf roll virus to potato varieties. Plant Dis. 2017, 101, 1812–1818. [Google Scholar] [CrossRef]
- Rotenberg, D.; Jacobson, A.L.; Schneweis, D.J.; Whitfield, A.E. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015, 15, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Pospieszny, H.; Budziszewska, M.; Hasiów-Jaroszewska, B. Obrępalska-Stęplowska, A., Borodynko, N. Biological and molecular characterization of Polish isolates of Tomato torrado virus. J. Phytopathol. 2010, 158, 56–62. [Google Scholar] [CrossRef]
- Verbeek, M.; van Bekkum, P.J.; Dullemans, A.M.; van der Vlugt, R.A. Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. Virus Res. 2014, 186, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Riga, E.; Larsen, R.; Eastwell, K.; Guerra, N.; Guerra, L.; Crosslin, J.M. Rapid detection of Tobacco rattle tobravirus in viruliferous Paratrichodorus allius from greenhouse and field specimens. J. Nematol. 2009, 41, 60–63. [Google Scholar]
- Adams, M.L. Transmission of plant viruses by fungi. Ann. Appl. Biol. 1991, 118, 479–492. [Google Scholar] [CrossRef]
- Kassanis, B.; MacFarlane, I. Transmission of tobacco necrosis virus by zoospores of Olpidium brassicae. J. Gen. Microbiol. 1964, 36, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.A.C.; Harrison, B.D. The behaviour of potato mop-top virus in soil, and evidence for its transmission by Spongospora subterranea (Wallr.) Lagerh. Ann. Appl. Biol. 1969, 63, 1–17. [Google Scholar] [CrossRef]
- Alfaro-Fernández, A.; Del Carmen Córdoba-Sellés, M.; Herrera-Vásquez, J.; Cebrián, M.; Jordá, C. Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. J. Phytopathol. 2010, 158, 217–226. [Google Scholar] [CrossRef]
- Deja-Sikora, E.; Mercy, L.; Baum, C.; Hrynkiewicz, K. The contribution of endomycorrhiza to the performance of Potato virus Y-infected solanaceous plants: Disease alleviation or exacerbation? Front. Microbiol. 2019, 10, 516. [Google Scholar] [CrossRef]
- Dombrovsky, A.; Smith, E. Seed transmission of tobamoviruses: Aspects of global disease distribution. In Advances in Seed Biology; Jimenez-Lopez, J.C., Ed.; Intech Open: London, UK, 2017; pp. 234–260. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, I.M.; Mumford, R.; Blystad, D.; Cortez, I.; Hasiów-Jaroszewska, B.; Hristova, D.; Pagán, I.; Pereira, A.M.; Peters, J.; Pospieszny, H.; et al. Seed transmission of Pepino mosaic virus in tomato. Eur. J. Plant Pathol. 2010, 126, 145–152. [Google Scholar] [CrossRef]
- Pospieszny, H.; Borodynko-Filas, N.; Hasiów-Jaroszewska, B.; Rymelska, N.; Elena, S.F. Transmission rate of two Polish Tomato torrado virus isolates through tomato seeds. J. Gen. Plant Pathol. 2019, 85, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Aranda, M.A.; Freitas-Astua, J. Ecology and diversity of plant viruses, and epidemiology of plant virus-induced diseases. Ann. Appl. Biol. 2017, 171, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.K.; Cunningham, A.A.; Patel, N.G.; Morales, F.J.; Epstein, P.R.; Daszak, P. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 2004, 19, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, I.M.; Lapidot, M.; Thomma, B.P. Emerging viral diseases of tomato crop. Mol. Plant Microbe Interact. 2010, 23, 539–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, N.; Mansour, A.; Ciuffo, M.; Falk, B.W.; Turina, M. A new tobamovirus infecting tomato crops in Jordan. Arch. Virol. 2016, 161, 503–506. [Google Scholar] [CrossRef]
- Rojas, M.R.; Gilbertson, R.L. Emerging plant viruses: A diversity of mechanisms and opportunities. In Plant Virus Evolution; Roossinck, M.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 27–51. [Google Scholar] [CrossRef]
- Luria, N.; Smith, E.; Reingold, V.; Bekelman, I.; Lapidot, M.; Levin, I.; Elad, N.; Tam, Y.; Sela, N.; Abu-Ras, A.; et al. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 2017, 12, e0170429. [Google Scholar] [CrossRef] [Green Version]
- Ling, K.-S.; Tian, T.; Gurung, S.; Salati, R.; Gilliard, A. First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States. Plant Dis. 2019, 103, 1439. [Google Scholar] [CrossRef]
- Just, K.; Leke, W.N.; Sattar, M.N.; Luik, A.; Kvarnheden, A. Detection of Tomato yellow leaf curl virus in imported tomato fruit in northern Europe. Plant Pathol. 2014, 63, 1454–1460. [Google Scholar] [CrossRef]
- Jones, R.A.C. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res. 2016, 95, 87–147. [Google Scholar] [CrossRef]
- Jones, R.A.C. Virus disease problems facing potato industries worldwide: Viruses found, climate change implications, rationalizing virus strain nomenclature and addressing the Potato virus Y issue. In The Potato: Botany, Production and Uses, 1st ed.; Navarre, R., Pavek, M.J., Eds.; CABI: Wallingford, UK, 2014; pp. 202–224. [Google Scholar]
