Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management
Abstract
:1. Introduction
2. Methodology for Literature Selection and Analysis in Digital Agriculture
3. Remote Sensing: Using Satellite and Aerial Imagery to Monitor Crop Growth, Soil Moisture Levels, and Other Critical Factors That Impact Crop Health
- Fixed-wing UAVs: commonly require runways for takeoff and landing areas. They can cover large areas and carry heavier payloads.
- Rotary-Wing UAVs: higher resolution given the flight height and speed. They can cover smaller areas compared to the fixed-wing UAVs.
- Hybrid UAVs: are generated to combine the advantages of the types to overcome both their disadvantages. They combine the vertical take-off and landing (VTOL) ability of rotary-wing UAVs with the cruise flight of fixed-wing UAVs.
4. Monitoring Devices: Automatic Weather Stations (AWSs) and Yield Monitors
5. Big Data and Artificial Intelligence (AI): The Use of Big Data and AI to Analyze Vast Amounts of Data and Provide Insights into Agricultural Production Processes
6. IoT in Agriculture: The Use of Internet of Things (IoT) for Real-Time Data Collection and Analysis
7. Smart Irrigation Systems: Using Digital Tools and Sensors to Manage Water Usage in Agriculture, Reducing Waste and Maximizing Efficiency
8. Ongoing and Future Work
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS—Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Blok, V.; Gremmen, B. Agricultural Technologies as Living Machines: Toward a Biomimetic Conceptualization of Smart Farming Technologies. Ethics Policy Environ. 2018, 21, 246–263. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A Review on the Use of Drones for Precision Agriculture. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 275. [Google Scholar]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela Rue, B. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef]
- Masi, M.; Di Pasquale, J.; Vecchio, Y.; Capitanio, F. Precision Farming: Barriers of Variable Rate Technology Adoption in Italy. Land 2023, 12, 1084. [Google Scholar] [CrossRef]
- Ezenne, G.I.; Jupp, L.; Mantel, S.K.; Tanner, J.L. Current and Potential Capabilities of UAS for Crop Water Productivity in Precision Agriculture. Agric. Water Manag. 2019, 218, 158–164. [Google Scholar] [CrossRef]
- Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; Chung, Y.S.; Mansoor, S. The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Gutter, K.; Ortega-Farías, S.; Fuentes-Penailillo, F.; Moreno, M.; Vega-Ibánez, R.; Riveros-Burgos, C.; Albornoz, J. Estimation of Vineyard Water Status Using Infrared Thermometry Measured at Two Positions of the Canopy. Acta Hortic. 2022, 1335, 331–337. [Google Scholar] [CrossRef]
- Vega-Ibáñez, R.; Ortega-Farías, S.; Fuentes-Peñailillo, F.; Gutter, K.; Albornoz, J. Estimation of Midday Stem Water Potential in Grapevine Leaves (‘Cabernet Sauvignon’) Using Spectral Reflectance Indices. Acta Hortic. 2022, 1335, 325–330. [Google Scholar] [CrossRef]
- Divya, A.; Sungeetha, D.; Ramesh, S. Horticulture Image Based Weed Detection in Feature Extraction with Dimensionality Reduction Using Deep Learning Architecture. In Proceedings of the 2023 3rd International conference on Artificial Intelligence and Signal Processing (AISP), Vijayawada, India, 18–20 March 2023; pp. 1–8. [Google Scholar]
- Saigal, A.; Aremu, B.; Perumal, A. Plants Health Monitoring and Prediction for Precision Horticulture. World J. Adv. Res. Rev. 2023, 17, 967–973. [Google Scholar] [CrossRef]
- Karanisa, T.; Achour, Y.; Ouammi, A.; Sayadi, S. Smart Greenhouses as the Path towards Precision Agriculture in the Food-Energy and Water Nexus: Case Study of Qatar. Environ. Syst. Decis. 2022, 42, 521–546. [Google Scholar] [CrossRef]
- Zude-Sasse, M.; Akbari, E.; Tsoulias, N.; Psiroukis, V.; Fountas, S.; Ehsani, R. Sensing in Precision Horticulture. In Sensing Approaches for Precision Agriculture; Kerry, R., Escolà, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 221–251. ISBN 978-3-030-78431-7. [Google Scholar]
- Ludwig-Ohm, S.; Hildner, P.; Isaak, M.; Dirksmeyer, W.; Schattenberg, J. The Contribution of Horticulture 4.0 Innovations to More Sustainable Horticulture. Procedia Comput. Sci. 2023, 217, 465–477. [Google Scholar] [CrossRef]
- Zhang, M.; Han, Y.; Li, D.; Xu, S.; Huang, Y. Smart Horticulture as an Emerging Interdisciplinary Field Combining Novel Solutions: Past Development, Current Challenges, and Future Perspectives. Hortic. Plant. J. 2023, in press. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Yin, M.; Ma, R.; Luo, H.; Li, J.; Zhao, Q.; Zhang, M. Non-Contact Sensing Technology Enables Precision Livestock Farming in Smart Farms. Comput. Electron. Agric. 2023, 212, 108171. [Google Scholar] [CrossRef]
- Mishra, S.; Sharma, S.K. Advanced Contribution of IoT in Agricultural Production for the Development of Smart Livestock Environments. Internet Things 2023, 22, 100724. [Google Scholar] [CrossRef]
- Odintsov Vaintrub, M.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Review: Precision Livestock Farming, Automats and New Technologies: Possible Applications in Extensive Dairy Sheep Farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Ford, J.; Sadgrove, E.; Paul, D. Developing an Extreme Learning Machine Based Approach to Weed Segmentation in Pastures. Smart Agric. Technol. 2023, 5, 100288. [Google Scholar] [CrossRef]
- Thomson, A.; Jacobs, J.; Morse-McNabb, E. Comparing the Predictive Ability of Sentinel-2 Multispectral Imagery and a Proximal Hyperspectral Sensor for the Estimation of Pasture Nutritive Characteristics in an Intensive Rotational Grazing System. Comput. Electron. Agric. 2023, 214, 108275. [Google Scholar] [CrossRef]
- Pedrayes, O.D.; Usamentiaga, R. Satellite Imagery Dataset of Manure Application on Pasture Fields. Data Brief. 2023, 46, 108786. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of Precision Farming Tools: The Case of Italian Farmers. Int. J. Environ. Res. Public. Health 2020, 17, 869. [Google Scholar] [CrossRef]
- Carrasco, G.; Fuentes-Penailillo, F.; Perez, R.; Rebolledo, P.; Manriquez, P. An Approach to a Vertical Farming Low-Cost to Reach Sustainable Vegetable Crops. In Proceedings of the 2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022, Curicó, Chile, 24–28 October 2022; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2022. [Google Scholar]
- Cucho-Padin, G.; Loayza, H.; Palacios, S.; Balcazar, M.; Carbajal, M.; Quiroz, R. Development of Low-Cost Remote Sensing Tools and Methods for Supporting Smallholder Agriculture. Appl. Geomat. 2020, 12, 247–263. [Google Scholar] [CrossRef]
- ESA SENTINEL-2 MISSION GUIDE. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 28 June 2023).
- NASA LANDSAT 9. Available online: https://landsat.gsfc.nasa.gov/satellites/landsat-9/ (accessed on 28 June 2023).
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.T.; Jo, J. Monitoring Agriculture Areas with Satellite Images and Deep Learning. Appl. Soft Comput. J. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Weng, Q.; Zhang, Y.; Dou, P.; Zhang, L. Cloud and Cloud Shadow Detection for Optical Satellite Imagery: Features, Algorithms, Validation, and Prospects. ISPRS J. Photogramm. Remote Sens. 2022, 188, 89–108. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H.; Wang, G.; Sun, H.; Fu, J. Mapping Paddy Rice Using a Convolutional Neural Network (CNN) with Landsat 8 Datasets in the Dongting Lake Area, China. Remote Sens. 2018, 10, 1840. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Basler, D.; Braun, S.; Buchmann, N.; D’Odorico, P.; Etzold, S.; Gessler, A.; Griffin, K.L.; Krejza, J.; Luo, Y.; et al. Towards Monitoring Stem Growth Phenology from Space with High Resolution Satellite Data. Agric. For. Meteorol. 2023, 339, 109549. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T. What Good Are Unmanned Aircraft Systems for Agricultural Remote Sensing and Precision Agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Ortega-Farías, S.; Acevedo-Opazo, C.; Fonseca-Luengo, D. Implementation of a Two-Source Model for Estimating the Spatial Variability of Olive Evapotranspiration Using Satellite Images and Ground-Based Climate Data. Water 2018, 10, 339. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Kustas, W.P.; Zhou, J.; Xu, Z.; Xia, T.; Li, M. Application of Remote Sensing-Based Two-Source Energy Balance Model for Mapping Field Surface Fluxes with Composite and Component Surface Temperatures. Agric. For. Meteorol. 2016, 230–231, 8–19. [Google Scholar] [CrossRef]
- Romero, M.; Luo, Y.; Su, B.; Fuentes, S. Vineyard Water Status Estimation Using Multispectral Imagery from an UAV Platform and Machine Learning Algorithms for Irrigation Scheduling Management. Comput. Electron. Agric. 2018, 147, 109–117. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Su, P.; Wei, K.; Wang, Z.; Yang, C.; Wang, C.; Qin, M.; Xiao, L.; Yang, W.; et al. Non-Destructive Monitoring of Maize LAI by Fusing UAV Spectral and Textural Features. Front. Plant. Sci. 2023, 14, 1158837. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Carrasco, G.; Pérez, R.; Burgos, I.; Ewertz, F. Automating Seedling Counts in Horticulture Using Computer Vision and AI. Horticulturae 2023, 9, 1134. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Ortega-Farias, S.; Rivera, M.; Bardeen, M.; Moreno, M. Using Clustering Algorithms to Segment UAV-Based RGB Images. In Proceedings of the 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepcion, Chile, 17–19 October 2018; pp. 1–5. [Google Scholar]
- Fuentes-Penailillo, F.; Ortega-Farias, S.; La Fuente-Saiz, D.D.; Rivera, M. Digital Count of Sunflower Plants at Emergence from Very Low Altitude Using UAV Images. In Proceedings of the IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON, Valparaiso, Chile, 13–27 November 2019; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; Lentschke, J.; Dammer, K.-H.; Schirrmann, M.; Giebel, A.; Gleiniger, F.; Pflanz, M.; et al. Monitoring Agronomic Parameters of Winter Wheat Crops with Low-Cost UAV Imagery. Remote Sens. 2016, 8, 706. [Google Scholar] [CrossRef]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating Evaporation with Thermal UAV Data and Two-Source Energy Balance Models. Hydrol. Earth Syst. Sci. 2016, 20, 697–713. [Google Scholar] [CrossRef]
- Zeng, J.; Peng, J.; Zhao, W.; Ma, C.; Ma, H. Microwave Remote Sensing of Soil Moisture. Remote Sens. 2023, 15, 4243. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Tong, X. A Spatial Resolution Enhancement Method of Microwave Radiation Imager Data Based on Data Matching and Transformer. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 4716–4725. [Google Scholar] [CrossRef]
- Nakalembe, C.; Becker-Reshef, I.; Bonifacio, R.; Hu, G.; Humber, M.L.; Justice, C.J.; Keniston, J.; Mwangi, K.; Rembold, F.; Shukla, S.; et al. A Review of Satellite-Based Global Agricultural Monitoring Systems Available for Africa. Glob. Food Sec 2021, 29, 100543. [Google Scholar] [CrossRef]
- Rasmussen, J.; Azim, S.; Boldsen, S.K.; Nitschke, T.; Jensen, S.M.; Nielsen, J.; Christensen, S. The Challenge of Reproducing Remote Sensing Data from Satellites and Unmanned Aerial Vehicles (UAVs) in the Context of Management Zones and Precision Agriculture. Precis. Agric. 2021, 22, 834–851. [Google Scholar] [CrossRef]
- Ahmad, A.; Ordoñez, J.; Cartujo, P.; Martos, V. Remotely Piloted Aircraft (RPA) in Agriculture: A Pursuit of Sustainability. Agronomy 2020, 11, 7. [Google Scholar] [CrossRef]
- Delavarpour, N.; Koparan, C.; Nowatzki, J.; Bajwa, S.; Sun, X. A Technical Study on UAV Characteristics for Precision Agriculture Applications and Associated Practical Challenges. Remote Sens. 2021, 13, 1204. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Bazrafkan, A. Field Identification of Weed Species and Glyphosate-Resistant Weeds Using High Resolution Imagery in Early Growing Season. Biosyst. Eng. 2020, 200, 200–214. [Google Scholar] [CrossRef]
- Huuskonen, J.; Oksanen, T. Soil Sampling with Drones and Augmented Reality in Precision Agriculture. Comput. Electron. Agric. 2018, 154, 25–35. [Google Scholar] [CrossRef]
- Matese, A.; Baraldi, R.; Berton, A.; Cesaraccio, C.; Di Gennaro, S.F.; Duce, P.; Facini, O.; Mameli, M.G.; Piga, A.; Zaldei, A. Estimation of Water Stress in Grapevines Using Proximal and Remote Sensing Methods. Remote Sens. 2018, 10, 114. [Google Scholar] [CrossRef]