- Cooper, I.; Jones, R.A. Wild plants and viruses: Under-investigated ecosystems. Adv. Virus Res. 2006, 67, 1–47. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Coutts, B.A. Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol. Plant Pathol. 2015, 16, 541–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsius, M.; Anttila, S.; Arvola, L.; Bergström, I.; Hakola, H.; Heikkinen, H.I.; Helenius, J.; Hyvärinen, M.; Jylhä, K.; Karjalainen, J.; et al. Impacts and adaptation options of climate change on ecosystem services in Finland: A model based study. Curr. Opin. Environ. Sustain. 2013, 5, 26–40. [Google Scholar] [CrossRef]
- Burdon, J.J.; Thrall, P.H. Pathogen evolution across the agro-ecological interface: Implications for disease management. Evol. Appl. 2008, 1, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.E. Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol. 1971, 9, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Bedford, I.D.; Kelly, A.; Banks, G.K.; Briddon, R.W.; Cenis, J.L.; Markham, P.G. Solanum nigrum: An indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur. J. Plant Pathol. 1998, 104, 221–222. [Google Scholar] [CrossRef]
- Roossinck, M.J.; García-Arenal, F. Ecosystem simplification, biodiversity loss and plant virus emergence. Curr. Opin. Virol. 2015, 10, 56–62. [Google Scholar] [CrossRef]
- Roossinck, M.J. Plants, viruses and the environment: Ecology and mutualism. Virology 2015, 479, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.H.; Li, H.; Sivasithamparam, K.; Admiraal, R.; Jones, M.G.K.; Wylie, S.J. Evolution of a wild-plant tobamovirus passaged through an exotic host: Fixation of mutations and increased replication. Virus Evol. 2017, 3, vex001. [Google Scholar] [CrossRef] [Green Version]
- Lapidot, M.; Legg, J.P.; Wintermantel, W.M.; Polston, J.E. Management of whitefly-transmitted viruses in open-field production systems. Adv. Virus Res. 2014, 90, 147–206. [Google Scholar] [CrossRef]
- Nicaise, V. Crop immunity against viruses: Outcomes and future challenges. Front. Plant Sci. 2014, 5, 660. [Google Scholar] [CrossRef]
- Dupuis, B.; Cadby, J.; Goy, G.; Tallant, M.; Derron, J.; Schwaerzel, R.; Steinger, T. Control of potato virus Y (PVY) in seed potatoes by oil spraying, straw mulching and intercropping. Plant Pathol. 2017, 66, 960–969. [Google Scholar] [CrossRef] [Green Version]
- Lanter, J.M.; McGuire, J.M.; Goode, M.J. Persistence of tomato mosaic virus in tomato debris and soil under field conditions. Plant Dis. 1982, 66, 552–555. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Barbetti, M.J. Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev. 2012, 7, 1–31. [Google Scholar] [CrossRef]
- Laws, A.N.; Joern, A. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 2013, 58, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Shates, T.M.; Sun, P.; Malmstrom, C.; Dominguez, C.; Mauck, K. Addressing research needs in the field of plant virus ecology by defining knowledge gaps and developing wild dicot study systems. Front. Microbiol. 2019, 9, 3305. [Google Scholar] [CrossRef]
- Pagán, I.; Holmes, E.C. Long-term evolution of the Luteoviridae: Time scale and mode of virus speciation. J. Virol. 2010, 84, 6177–6187. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, A.J.; Wood, J.; García-Arenal, F.; Ohshima, K.; Armstrong, J.S. Tobamoviruses have probably co-diverged with their eudicotyledonous hosts for at least 110 million years. Virus Evol. 2015, 1, vev019. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, A.J.; Ohshima, K.; Phillips, M.J.; Gibbs, M.J. The prehistory of potyviruses: Their initial radiation was during the dawn of agriculture. PLoS ONE 2008, 3, 2523. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, E.P. A Top Ten list for economically important plant viruses. Arch. Virol. 2015, 160, 17–20. [Google Scholar] [CrossRef]
- Scholthof, K.B.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant. Pathol. 2011, 9, 938–954. [Google Scholar] [CrossRef]
- Fuchs, M. Plant resistance to viruses: Engineered resistance. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., van Regenmortel, M.H.V., Eds.; Elsevier: Maryland Heights, MO, USA, 2008; pp. 156–164. [Google Scholar]