- Simpson, J.E.; Holman, F.H.; Nieto, H.; El-Madany, T.S.; Migliavacca, M.; Martin, M.P.; Burchard-Levine, V.; Cararra, A.; Blöcher, S.; Fiener, P.; et al. UAS-Based High Resolution Mapping of Evapotranspiration in a Mediterranean Tree-Grass Ecosystem. Agric. For. Meteorol. 2022, 321, 108981. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J.J. Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef]
- Fuentes-Penailillo, F.; Ortega-Faríasa, S.; Albornoz, J.; Gutter, K.; Vega-Ibánez, R. UAV-Based Estimation of Vineyard Actual Evapotranspiration Using the Shuttleworth and Wallace Model. Acta Hortic. 2022, 1335, 389–394. [Google Scholar] [CrossRef]
- Tanaka, T.S.T.; Wang, S.; Jørgensen, J.R.; Gentili, M.; Vidal, A.Z.; Mortensen, A.K.; Acharya, B.S.; Beck, B.D.; Gislum, R. Review of Crop Phenotyping in Field Plot Experiments Using UAV-Mounted Sensors and Algorithms. Drones 2024, 8, 212. [Google Scholar] [CrossRef]
- Du, M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-Camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Ortega-Farias, S.; Rivera, M.; Bardeen, M.; Moreno, M. Comparison of Vegetation Indices Acquired from RGB and Multispectral Sensors Placed on UAV. In Proceedings of the 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), Concepcion, Chile, 17–19 October 2018; pp. 1–6. [Google Scholar]
- Nieto, H.; Kustas, W.P.; Torres-Rúa, A.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; del Alsina, M.M.; Prueger, J.H.; et al. Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2018, 37, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Wahab, I.; Hall, O.; Jirström, M. Remote Sensing of Yields: Application of UAV Imagery-Derived Ndvi for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones 2018, 2, 28. [Google Scholar] [CrossRef]
- Pagay, V.; Kidman, C.M. Evaluating Remotely-Sensed Grapevine (Vitis vinifera L.) Water Stress Responses across a Viticultural Region. Agronomy 2019, 9, 682. [Google Scholar] [CrossRef]
- Jimenez, A.F.; Cardenas, P.F.; Canales, A.; Jimenez, F.; Portacio, A. A Survey on Intelligent Agents and Multi-Agents for Irrigation Scheduling. Comput. Electron. Agric. 2020, 176, 105474. [Google Scholar] [CrossRef]
- Basualdo, A.B. Manual de Buenas Prácticas Para La Generación, El Almacenamiento y La Difusión de Informática Climática En Instituciones y Organismos Del MERCOSUR; Instituto Interamericano de Cooperación para la Agricultura (IICA): San José, Costa Rica, 2015; ISBN 9789292485900. [Google Scholar]
- Han, M.; Zhang, H.; DeJonge, K.C.; Comas, L.H.; Gleason, S. Comparison of Three Crop Water Stress Index Models with Sap Flow Measurements in Maize. Agric. Water Manag. 2018, 203, 366–375. [Google Scholar] [CrossRef]
- Estévez, J.; Gavilán, P.; Giráldez, J.V. Guidelines on Validation Procedures for Meteorological Data from Automatic Weather Stations. J. Hydrol. 2011, 402, 144–154. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The Automatic Weather Stations NOANN Network of the National Observatory of Athens: Operation and Database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Sawant, S.; Durbha, S.S.; Jagarlapudi, A. Interoperable Agro-Meteorological Observation and Analysis Platform for Precision Agriculture: A Case Study in Citrus Crop Water Requirement Estimation. Comput. Electron. Agric. 2017, 138, 175–187. [Google Scholar] [CrossRef]
- Ioannou, K.; Karampatzakis, D.; Amanatidis, P.; Aggelopoulos, V.; Karmiris, I. Low-Cost Automatic Weather Stations in the Internet of Things. Information 2021, 12, 146. [Google Scholar] [CrossRef]
- Munandar, A.; Fakhrurroja, H.; Rizqyawan, M.I.; Pratama, R.P.; Wibowo, J.W.; Anto, I.A.F. Design of Real-Time Weather Monitoring System Based on Mobile Application Using Automatic Weather Station. In Proceedings of the 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology, ICACOMIT, Jakarta, Indonesia, 23–24 October 2017; pp. 44–47. [Google Scholar] [CrossRef]
- Nsabagwa, M.; Byamukama, M.; Kondela, E.; Otim, J.S. Towards a Robust and Affordable Automatic Weather Station. Dev. Eng. 2019, 4, 100040. [Google Scholar] [CrossRef]
- Rogulski, M.; Badyda, A. Investigation of Low-Cost and Optical Particulate Matter Sensors for Ambient Monitoring. Atmosphere 2020, 11, 1040. [Google Scholar] [CrossRef]
- Lopez, J.C.B.; Villaruz, H.M. Low-Cost Weather Monitoring System with Online Logging and Data Visualization. In Proceedings of the 8th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM, Cebu, Philippines, 9–12 December 2015; pp. 6–12. [Google Scholar] [CrossRef]
- Nikhilesh, S.; Raaghavendra, H. Low-Cost IoT Based Weather Monitoring System for Smart Community. In Proceedings of the 2020 Fourth International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 8–10 January 2020; pp. 48–67. [Google Scholar] [CrossRef]
- Kodali, R.K.; Mahesh, K.S. Low Cost Ambient Monitoring Using ESP8266. In Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics, IC3I, Greater Noida, India, 14–17 December 2016; pp. 779–782. [Google Scholar] [CrossRef]
- Dombrowski, O.; Franssen, H.J.H.; Brogi, C.; Bogena, H.R. Performance of the ATMOS41 All-in-One Weather Station for Weather Monitoring. Sensors 2021, 21, 741. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cong, B.; Liu, C. Elimination of Vibration Noise from an Impact-Type Grain Mass Flow Sensor. Precis. Agric. 2014, 15, 627–638. [Google Scholar] [CrossRef]