- Fraile, A.; Alonso-Prados, J.L.; Aranda, M.A.; Bernal, J.J.; Malpica, J.M.; García-Arenal, F. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 1997, 71, 934–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Andrés, S.; Monci, F.; Navas-Castillo, J.; Moriones, E. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature. Virology 2006, 350, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, D.B.; Sanfaçon, H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 2018, 9, 1575. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Chen, F.; Mannas, J.P.; Feldman, T.; Sumner, L.W.; Roossinck, M.J. Virus infection improves drought tolerance. New Phytol. 2008, 180, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. The good viruses: Viral mutualistic symbioses. Nat. Rev. Microbiol. 2011, 9, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Roossinck, M.J. A new look at plant viruses and their potential beneficial roles in crops. Mol. Plant Pathol. 2015, 16, 331–333. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, T.; Tabara, M.; Koiwa, H.; Takahashi, H. Effect of asymptomatic infection with southern tomato virus on tomato plants. Arch. Virol. 2020, 165, 11–20. [Google Scholar] [CrossRef]
- Pechinger, K.; Chooi, K.M.; MacDiarmid, R.M.; Harper, S.J.; Ziebell, H. A new era for mild strain cross-protection. Viruses 2019, 11, 670. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Nara, Y.; Furuya, H.; Takahashi, H.; Tairako, K.; Yamamoto, H. Characteristics for practical use of attenuated isolate UA-Fukushima of Tomato mosaic virus. J. Gen. Plant Pathol. 2002, 68, 382–384. [Google Scholar] [CrossRef]
- Chewachong, G.; Miller, S.; Blakeslee, J.; Francis, D.; Morris, T.; Qu, F. Generation of an attenuated, cross-protective Pepino mosaic virus variant through alignment-guided mutagenesis of the viral capsid protein. Phytopathology 2015, 105, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, I.M.; Gutierrez-Aguirre, I.; Paeleman, A.; Goen, K.; Wittemans, L.; Lievens, B.; Vanachter, A.C.R.C.; Ravnikar, M.; Thomma, B.P.H.J. Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different Pepino mosaic virus isolates. Plant Pathol. 2010, 59, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Hasiów-Jaroszewska, B.; Minicka, J.; Pospieszny, H. Cross-protection between different pathotypes of Pepino mosaic virus representing Chilean 2 genotype. Acta Sci. Pol. Hortorum Cultus. 2014, 13, 177–185. [Google Scholar]
- Agüero, J.; Gómez-Aix, C.; Sempere, R.N.; García-Villalba, J.; García-Núñez, J.; Hernando, Y.; Aranda, M.A. Stable and broad spectrum cross-protection against Pepino mosaic virus attained by mixed infection. Front. Plant Sci. 2018, 9, 1810. [Google Scholar] [CrossRef]
- Grupa, A.; Syller, J. Cross-protection between a naturally occurring mild isolate of Potato virus M (PVM) and a more virulent isolate in Datura metel plants. J. Phytopathol. 2016, 164, 69–73. [Google Scholar] [CrossRef]
- Hall, T.J. Resistance at the TM-2 locus in the tomato to tomato mosaic virus. Euphytica. 1980, 29, 189–197. [Google Scholar] [CrossRef]
- Calder, V.L.; Palukaitis, P. Nucleotide sequence analysis of the movement genes of resistance breaking strains of tomato mosaic virus. J. Gen. Virol. 1992, 73, 165–168. [Google Scholar] [CrossRef]
- Lanfermeijer, F.C.; Warmink, J.; Hille, J. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J. Exp. Bot. 2005, 56, 2925–2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehl, A.; Soininen, M.; Poranen, M.M.; Heinlein, M. Synthetic biology approach for plant protection using dsRNA. Plant Biotechnol. J. 2018, 16, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.M. On three new virus diseases of hyoscyamus niger. Ann. Appl. Biol. 1932, 19, 550–567. [Google Scholar] [CrossRef]
- Lovisolo, O.; Bartels, R. On a new strain of henbane mosaic virus from Physalis alkekengi. J. Phytopathol. 1970, 69, 189–201. [Google Scholar] [CrossRef]
- Pecman, A.; Kutnjak, D.; Mehle, N.; Žnidarič, M.T.; Gutiérrez-Aguirre, I.; Pirnat, P.; Adams, I.; Boonham, N.; Ravnikar, M. High-throughput sequencing facilitates characterization of a “forgotten” plant virus: The case of a Henbane mosaic virus infecting tomato. Front. Microbiol. 2018, 9, 2739. [Google Scholar] [CrossRef] [PubMed]
- Moury, B.; Fabre, F.; Hébrard, E.; Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 2017, 98, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Orfanidou, C.G.; Pappi, P.G.; Efthimiou, K.E.; Katis, N.I.; Maliogka, V.I. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 2016, 100, 2043–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLeisch, M.J.; Fraile, A.; García-Arenal, F. Evolution of plant-virus interactions: Host range and virus emergence. Curr. Opin. Virol. 2019, 34, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Sastry, K.S.; Mandal, B.; Hammond, J.; Scott, S.W.; Briddon, R.W. Encyclopedia of Plant Viruses and Viroids, 1st ed.; Springer India: New Delhi, India, 2019. [Google Scholar]
- ICTV Virus Taxonomy: 2019 Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 9 May 2020).
- VIDE Database: Plant Viruses Online. Available online: http://bio-mirror.im.ac.cn/mirrors/pvo/vide/refs.htm (accessed on 8 May 2020).
- NCBI Virus Portal. Available online: https://www.ncbi.nlm.nih.gov/labs/virus (accessed on 9 May 2020).