- Loghavi, M.; Ehsani, R.; Reeder, R. Development of a Portable Grain Mass Flow Sensor Test Rig. Comput. Electron. Agric. 2008, 61, 160–168. [Google Scholar] [CrossRef]
- Oglesby, C.; Fox, A.A.A.; Singh, G.; Dhillon, J. Predicting In-Season Corn Grain Yield Using Optical Sensors. Agronomy 2022, 12, 2402. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bu, H.; Denton, A.; Franzen, D.W. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A. Sensors 2015, 15, 27832–27853. [Google Scholar] [CrossRef] [PubMed]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart Irrigation Monitoring and Control Strategies for Improving Water Use Efficiency in Precision Agriculture: A Review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Nazirul Islam Sarker, M.; Shahidul Islam, M.; Arshad Ali, M.; Saiful Islam, M.; Abdus Salam, M.; Hasan Mahmud, S.M. Promoting Digital Agriculture through Big Data for Sustainable Farm Management. Int. J. Innov. Appl. Stud. 2019, 25, 1235–1240. [Google Scholar]
- Chergui, N.; Kechadi, M.-T.; McDonnell, M. The Impact of Data Analytics in Digital: A Review. In Proceedings of the 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA), Tunis, Tunisia, 6–8 February 2020; ISBN 9781728164038. [Google Scholar]
- Nolack Fote, F.; Mahmoudi, S.; Roukh, A.; Ahmed Mahmoudi, S. Big Data Storage and Analysis for Smart Farming. In Proceedings of the 2020 5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications, CloudTech 2020, Marrakesh, Morocco, 24–26 November 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020. [Google Scholar]
- Amiri-Zarandi, M.; Dara, R.A.; Duncan, E.; Fraser, E.D.G. Big Data Privacy in Smart Farming: A Review. Sustainability 2022, 14, 9120. [Google Scholar] [CrossRef]
- Brook, A.; De Micco, V.; Battipaglia, G.; Erbaggio, A.; Ludeno, G.; Catapano, I.; Bonfante, A. A Smart Multiple Spatial and Temporal Resolution System to Support Precision Agriculture from Satellite Images: Proof of Concept on Aglianico Vineyard. Remote Sens. Environ. 2020, 240, 111679. [Google Scholar] [CrossRef]
- Delgado, J.A.; Short, N.M.; Roberts, D.P.; Vandenberg, B. Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Front. Sustain. Food Syst. 2019, 3, 54. [Google Scholar] [CrossRef]
- Al-Khasawneh, M.A.S.; Faheem, M.; Aldhahri, E.A.; Alzahrani, A.; Alarood, A.A. A MapReduce Based Approach for Secure Batch Satellite Image Encryption. IEEE Access 2023, 11, 62865–62878. [Google Scholar] [CrossRef]
- Craglia, M.; Nativi, S. Mind the Gap: Big Data vs. Interoperability and Reproducibility of Science. In Earth Observation Open. Science and Innovation; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 121–141. [Google Scholar]
- Ehlers, M.H.; Huber, R.; Finger, R. Agricultural Policy in the Era of Digitalisation. Food Policy 2021, 100, 102019. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. The Digitization of Agricultural Industry—A Systematic Literature Review on Agriculture 4.0. Smart Agric. Technol. 2022, 2, 100042. [Google Scholar] [CrossRef]
- Cravero, A.; Pardo, S.; Sepúlveda, S.; Muñoz, L. Challenges to Use Machine Learning in Agricultural Big Data: A Systematic Literature Review. Agronomy 2022, 12, 748. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Hanana, M. Artificial Intelligence to Improve the Food and Agriculture Sector. J. Food Qual. 2021, 2021, 5584754. [Google Scholar] [CrossRef]
- Liu, S.Y. Artificial Intelligence (AI) in Agriculture. IT Prof. 2020, 22, 14–15. [Google Scholar] [CrossRef]
- Khattak, H.A.; Shah, M.A.; Khan, S.; Ali, I.; Imran, M. Perception Layer Security in Internet of Things. Future Gener. Comput. Syst. 2019, 100, 144–164. [Google Scholar] [CrossRef]
- Polymeni, S.; Plastras, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review. Electronics 2023, 12, 2651. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y. Bin Role of Iot Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef]
- Shukla, B.K.; Maurya, N.; Sharma, M. Advancements in Sensor-Based Technologies for Precision Agriculture: An Exploration of Interoperability, Analytics and Deployment Strategies. Eng. Proc. 2023, 58, 22. [Google Scholar] [CrossRef]
- Cariou, C.; Moiroux-Arvis, L.; Pinet, F.; Chanet, J.P. Internet of Underground Things in Agriculture 4.0: Challenges, Applications and Perspectives. Sensors 2023, 23, 4058. [Google Scholar] [CrossRef]
- Bertocco, M.; Parrino, S.; Peruzzi, G.; Pozzebon, A. Estimating Volumetric Water Content in Soil for IoUT Contexts by Exploiting RSSI-Based Augmented Sensors via Machine Learning. Sensors 2023, 23, 2033. [Google Scholar] [CrossRef]
- Soussi, A.; Zero, E.; Sacile, R.; Trinchero, D.; Fossa, M. Smart Sensors and Smart Data for Precision Agriculture: A Review. Sensors 2024, 24, 2647. [Google Scholar] [CrossRef]
- Phupattanasilp, P.; Tong, S.R. Augmented Reality in the Integrative Internet of Things (AR-IoT): Application for Precision Farming. Sustainability 2019, 11, 2658. [Google Scholar] [CrossRef]
- Dafalla, M. Using 5TE Sensors for Monitoring Moisture Conditions in Green Parks. Sensors 2024, 24, 3479. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, J.; Huang, C. Basin Scale Soil Moisture Estimation with Grid SWAT and LESTKF Based on WSN. Sensors 2024, 24, 35. [Google Scholar] [CrossRef]
- Játiva, P.P.; Soto, I.; Azurdia-Meza, C.A.; Sánchez, I.; Wang, R.; Kern, W. Hybrid Digital Twin Model for Greenhouse and Underground Environments. IEEE Access 2024, 12, 73906–73924. [Google Scholar] [CrossRef]
- IEEE SA IEEE Standard for Ethernet. Available online: https://standards.ieee.org/ieee/802.3/10422/ (accessed on 29 August 2023).