- Bag, S.; Mitter, N.; Eid, S.; Pappu, H.R. Complementation between two tospoviruses facilitates the systemic movement of a plant virus silencing suppressor in an otherwise restrictive host. PLoS ONE 2012, 7, e44803. [Google Scholar] [CrossRef] [PubMed]
- Hassani-Mehraban, A.; Brenkman, A.; Broek, N.; Goldbach, R.; Kormelink, R. RNAi-mediated transgenic tospovirus resistance broken by intraspecies silencing suppressor protein complementation. Mol. Plant Microbe Interact. 2009, 22, 1250–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Campos, S.; Domínguez-Huerta, G.; Díaz-Martínez, L.; Tomás, D.M.; Navas-Castillo, J.; Moriones, E.; Grande-Pérez, A. Differential shape of geminivirus mutant spectra across cultivated and wild hosts with invariant viral consensus sequences. Front. Plant Sci. 2018, 9, 932. [Google Scholar] [CrossRef]
- Juárez, M.; Rabadán, M.P.; Martínez, L.D.; Tayahi, M.; Grande-Pérez, A.; Gómez, P. Natural hosts and genetic diversity of the emerging Tomato leaf curl New Delhi virus in Spain. Front. Microbiol. 2019, 10, 140. [Google Scholar] [CrossRef]
- Ma, Y.; Marais, A.; Lefebvre, M.; Faure, C.H.; Candresse, T. Metagenomic analysis of virome cross-talk between cultivated Solanum lycopersicum and wild Solanum nigrum. Virology 2020, 540, 38–44. [Google Scholar] [CrossRef]
- Bratsch, S.A.; Grinstead, S.; Creswell, T.C.; Ruhl, G.E.; Mollov, D. Characterization of Tomato necrotic spot virus, a subgroup 1 ilarvirus causing necrotic foliar, stem, and fruit symptoms in tomatoes in the United States. Plant Dis. 2019, 103, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Carpino, C.; Elvira-González, L.; Rubio, L.; Peri, E.; Davino, S.; Galipienso, L. A comparative study of viral infectivity, accumulation and symptoms induced by broad bean wilt virus 1 isolates. J. Plant Pathol. 2019, 101, 275–281. [Google Scholar] [CrossRef]
- Elena, S.F.; Fraile, A.; García-Arenal, F. Evolution and emergence of plant viruses. Adv. Virus Res. 2014, 88, 161–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, H.A.; Eastburn, D.M.; D’Arcy, C.J.; Kindhart, J.D.; Masiunas, J.B.; Voegtlin, D.J.; Weinzierl, R.A.; McCoppin, N.K. Solanaceous weeds as possible sources of Cucumber mosaic virus in southern Illinois for aphid transmission to pepper. Plant Dis. 2000, 84, 1221–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreto, S.S.; Hallwass, M.; Aquino, O.M.; Inoue-Nagata, A.K. A study of weeds as potential inoculum sources for a tomato-infecting begomovirus in Central Brazil. Phytopathology 2013, 103, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Roselló, S.; Díez, M.J.; Nuez, F. Viral diseases causing the greatest economic losses to the tomato crop. I. The Tomato spotted wilt virus—A review. Sci. Hortic. 1996, 67, 117–150. [Google Scholar] [CrossRef]
- Gong, H.; Igiraneza, C.; Dusengemungu, L. Major In vitro techniques for potato virus elimination and post eradication detection methods. A review. Am. J. Potato Res. 2019, 96, 379–389. [Google Scholar] [CrossRef] [Green Version]
- García-Andrés, S.; Tomás, D.M.; Navas-Castillo, J.; Moriones, E. Resistant-driven selection of begomoviruses associated with the tomato yellow leaf curl disease. Virus Res. 2009, 146, 66–72. [Google Scholar] [CrossRef]
- López, C.; Aramburu, J.; Galipienso, L.; Soler, S.; Nuez, F.; Rubio, L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 2011, 92, 210–215. [Google Scholar] [CrossRef]
- Goodin, M.M.; Zaitlin, D.; Naidu, R.A.; Lommel, S.A. Nicotiana benthamiana: Its history and future as a model for plant-pathogen interactions. Mol. Plant Microbe Interact. 2008, 21, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
Factors | Environments | Effects on Virus Populations | |
---|---|---|---|
Cultivated | Unmanaged | ||
Biodiversity of plant species | single or few species within field | considerably larger | Low biodiversity can facilitate epidemic development, in particular in the case of specialist viruses [41] |
Genetic variability of individual plant species | very limited, often only a single cultivar | considerably larger | Low genetic diversity can facilitate epidemic development. It can also provide strong, unidirectional selective pressures driving, for example, the emergence of resistance-breaking virus isolates [42,43] |
Chemical treatment (pesticides/insecticides) | common to rare | none | Chemical treatment can limit vector populations and therefore transmission rates for viruses transmitted by efficiently controlled vectors [44,45] |
Period without vegetation (inter crop) | common | very rare, only caused by environmental factors (e.g., fires, floods) | Vegetation-free period disturbs virus life cycles. Only some viruses remain infective in soil/water for long period (e.g., Tomato mosaic virus (ToMV)). Otherwise, virus colonization of hosts will start anew [46,47] |
Plant population life cycles | annual for many crops | annual/perennial | Perennial plants can serve as reservoirs for viruses outside the vegetation period in temperate climate [40] |
Vegetation density | commonly dense, with uniform distances—(controllable) | ranging from sparse to very dense—(random) | Increased density of potential host plants can contribute to more efficient epidemics [43] |
Environmental conditions (temperature, precipitation, humidity, wind) | commonly altered to optimal values in order to increase yield (watering, foliation, wind breakers, fertilizers, etc.)—(controllable) | dependent on weather and other environment conditions alone—(random) | Efficient plant growth may drive the development of large vector populations, thus contributing to more efficient epidemics. Extreme weather conditions such as strong winds and heavy rainfall wounding plant tissue can help transmission of contact-transmitted viruses by leaf-fall and rain splash [33,48] |
Biodiversity of vector population | dependent on the host biodiversity and environmental conditions | dependent on the host biodiversity and environmental conditions | Vector populations biodiversity is expected to decrease together with plant populations diversity. Reduction of the populations of natural enemies of vectors may lead to higher vector populations and, eventually, to faster epidemics [49] |
Origin of the plants | often introduced from other geographical areas | mostly local, but there can be invasive plant species present | Introduction of crops in new geographic areas may provide opportunities for novel host-virus encounters and drive the emergence of novel diseases [36] |
Virus Genera | Genome | Natural Transmission | Natural Solanaceous Hosts | Remarks |
---|---|---|---|---|
Virus Species | ||||
Alfamovirus | (+)ssRNA | |||
AMV (alfalfa mosaic virus) | aphids/seed | pepper, tomato, potato, petunia, eggplant, sweet pepino, tamarillo | large host range | |
Alphaendornavirus | dsRNA | |||
BPEV (Bell pepper alphaendornavirus) | Seed/pollen | pepper, tomato, potato (Phujera) | ||
HpEV (Hot pepper alphaendornavirus) | Seed/pollen | pepper | recently described virus | |
Alphanecrovirus | (+)ssRNA | |||
PoNV (Potato necrosis virus) | Olpidium brassicae | potato | recently described virus | |
TNV-A (tobacco necrosis virus) | Olpidium brassicae | potato, tobacco | previously considered as one species with TNV-D (Betanecrovirus), a helper virus for Tobacco albetovirus 1, -2, -3 | |
Alphanucleorhabdovirus | (-)ssRNA | |||
EMDV (Eggplant mottled dwarf nucleorhabdovirus) | leafhoppers | eggplant, tobacco, tomato, potato, pepper | ||
PhCMoV (Physostegia chlorotic mottle virus) | unknown | tomato | recently described virus | |
PYDV (Potato yellow dwarf virus) | leafhoppers | potato, pepper, tomato | ||
Amalgavirus | dsRNA | |||
STV (Southern tomato virus) | seed | tomato | ||
Betanecrovirus | (+)ssRNA | |||
TNV-D | Olpidium brassicae | tobacco | previously considered as one species with TNV-A (Alphanecrovirus) | |
Betanucleorhabdovirus | (-)ssRNA | |||
DYVV (Datura yellow vein nucleorhabovirus) | unknown | jimson weed, tomato | ||
Begomovirus | ssDNA | |||
More than 200 species in the genus begomovirs have been reported as naturally infecting Solanaceae species, e.g., ToLCNDV (Tomato leaf curl new delhi virus), TYLCV-Is (Tomato yellow leaf curl virus—Israel), TYLCSV (Tomato yellow leaf curl sardinia virus) | whitefly Bemisia tabaci | petunia, tomatillo, jimson weed, pepper, black nightshade, tobacco, tomato, eggplant | frequently large host range, often associated with alphasatellites (DNA-1) and betasatellites (DNA-β), many recently described viruses | |
Carlavirus | (+)ssRNA | |||
CPMMV (Cowpea mild mottle virus) | whitefly Bemisia tabaci | tomato, eggplant | ||
PotLV (Potato latent virus) | aphids | potato | ||
PVH (Potato virus H) | aphids | tomato, potato | recently described virus | |
PVM (Potato virus M) | aphids | tomato, potato, sweet pepino, bittersweet | ||
PVP (Potato virus P) | aphids | potato | ||
PVS (Potato virus S) | aphids | black nightshade, potato, tomato | ||
Cheravirus | (+)ssRNA | |||
AVB (Arracacha virus B) | seed/ pollen | potato | ||