- Bueno Electric Maximum Cable Length For a CAN Bus. Available online: https://www.buenoptic.net/encyclopedia/item/537-maximum-cable-length-for-a-can-bus.html (accessed on 30 August 2023).
- Cambrionix USB Specifications and USB Connections. Available online: https://www.cambrionix.com/help_pages/connecting-devices/usb-specs-usb-connectors (accessed on 30 August 2023).
- IEEE SA IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks–Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Corrigendum 1—Correct IEEE 802.11ay Assignment of Protected Announce Support Bit. IEEE Std 802.11-2020/Cor 1-2022 (Corrigendum to IEEE Std 802.11-2020 as amended by IEEE Std 802.11ax-2021, IEEE Std 802.11ay-2021, and IEEE Std 802.11ba-2021). 2022, pp. 1–18. Available online: https://ieeexplore.ieee.org/document/9999411 (accessed on 29 August 2023).
- IEEE SA The Evolution of Wi-Fi Technology and Standards. Available online: https://standards.ieee.org/beyond-standards/the-evolution-of-wi-fi-technology-and-standards/ (accessed on 29 August 2023).
- Kuzminykh, I.; Snihurov, A.; Carlsson, A. Testing of Communication Range in ZigBee Technology. In Proceedings of the 2017 14th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics, CADSM 2017—Proceedings, Polyana, Ukraine, 21–25 February 2017; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2017; pp. 133–136. [Google Scholar]
- Semtech. LoRa® and LoRaWAN®: A Technical Overview; Semtech: San Diego, CA, USA, 2019. [Google Scholar]
- Narrowband What Is Narrowband IoT? Available online: https://www.narrowband.com/what-is-narrowband-iot (accessed on 29 August 2023).
- Amazon Web Services (AWS). Implementing Low-Power Wide-Area Network (LPWAN) Solutions with AWS IoT: AWS Whitepaper. 2021. Available online: https://docs.aws.amazon.com/pdfs/whitepapers/latest/implementing-lpwan-solutions-with-aws/implementing-lpwan-solutions-with-aws.pdf#implementing-lpwan-solutions-with-aws (accessed on 29 August 2023).
- Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A Comparative Study of LPWAN Technologies for Large-Scale IoT Deployment. ICT Express 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Payero, J.O. An Effective and Affordable Internet of Things (IoT) Scale System to Measure Crop Water Use. AgriEngineering 2024, 6, 823–840. [Google Scholar] [CrossRef]
- de Melo, D.A.; Silva, P.C.; da Costa, A.R.; Delmond, J.G.; Ferreira, A.F.A.; de Souza, J.A.; de Oliveira-Júnior, J.F.; da Silva, J.L.B.; da Rosa Ferraz Jardim, A.M.; Giongo, P.R.; et al. Development and Automation of a Photovoltaic-Powered Soil Moisture Sensor for Water Management. Hydrology 2023, 10, 166. [Google Scholar] [CrossRef]
- Charania, I.; Li, X. Smart Farming: Agriculture’s Shift from a Labor Intensive to Technology Native Industry. Internet Things 2020, 9, 100142. [Google Scholar] [CrossRef]
- Hassebo, A.; Obaidat, M.; Ali, M.A. Commercial 4G LTE Cellular Networks for Supporting Emerging IoT Applications. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 6 February–5 April 2018. [Google Scholar]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A Survey on the 5G Network and Its Impact on Agriculture: Challenges and Opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Sudhamani, C.; Roslee, M.; Tiang, J.J.; Rehman, A.U. A Survey on 5G Coverage Improvement Techniques: Issues and Future Challenges. Sensors 2023, 23, 2356. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.K.; Saini, R.K. Agriculture Monitoring and Prediction Using Internet of Things (IoT). In Proceedings of the 2020 6th International Conference on Parallel, Distributed and Grid Computing, Waknaghat, India, 6–8 November 2020; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2020; pp. 53–56. [Google Scholar]
- Khan, A.A.; Faheem, M.; Bashir, R.N.; Wechtaisong, C.; Abbas, M.Z. Internet of Things (IoT) Assisted Context Aware Fertilizer Recommendation. IEEE Access 2022, 10, 129505–129519. [Google Scholar] [CrossRef]
- Bashir, R.N.; Saeed, M.; Al-Sarem, M.; Marie, R.; Faheem, M.; Karrar, A.E.; Elhussein, B. Smart Reference Evapotranspiration Using Internet of Things and Hybrid Ensemble Machine Learning Approach. Internet Things 2023, 24, 100962. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Acevedo-Opazo, C.; Ortega-Farías, S.; Rivera, M.; Moyano, J.; González, C. Semiautomatic System of Intrapredial Water Management for Small Farmers. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–4. [Google Scholar]
- Sharma, B.; Molden, D.; Cook, S. Water Use Efficiency in Agriculture: Measurement, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Association: Paris, France, 2015; pp. 39–64. ISBN 979-10-92366-02-0. [Google Scholar]
- Hess, T.M.; Knox, J.W. Water Savings in Irrigated Agriculture: A Framework for Assessing Technology and Management Options to Reduce Water Losses. Outlook Agric. 2013, 42, 85–91. [Google Scholar] [CrossRef]
- Mojid, M.A.; Mainuddin, M. Water-Saving Agricultural Technologies: Regional Hydrology Outcomes and Knowledge Gaps in the Eastern Gangetic Plains-a Review. Water 2021, 13, 636. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Idowu, O.J. A Decade of Irrigation Water Use Trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs. Agric. Water Manag. 2021, 243, 106438. [Google Scholar] [CrossRef]
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of Research Progress on Soil Moisture Sensor Technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 1538. [Google Scholar] [CrossRef]
- Lloret, J.; Sendra, S.; Garcia, L.; Jimenez, J.M. A Wireless Sensor Network Deployment for Soil Moisture Monitoring in Precision Agriculture. Sensors 2021, 21, 7243. [Google Scholar] [CrossRef]