CRLV (Cherry rasp leaf virus) | nematodes/ seed | tomato | ||
Closterovirus | (+)ssRNA | |||
TV1 (Tobacco virus 1) | not known but other closteroviruses are transmitted by aphids | tobacco | recently described virus | |
Comovirus | (+)ssRNA | |||
APMoV (Andean potato mottle virus) | beetles/contact | eggplant, pepper, potato | ||
Crinivirus | (+)ssRNA | |||
CYSDV (Cucurbit yellow stuning disorder virus) | whitefly Bemisia tabaci | potato | only one report, true natural host range on Solanaceae is yet to be discovered | |
PYVV (Potato yellow vein virus) | whitefly T. vaporariorum | black nightshade, potato, tomato | ||
TICV (Tomato infectious chlorosis virus) | whitefly T. vaporariorum | tomato | ||
ToCV (Tomato chlorosis virus) | whiteflies | tobacco, pepper, tomato, potato, jimson weed, ground cherry, cape gooseberry, tomatillo, eggplant, African eggplant | moderate host range, relatively long latent period in infected host plants | |
Cucumovirus | (+)ssRNA | |||
CMV (Cucumber mosaic virus) | aphids | almost all | extremely broad host range, infecting plants in 85 families and more than 1000 species experimentally | |
PSV (Peanut stunt virus) | aphids | tobacco | Solanaceous hosts mentions in VIDE database | |
TAV (Tomato aspermy virus) | aphids | tomato, pepper, petunia | ||
Curtovirus | ssDNA | |||
BCTV (Beet curly top virus) | leafhoppers | pepper, tomato, potato | large host range, widespread | |
Deltapartitivirus | dsRNA | |||
PCV1 (Pepper cryptic virus 1) | pollen/seed | pepper | ||
PCV2 (Pepper cryptic virus 2) | pollen/seed | pepper | recently described virus | |
Elaviroid | viroid | |||
ELVd (Eggplant latent viroid) | seed | eggplant | ||
Fabavirus | (+)ssRNA | |||
BBWV (Broad bean wilt virus) | aphids | eggplant, petunia, pepper | large host range, now known as two separate species BBWV-1 and BBWV-2 | |
Ilarvirus | (+)ssRNA | |||
PMoV (Parietaria mottle virus) | thrips /pollen | pepper, tomato | ||
PYV (Potato yellowing virus)–tentative member | aphids | potato, pepper | ||
SnIV 1 (Solanum nigrum ilavirus 1- tentative name) | thrips /pollen | black nightshade, tomato | recently described virus | |
TomNSV (Tomato necrotic streak virus) | thrips/pollen | tomato | recently described virus | |
ToNSV (Tomato necrotic spot virus)–tentative member | thrips /pollen | tomato, tobacco, jimson weed | recently described virus | |
TSV (Tobacco streak virus) | thrips/pollen/seed | potato, tobacco, tomato, jimson weed, petunia, ground cherry | a large host range | |
Ipomovirus | (+)ssRNA | |||
TMMoV (Tomato mild mottle virus) | whitefly Bemisia tabaci | tomato, eggplant | ||
Macluravirus | (+)ssRNA | |||
ArLV (Artichoke latent virus) | aphids | petunia | ||
Mastrevirus | ssDNA | |||
CpCDV (Chickpea chlorotic dwarf virus) | leafhoppers O. orientalis and O. albicinctus | tomato, pepper | contrary to the majority of masterviruses, CpCDV can infect Solanaceae hosts | |
TbYDV (Tobacco yellow dwarf virus) | leafhoppers Orosius argentatus, O. orientalis,, Anzygina zealandica | tobacco | ||
Nepovirus | (+)ssRNA | |||
ArMV (Arabis mosaic virus) | nematode vectors, Xiphinema diversicaudatum, X. coxi | tomato, petunia, potato, black nightshade, tamarillo, cape gooseberry | ||
AYRSV (Artichoke yellow ringspot virus) | likely nematodes | tobacco | ||
CLRV (Cherry leaf roll virus) | nematodes X. coxi, X. diversicaudatum, X. vuittenezi | petunia, wild potato | ||
PBRSV (Potato black ringspot virus) | contact/seed | potato | ||
PRMV (Peach rosette mosaic virus) | nematodes Xiphinema americanum, Longidorus diadecturus | carolina horsenettle | Solanaceous hosts mentions in VIDE database | |
PVB (Potato virus B) | nematodes Longidorus spp. | potato | recently described virus | |
PVU (Potato virus U) | nematodes Longidorus spp./seed | potato | ||
TBRV (Tomato black ring virus) | nematodes Longidorus elongatus and L. attenuatus | petunia, potato, tomato | large host range | |
ToRSV (Tomato ringspot virus) | nematodes Xiphinema americanum, X. bricolensis, X. californicum, X. rivesi | tobacco, tomato, petunia, eggplant, pepper, tamarillo | large host range | |
TRSV (Tobacco ringspot virus) | nematodes Xiphinema americanum, Longidorus or Paralongidorus spp. | petunia, eggplant, tobacco, tomato | ||
Orthotospovirus | (+/−) ssRNA | |||