- Pokorny, J. Evapotranspiration. In Encyclopedia of Ecology; Scharler, U., Pethybridge, H., Liu, X., Parrot, L., Swannack, T., Vymazal, J., Ray, S., Wertheim, B., Martins, I., Svirejeva-Hopkins, A., et al., Eds.; Elsevier: Oxford, UK, 2019; Volume 2, pp. 292–303. ISBN 978-0-444-64130-4. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. Irrig. Drain. 1998, 300, D05109. [Google Scholar] [CrossRef]
- Jones, H. Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Noun, G.; Lo Cascio, M.; Spano, D.; Marras, S.; Sirca, C. Plant-Based Methodologies and Approaches for Estimating Plant Water Status of Mediterranean Tree Species: A Semi-Systematic Review. Agronomy 2022, 12, 2127. [Google Scholar] [CrossRef]
- Kumar, S.V.; Singh, C.D.; Rao, K.V.R.; Kumar, M.; Rajwade, Y.A.; Babu, B.; Singh, K. Evaluation of IoT Based Smart Drip Irrigation and ETc Based System for Sweet Corn. Smart Agric. Technol. 2023, 5, 100248. [Google Scholar] [CrossRef]
- Bhavsar, D.; Limbasia, B.; Mori, Y.; Imtiyazali Aglodiya, M.; Shah, M. A Comprehensive and Systematic Study in Smart Drip and Sprinkler Irrigation Systems. Smart Agric. Technol. 2023, 5, 100303. [Google Scholar] [CrossRef]
- Jain, R.K. Experimental Performance of Smart IoT-Enabled Drip Irrigation System Using and Controlled through Web-Based Applications. Smart Agric. Technol. 2023, 4, 100215. [Google Scholar] [CrossRef]
- Togneri, R.; Prati, R.; Nagano, H.; Kamienski, C. Data-Driven Water Need Estimation for IoT-Based Smart Irrigation: A Survey. Expert. Syst. Appl. 2023, 225, 120194. [Google Scholar] [CrossRef]
- Routis, G.; Roussaki, I. Low Power IoT Electronics in Precision Irrigation. Smart Agric. Technol. 2023, 5, 100310. [Google Scholar] [CrossRef]
- Viani, F.; Bertolli, M.; Salucci, M.; Polo, A. Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture. IEEE Sens. J. 2017, 17, 4299–4309. [Google Scholar] [CrossRef]
- Prasanna Lakshmi, G.S.; Asha, P.N.; Sandhya, G.; Vivek Sharma, S.; Shilpashree, S.; Subramanya, S.G. An Intelligent IOT Sensor Coupled Precision Irrigation Model for Agriculture. Meas. Sensors 2023, 25, 100608. [Google Scholar] [CrossRef]
- Dong, X.; Vuran, M.C.; Irmak, S. Autonomous Precision Agriculture through Integration of Wireless Underground Sensor Networks with Center Pivot Irrigation Systems. Ad Hoc Networks 2013, 11, 1975–1987. [Google Scholar] [CrossRef]
- Sitharthan, R.; Rajesh, M.; Vimal, S.; Saravana, E.; Yuvaraj, S.; Abhishek, K.; Raglend, H.; Vengatesan, K. A Novel Autonomous Irrigation System for Smart Agriculture Using AI and 6G Enabled IoT Network. Microprocess. Microsyst. 2023, 101, 104905. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C. A Crop Water Stress Index Based Internet of Things Decision Support System for Precision Irrigation of Wine Grape. Smart Agric. Technol. 2023, 4, 100202. [Google Scholar] [CrossRef]
- Kang, C.; Diverres, G.; Karkee, M.; Zhang, Q.; Keller, M. Decision-Support System for Precision Regulated Deficit Irrigation Management for Wine Grapes. Comput. Electron. Agric. 2023, 208, 107777. [Google Scholar] [CrossRef]
- Raouhi, E.M.; Zouizza, M.; Lachgar, M.; Zouani, Y.; Hrimech, H.; Kartit, A. AIDSII: An AI-Based Digital System for Intelligent Irrigation. Softw. Impacts 2023, 17, 100574. [Google Scholar] [CrossRef]
- Gamal, Y.; Soltan, A.; Said, L.A.; Madian, A.H.; Radwan, A.G. Smart Irrigation Systems: Overview. IEEE Access 2023. early access. [Google Scholar] [CrossRef]
- Katimbo, A.; Rudnick, D.R.; Zhang, J.; Ge, Y.; DeJonge, K.C.; Franz, T.E.; Shi, Y.; Liang, W.Z.; Qiao, X.; Heeren, D.M.; et al. Evaluation of Artificial Intelligence Algorithms with Sensor Data Assimilation in Estimating Crop Evapotranspiration and Crop Water Stress Index for Irrigation Water Management. Smart Agric. Technol. 2023, 4, 100176. [Google Scholar] [CrossRef]
- Jenitha, R.; Rajesh, K. Intelligent Irrigation Scheduling Scheme Based on Deep Bi-Directional LSTM Technique. Int. J. Environ. Sci. Technol. 2024, 21, 1905–1922. [Google Scholar] [CrossRef]
- Liu, J.; Bai, X.; Wang, Z. A Review of Irrigation Monitoring Based on Internet of Things, Remote Sensing and Artificial Intelligence. In Proceedings of the 2023 2nd International Conference on Networks, Communications and Information Technology, Qinghai, China, 16–18 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 73–77. [Google Scholar]
- Vallejo-Gómez, D.; Osorio, M.; Hincapié, C.A. Smart Irrigation Systems in Agriculture: A Systematic Review. Agronomy 2023, 13, 342. [Google Scholar] [CrossRef]
- Pratyush, K.; Roopa, Y.M.; Rajeev, K.; Sai, N. IoT Based Smart Agriculture Using Machine Learning. In Proceedings of the Second International Conference on Inventive Research in Computing Applications (ICIRCA-2020), Coimbatore, India, 15–17 July 2020; IEEE: Coimbatore, India, 2020; pp. 130–134. [Google Scholar]
- Nawandar, N.K.; Satpute, V.R. IoT Based Low Cost and Intelligent Module for Smart Irrigation System. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Keswani, B.; Mohapatra, A.G.; Mohanty, A.; Khanna, A.; Rodrigues, J.J.P.C.; Gupta, D.; de Albuquerque, V.H.C. Adapting Weather Conditions Based IoT Enabled Smart Irrigation Technique in Precision Agriculture Mechanisms. Neural Comput. Appl. 2019, 31, 277–292. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, Q.; Shi, J.; Wu, X.; Wei, C.; Sheng, J.; Jiang, P.; Chen, Q.; Ben-Gal, A. Balancing Economic Benefits and Environmental Repercussions Based on Smart Irrigation by Regulating Root Zone Water and Salinity Dynamics. Agric. Water Manag. 2023, 285, 108366. [Google Scholar] [CrossRef]