TSWV (Tomato spotted wilt orthotospovirus), IYSV (Iris yellow spot orthotospovirus), CaCV (Capsicum chlorosis orthotospovirus), GBNV (Groundnut bud necrosis orthotospovirus), GRSV (Groundnut ringspot orthotospovirus), TCSV (Tomato chlorotic spot orthotospovirus), WBNV (Watermelon bud necrosis orthotospovirus), INSV (Impatiens necrotic spot orthotospovirus) and tentative members PNSV (Pepper necrotic spot virus), TZSV (Tomato zonate spot virus), TNRV (Tomato necrotic ringspot virus), TYRV (Tomato yellow ring virus) | Orthotospoviruses are transmitted by at least 13 thrip species | type species TSWV alone can naturally infect eggplant, potato, tobacco, peper, tomato, black nightshade, petunia, cape gooseberry, tomatillo, Brugmansia, bittersweet, tamarillo, jimson weed … | type species TSWV are widespread and has a very wide host range, other orthotospoviruses infect less plant species, but seem able to naturally infect Solanaceae: tomato & pepper (11 viruses), potato (7 viruses) | |
Petuvirus | dsDNA | |||
PVCV (Petunia vein clearing virus) | unknown | petunia | ||
Polerovirus | (+)ssRNA | |||
BWYV (Beet western yellows virus) | aphids | pepper, potato, black nightshade | large host range, probably widespread | |
PeVYV-1 (Pepper vein yellows virus 1) | aphids | tobacco, pepper | recognized as 6 species PeVYV-1 to -6; recently described viruses | |
PLRV (Potato leafroll virus) | aphids | potato, tomato, jimson weed, black nightshade, tamarillo | ||
TVDV (Tobacco vein distorting virus) | aphids | tobacco | the virus can help the vector transmission of TMoV and TBTV (umbraviruses) | |
Pomovirus | (+)ssRNA | |||
CPSbV (Colombian potato soil-borne virus) | likely a soil-borne fungal vector | potato | recently described virus | |
PMTV (Potato mop-top virus) | Plasmodiophorales | potato | ||
Pospiviroid | viroid | |||
PSTVd (Potato spindle tuber viroid), TASVd (Tomato apical stunt viroid), CEVd (Citrus exocortis viroid), CSVd (Chrysanthemum stunt viroid), TPMVd (Tomato planta macho viroid), TCDVd (Tomato chlorotic dwarf viroid), PCFVd (Pepper chat fruit viroid), CLVd (Columnea latent viroid) | PSTVd alone can spread mechanically, by pollen, seed, aphids, grasshoppers, flea beetles and true bugs | PSTVd alone naturally infects ground cherry, petunia, black nightshade, potato, tomato, pepper, cape gooseberry, jimson weed and brugmansia. Most pospviroids naturally infect Solanaceous plants | widespread, large host range | |
Potexvirus | (+)ssRNA | |||
PAMV (Potato aucuba mosaic virus) | aphids | potato, tamarillo | requiring a helper virus for vector transmission, such as PVY or PVA | |
PepMV (Pepino mosaic virus) | contact, seeds | eggplant, tobacco, tomato, black nightshade, sweet pepino, potato | transmitted by bumblebees experimentally | |
PVX (potato virus X) | unknown | cape gooseberry, eggplant, potato, tomato | known for its role in mixed infections with other potato viruses | |
Potyvirus | (+)ssRNA | |||
AEMV (African eggplant mosaic virus) | aphids | African eggplant | recently described virus | |
BruMV (Brugmansia mosaic virus) | aphids | Brugmansia | recently described virus | |
BsMoV (Brugmansia suaveolens mottle virus) | aphids | Brugmansia | ||
CDV (Colombian datura virus) | aphids | jimson weed, petunia, cape gooseberry, sweet pepino, Brugmansia | ||
ChiVMV (Chilli veinal mottle virus) | aphids | tobacco, pepper, tomato, jimson weed, African eggplant | ||
DSSV (Datura shoestring virus) | aphids | jimson weed | ||
HMV (henbane mosaic virus) | aphids | henbane, tomato, tobacco, jimson weed | ||
PepMoV (Pepper mottle virus) | aphids | tomato, pepper, ground cherry | ||
PepSMV (Pepper severe mosaic virus) | aphids | pepper | ||
PepYMV (Pepper yellow mosaic virus) | aphids | tomato, pepper | ||
PTV (Peru tomato mosaic virus) | aphids | cape gooseberry, tomato, black nightshade, tamarillo | ||
PVA (potato virus A) | aphids | restricted to Solanaceae | ||
PVMV (Pepper veinal mottle virus) | aphids | tomato, tobacco, eggplant, black nightshade, jimson weed, ground cherry | ||
PVV (Potato virus V) | aphids | potato, tomato, tamarillo | ||
PVY (potato virus Y) | aphids | petunia, cape gooseberry, eggplant, jimson weed, black nightshade, tobacco, potato, tomato, pepper, tamarillo | ||
TEV (tobacco etch virus) | aphids | wide host range, pepper, tomato, jimson weed, physalis, tobacco, petunia | ||
TLMV (Tamarillo leaf malformation virus) | aphids | tamarillo | recently described virus | |
TNSV (Tomato necrotic stunt virus) | aphids | tomato | recently described virus | |
TVBMV (Tobacco vein banding mosaic virus) | aphids | jimson weed, potato, tobacco | ||
TVMV (Tobacco vein mottling virus) | aphids | tobacco | ||