- Gimpel, H.; Graf-Drasch, V.; Hawlitschek, F.; Neumeier, K. Designing Smart and Sustainable Irrigation: A Case Study. J. Clean. Prod. 2021, 315, 128048. [Google Scholar] [CrossRef]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for Smart Farming: Irrigation Management System for Water Saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Jaafar, H.; Kharroubi, S.A. Views, Practices and Knowledge of Farmers Regarding Smart Irrigation Apps: A National Cross-Sectional Study in Lebanon. Agric. Water Manag. 2021, 248, 106759. [Google Scholar] [CrossRef]
- Pazouki, E. A Smart Surface Irrigation Design Based on the Topographical and Geometrical Shape Characteristics of the Land. Agric. Water Manag. 2023, 275, 108046. [Google Scholar] [CrossRef]
- Zaier, R.; Zekri, S.; Jayasuriya, H.; Teirab, A.; Hamza, N.; Al-Busaidi, H. Design and Implementation of Smart Irrigation System for Groundwater Use at Farm Scale. In Proceedings of the 2015 7th International Conference on Modelling, Identification and Control (ICMIC), Sousse, Tunisia, 18–20 December 2015; pp. 1–6. [Google Scholar]
- Koduru, S.; Padala VP, R.; Padala, P. Smart Irrigation System Using Cloud and Internet of Things. In Proceedings of 2nd International Conference on Communication, Computing and Networking; Krishna, C.R., Dutta, M., Kumar, R., Eds.; Springer: Singapore, 2019; pp. 195–203. [Google Scholar]
- Liu, Y.; Cao, H.; Du, C.; Zhang, Z.; Zhou, X.; Yao, C.; Sun, W.; Xiao, X.; Zhang, Y.; Zhao, Z.; et al. Novel Water-Saving Cultivation System Maintains Crop Yield While Reducing Environmental Costs in North China Plain. Resour. Conserv. Recycl. 2023, 197, 107111. [Google Scholar] [CrossRef]
- Shi, J.; Wu, X.; Zhang, M.; Wang, X.; Zuo, Q.; Wu, X.; Zhang, H.; Ben-Gal, A. Numerically Scheduling Plant Water Deficit Index-Based Smart Irrigation to Optimize Crop Yield and Water Use Efficiency. Agric. Water Manag. 2021, 248, 106774. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, H.; Liu, D.; Huang, R.; Peng, H. Climate-Smart Management for Increasing Crop Yield and Reducing Greenhouse Gas Emission in Beijing-Tianjin-Hebei Region, China. Agric. For. Meteorol. 2023, 339, 109569. [Google Scholar] [CrossRef]
- Obaideen, K.; Yousef, B.A.A.; AlMallahi, M.N.; Tan, Y.C.; Mahmoud, M.; Jaber, H.; Ramadan, M. An Overview of Smart Irrigation Systems Using IoT. Energy Nexus 2022, 7, 100124. [Google Scholar] [CrossRef]
- Ahmed, Z.; Gui, D.; Murtaza, G.; Yunfei, L.; Ali, S. An Overview of Smart Irrigation Management for Improving Water Productivity under Climate Change in Drylands. Agronomy 2023, 13, 2113. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Shaikh, T.A.; Mir, W.A.; Rasool, T.; Sofi, S. Machine Learning for Smart Agriculture and Precision Farming: Towards Making the Fields Talk. Arch. Comput. Methods Eng. 2022, 29, 4557–4597. [Google Scholar] [CrossRef]
- Zheng, F.; Zhou, X. Sustainable Model of Agricultural Product Logistics Integration Based on Intelligent Blockchain Technology. Sustain. Energy Technol. Assess. 2023, 57, 103258. [Google Scholar] [CrossRef]
- Rehman, K.U.; Andleeb, S.; Ashfaq, M.; Akram, N.; Akram, M.W. Blockchain-Enabled Smart Agriculture: Enhancing Data-Driven Decision Making and Ensuring Food Security. J. Clean. Prod. 2023, 427, 138900. [Google Scholar] [CrossRef]
- Liu, W.; Shao, X.F.; Wu, C.H.; Qiao, P. A Systematic Literature Review on Applications of Information and Communication Technologies and Blockchain Technologies for Precision Agriculture Development. J. Clean. Prod. 2021, 298, 126763. [Google Scholar] [CrossRef]
- Prakash, C.; Singh, L.P.; Gupta, A.; Lohan, S.K. Advancements in Smart Farming: A Comprehensive Review of IoT, Wireless Communication, Sensors, and Hardware for Agricultural Automation. Sens. Actuators A Phys. 2023, 362, 114605. [Google Scholar] [CrossRef]
- Morchid, A.; El Alami, R.; Raezah, A.A.; Sabbar, Y. Applications of Internet of Things (IoT) and Sensors Technology to Increase Food Security and Agricultural Sustainability: Benefits and Challenges. Ain Shams Eng. J. 2023, 15, 102509. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Acevedo-Opazo, C.; Ortega-Farías, S.; Rivera, M.; Verdugo-Vásquez, N. Spatialized System to Monitor Vine Flowering: Towards a Methodology Based on a Low-Cost Wireless Sensor Network. Comput. Electron. Agric. 2021, 187, 102509. [Google Scholar] [CrossRef]
- Porciello, J.; Coggins, S.; Mabaya, E.; Otunba-Payne, G. Digital Agriculture Services in Low- and Middle-Income Countries: A Systematic Scoping Review. Glob. Food Sec. 2022, 34, 100640. [Google Scholar] [CrossRef]
- Li, F.; Zang, D.; Chandio, A.A.; Yang, D.; Jiang, Y. Farmers’ Adoption of Digital Technology and Agricultural Entrepreneurial Willingness: Evidence from China. Technol. Soc. 2023, 73, 102253. [Google Scholar] [CrossRef]
- McCampbell, M.; Schumann, C.; Klerkx, L. Good Intentions in Complex Realities: Challenges for Designing Responsibly in Digital Agriculture in Low-Income Countries. Sociol. Ruralis 2022, 62, 279–304. [Google Scholar] [CrossRef]
- Jakku, E.; Fielke, S.; Fleming, A.; Stitzlein, C. Reflecting on Opportunities and Challenges Regarding Implementation of Responsible Digital Agri-Technology Innovation. Sociol. Ruralis 2022, 62, 363–388. [Google Scholar] [CrossRef]
- Mowla, M.N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and Wireless Sensor Networks for Smart Agriculture Applications: A Survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
Satellite | Cost | Offered Products | Agriculture Applications |
---|---|---|---|
Landsat | Free | Multispectral imaging; elevation data | Crop monitoring; pest and disease detection; water resources management; soil evaluation |
Sentinel-2 | Free | High-resolution multispectral images | Crop monitoring; vegetation change detection; land management; fire detection |
MODIS | Free | Low- and high-resolution image data | Estimation of vegetation indices; monitoring of land surface temperature; monitoring of droughts |
WorldView-3 | Paid | High-resolution multispectral images | Detailed field mapping; precision crop tracking; vegetation change detection |
TerraSAR-X | Paid | High-resolution SAR images | Soil deformation detection; flood monitoring; crop structure evaluation |
RADARSAT-2 | Paid | High-resolution SAR images | Soil moisture monitoring; vegetation change detection; natural disaster management |
Aspect | Satellite Images | Drone Images |
---|---|---|
Advantages | ||
Coverage | Global coverage | Localized coverage |
Frequency | Frequent revisits; regular data updates | On-demand; immediate and specific data |
Accessibility | Easily accessible; no on-site presence | - |
Resolution | Moderate- to high-resolution | Very high-resolution; detailed information |
Cloud Cover Tolerance | - | Unaffected by cloud cover; clear images |
Cost | Generally lower cost per image | Initial investment; operational expenses |
Disadvantages | ||
Spatial Detail | Limited spatial detail | Smaller field of view |
Temporal Detail | Limited revisit frequency; gaps in data | Potential limitations due to regulations |
Weather Dependency | Affected by weather conditions | Susceptible to wind, rain, and visibility |
Data Latency | May take time for data to be available | Real-time data but limited flight duration |
Flexibility | Fixed orbits; unable to target specific areas | Flexibility to capture specific locations |
Type of UAS | Use | References |
---|---|---|
Rotary-wing | Weed identification | [50] |
Rotary-wing | Soil sampling | [51] |
Rotary-wing | Water status estimation | [36,52] |
Rotary-wing | Image segmentation | [39] |
Fixed-wing | Evapotranspiration estimation | [53] |
Rotary-wing | Vineyard vegetation characterization | [54] |
Rotary-wing | Estimation of vineyard actual evapotranspiration | [55] |
Rotary-wing | Plant counting | [40] |
Rotary-wing | Water stress phenotyping | [56] |
Rotary-wing | Wheat monitoring | [57] |
Rotary-wing | Comparison of vegetation indices | [58] |
Rotary-wing | Vegetation monitoring | [59] |
Rotary-wing | Yield monitoring | [60] |
Fixed-wing | Grapevine water status evaluation | [61] |
Feature/Aspect | Big Data in Agriculture | Artificial Intelligence (AI) in Agriculture |
---|---|---|
Primary Purpose | Collection, storage, and analysis of large datasets from various agricultural sources | Use of algorithms and models to make predictions, decisions, or automate tasks based on data |
Key Applications | Soil and crop monitoring, weather prediction, yield prediction, resource optimization | Disease and pest detection, precision irrigation, automated harvesting, crop recommendation |
Data Sources | Satellite imagery, sensors (soil, weather, etc.), drones, farmer records | Same as big data, plus machine learning training sets, historical data for predictions |
Tools and Technologies | Hadoop, Spark, NoSQL databases, cloud storage | Neural networks, machine learning algorithms, computer vision, natural language processing |
Benefits | Real-time monitoring, data-driven decision-making, improved resource management | Automation of tasks, early detection of issues, personalized recommendations, increased efficiency |
Challenges | Data storage and management, data integration from diverse sources, ensuring data quality | Need for quality training data, model interpretability, over-reliance on technology, ethical concerns |
Impact on Labor | May reduce the need for manual data collection and analysis but requires expertise in data management | Can reduce manual labor in tasks like harvesting but requires expertise in AI and machine learning |
Future Potential | Continued growth with the rise of IoT devices in agriculture and increased data generation | Expansion into more areas of agriculture, integration with robotics, and more advanced predictive models |
Protocol | Connectivity | Topology | Range | Data Rate | References |
---|---|---|---|---|---|
Ethernet (IEEE 802.3) | Wired | Star | 100 m (twisted pair) 100 km (fiber optic) | Up to 1.6 Tbit/s | [106] |
Controller Area Network (CAN) | Bus | Up to 1000 m | Up to 1 Mbit/s | [107] | |
Universal Serial Bus (USB) | Star | 5 m | 80 Gbit/s | [108] | |
Wi-Fi (IEEE 802.11) | Wireless | Star or Mesh | 50 m | Up to 9.6 Gbit/s | [109,110] |
Zigbee | Star or Mesh | 10 to 100 m | 250 kbit/s | [111] | |
LoRa | Star or Mesh | 5 to 20 km | 0.3 to 27 kbit/s | [112] | |
Narrowband IoT (NB-IoT) | Cellular | 1 to 10 km | 20 kbit/s | [113,114] | |
LTE-M | Cellular | Up to 10 km | 1 Mbit/s | [114] | |
Sigfox | Star | 10 to 20 km | 100 bit/s | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. https://doi.org/10.3390/jsan13040039
Fuentes-Peñailillo F, Gutter K, Vega R, Silva GC. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks. 2024; 13(4):39. https://doi.org/10.3390/jsan13040039
Chicago/Turabian StyleFuentes-Peñailillo, Fernando, Karen Gutter, Ricardo Vega, and Gilda Carrasco Silva. 2024. "Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management" Journal of Sensor and Actuator Networks 13, no. 4: 39. https://doi.org/10.3390/jsan13040039
APA StyleFuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. Journal of Sensor and Actuator Networks, 13(4), 39. https://doi.org/10.3390/jsan13040039