WPMV (Wild potato mosaic virus) | aphids | wild potato | ||
Sobemovirus | (+)ssRNA | |||
SNMoV (Solanum nodiflorum mottle virus) | beetles | Solanum nordiflorum | ||
VTMoV (Velvet tobacco mottle virus) | mirid Cyrtopeltis nicotianae | velvet tobacco | ||
Solendovirus | dsDNA | |||
TVCV (Tobacco vein clearing virus) | seed | tobacco | ||
Soymovirus | dsDNA | |||
CmYLCV (Cestrum yellow leaf curling virus) | unknown | Cestrum spp. | ||
Tepovirus | (+)ssRNA | |||
PVT (Potato virus T) | seed/pollen | potato | ||
Tombusvirus | (+)ssRNA | |||
EMCV (Eggplant mottled crinkle virus) | unknown | eggplant | ||
MPV (Moroccan pepper virus) | unknown | tomato, jimson weed, pepper | ||
PetAMV (Petunia asteroid mosaic virus) | unknown | petunia | ||
TBSV (Tomato bushy stunt virus) | seed | eggplant, pepper, tomato | ||
Tobamovirus | (+)ssRNA | |||
BrMMV (Brugmansia mild mottle virus) | contact | Brugmansia | ||
ObPV (Obuda pepper virus) | contact | pepper, tobacco | ||
PaMMV (Paprika mild mottle virus) | contact | pepper | ||
PMMoV (Pepper mild mottle virus) | contact/seed | pepper, tobacco, jimson weed, petunia, physalis | widespread | |
RMV (Ribgrass mosaic virus) | contact | tobacco | ||
TLV (Tobacco latent virus) | contact/seed | tobacco | ||
TMGMV (Tobacco mild green mosaic virus) | tomato, pepper, tobacco, petunia | widespread | ||
TMV (Tobacco mosaic virus) | contact/seed | petunia, cape gooseberry, eggplant, black nightshade, tobacco, tomato, potato, pepper | helper virus for satellite tobacco mosaic virus (STNV) | |
ToBRFV (Tomato brown rugose fruit virus) | contact | tomato | recently described virus | |
ToMMV (Tomato mottle mosaic) | contact | pepper, tomato | recently described virus | |
ToMV (Tomato mosaic virus) | contact/seed | petunia, eggplant, potato, pepper, tomato, tamarillo | ||
YTMMV (Yellow tailflower mild mottle virus) | contact/ | yellow tailflower | recently described virus | |
Tobravirus | (+)ssRNA | |||
PepRSV (Pepper ringspot virus) | nematodes Paratrichodorus minor | tomato, pepper | ||
TRV (Tobacco rattle virus) | Trichodorid nematodes | potato, tobacco, pepper | ||
Topocuvirus | ssDNA | |||
TPCTV (Tomato pseudo-curly top virus) | treehopper Micrutalis malleifera | tomato | ||
Torradovirus | (+)ssRNA | |||
ToChSV (Tomato chocolate spot virus) | whitefly Trialeurodes vaporariorum | tomato | ||
ToMarV (Tomato marchitez virus) | whiteflies Trialeurodes abutilonea, T. vaporariorum, and Bemisia tabaci | tomato, pepper | ||
ToTV (tomato torrado virus) | whiteflies | tomato, black nightshade | widespread | |
Tymovirus | (+)ssRNA | |||
APLV (Andean potato latent virus) | beetles Epitrix spp | potato | ||
APMMV (Andean potato mild mosaic virus) | beetles | potato | ||
BeMV (Belladonna mottle virus) | beetle Epitrix atropae | ground cherry, deadly nightshade | ||
DuMV (Dulcamara mottle virus) | beetle Psylloides affinis | bittersweet nightshade | ||
EMV (Eggplant mosaic virus) | beetles | tobacco, tomato, eggplant | ||
OkMV (Okra mosaic virus) | beetles | ground cherry | ||
PetVBV (Petunia vein banding virus) | beetles | petunia | ||
PhyMV (Physalis mottle virus) | beetle Epitrix cucumeris | tomatillo | ||
ToBMV (Tomato blistering mosaic virus) | beetles | tobacco, tomato | recently described virus | |
Umbravirus | (+)ssRNA | |||
TBTV (Tobacco bushy top virus) | aphid | tobacco, tomato, pepper | transmissible by aphids only in presence of TVDV | |
TMoV (Tabacco mottle virus) | aphids | tobacco | transmissible by aphids only in presence of TVDV | |
Unclassified viruses | ||||
(TNDV) Tobacco necrotic dwarf virus | (+)ssRNA | aphids | tobacco | member of the family Luteoviridae |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hančinský, R.; Mihálik, D.; Mrkvová, M.; Candresse, T.; Glasa, M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. Plants 2020, 9, 667. https://doi.org/10.3390/plants9050667
Hančinský R, Mihálik D, Mrkvová M, Candresse T, Glasa M. Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. Plants. 2020; 9(5):667. https://doi.org/10.3390/plants9050667
Chicago/Turabian StyleHančinský, Richard, Daniel Mihálik, Michaela Mrkvová, Thierry Candresse, and Miroslav Glasa. 2020. "Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review" Plants 9, no. 5: 667. https://doi.org/10.3390/plants9050667
APA StyleHančinský, R., Mihálik, D., Mrkvová, M., Candresse, T., & Glasa, M. (2020). Plant Viruses Infecting Solanaceae Family Members in the Cultivated and Wild Environments: A Review. Plants, 9(5), 667. https://doi.org/10.3390/plants9050667