Eye-Net: A Low-Complexity Distributed Denial of Service Attack-Detection System Based on Multilayer Perceptron
Abstract
:1. Introduction
- We propose a hybrid deep learning model that combines feature selection, an oversampling strategy, and MLP to detect DDoS attacks with remarkable improvements and optimum architecture.
- We introduce a quantization-aware training algorithm to quantize the model weights and biases to INT8, significantly improving energy efficiency, memory usage, computational complexity, and inference time.
- We evaluate the proposed method in terms of binary classification and multiclass classification using the CICDDoS2019 dataset.
- We incorporate quantization-aware training, feature selection, and data balancing techniques to enhance the efficiency, accuracy, and time inference of the MLP model in detecting DDoS attacks on IoT devices.
2. Related Work
3. Proposed Method
Algorithm 1 Eye-Net |
|
3.1. Preprocessing
3.1.1. Data Cleaning
3.1.2. Feature Normalization
3.1.3. Feature Selection
3.1.4. Data Balancing
3.2. Multilayer Perceptron (MLP) Classifier
3.3. Quantization
Algorithm 2 Quantization |
|
3.4. Complexity Analysis
4. Experiments and Results
4.1. Dataset
4.2. Evaluation Metrics
4.3. Results
4.3.1. Results of the Binary Classification
4.3.2. Results of the Multiclass Classification
5. Limitations
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Polat, H.; Türkoglu, M.; Polat, O.; Sengür, A. A novel approach for accurate detection of the DDoS attacks in SDN-based SCADA systems based on deep recurrent neural networks. Expert Syst. Appl. 2022, 197, 116748. [Google Scholar] [CrossRef]
- Halladay, J.; Cullen, D.; Briner, N.; Warren, J.; Fye, K.; Basnet, R.; Bergen, J.; Doleck, T. Detection and Characterization of DDoS Attacks Using Time-Based Features. IEEE Access 2022, 10, 49794–49807. [Google Scholar] [CrossRef]
- Choi, J.; Choi, C.; Ko, B.; Kim, P. A method of DDoS attack detection using HTTP packet pattern and rule engine in cloud computing environment. Soft Comput. 2014, 18, 1697–1703. [Google Scholar] [CrossRef]
- Quezada, V.; Astudillo-Salinas, F.; Tello-Oquendo, L.; Bernal, P. Real-time bot infection detection system using DNS fingerprinting and machine-learning. Comput. Netw. 2023, 228, 109725. [Google Scholar] [CrossRef]
- Mittal, M.; Kumar, K.; Behal, S. Deep learning approaches for detecting DDoS attacks: A systematic review. Soft Comput. 2023, 27, 13039–13075. [Google Scholar] [CrossRef]
- Mehmood, A.; Mukherjee, M.; Ahmed, S.H.; Song, H.; Malik, K.M. NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacks. J. Supercomput. 2018, 74, 5156–5170. [Google Scholar] [CrossRef]
- Khare, M.; Oak, R. Real-Time distributed denial-of-service (DDoS) attack detection using decision trees for server performance maintenance. In Performance Management of Integrated Systems and Its Applications in Software Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–9. Available online: https://link.springer.com/chapter/10.1007/978-981-13-8253-6_1 (accessed on 1 July 2024).
- Chen, L.; Zhang, Y.; Zhao, Q.; Geng, G.; Yan, Z. Detection of DNS DDoS Attacks with Random Forest Algorithm on Spark. Procedia Comput. Sci. 2018, 134, 310–315. [Google Scholar] [CrossRef]
- Anyanwu, G.O.; Nwakanma, C.I.; Lee, J.M.; Kim, D.S. RBF-SVM kernel-based model for detecting DDoS attacks in SDN integrated vehicular network. Ad Hoc Netw. 2023, 140, 103026. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S.P.; Shen, X.; Gupta, B.B.; Tian, Z. PWG-IDS: An Intrusion Detection Model for Solving Class Imbalance in IIoT Networks Using Generative Adversarial Networks. arXiv 2021, arXiv:abs/2110.03445. [Google Scholar]
- Ferrag, M.A.; Maglaras, L.; Moschoyiannis, S.; Janicke, H. Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl. 2020, 50, 102419. [Google Scholar] [CrossRef]
- Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407. [Google Scholar]
- Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Ddosnet: A deep-learning model for detecting network attacks. In Proceedings of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 31 August–3 September 2020; IEEE: Washington, DC, USA, 2020; pp. 391–396. [Google Scholar]
- Huang, S.; Lei, K. IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad-hoc networks. Ad Hoc Netw. 2020, 105, 102177. [Google Scholar] [CrossRef]
- Nie, L.; Wu, Y.; Wang, X.; Guo, L.; Wang, G.; Gao, X.; Li, S. Intrusion Detection for Secure Social Internet of Things Based on Collaborative Edge Computing: A Generative Adversarial Network-Based Approach. IEEE Trans. Comput. Soc. Syst. 2022, 9, 134–145. [Google Scholar] [CrossRef]
- Yungaicela-Naula, N.M.; Vargas-Rosales, C.; Perez-Diaz, J.A. SDN-Based Architecture for Transport and Application Layer DDoS Attack Detection by Using Machine and Deep Learning. IEEE Access 2021, 9, 108495–108512. [Google Scholar] [CrossRef]
- Elssied, N.O.F.; Ibrahim, O.; Osman, A.H. A novel feature selection based on one-way anova f-test for e-mail spam classification. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 625–638. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Türkoğlu, M.; Polat, H.; Koçak, C.; Polat, O. Recognition of DDoS attacks on SD-VANET based on combination of hyperparameter optimization and feature selection. Expert Syst. Appl. 2022, 203, 117500. [Google Scholar] [CrossRef]
- Aktar, S.; Nur, A.Y. Towards DDoS attack detection using deep learning approach. Comput. Secur. 2023, 129, 103251. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Ariffin, M.M.; Abolfathi, M.; Alqhatani, A.; Almutairi, L. Attack detection analysis in software-defined networks using various machine learning method. Comput. Electr. Eng. 2023, 108, 108655. [Google Scholar] [CrossRef]
- Diaba, S.Y.; Elmusrati, M. Proposed algorithm for smart grid DDoS detection based on deep learning. Neural Netw. 2023, 159, 175–184. [Google Scholar] [CrossRef]
- Ahmad, I.; Wan, Z.; Ahmad, A. A big data analytics for DDOS attack detection using optimized ensemble framework in Internet of Things. Internet Things 2023, 23, 100825. [Google Scholar] [CrossRef]
- Wang, M.; Lu, Y.; Qin, J. A dynamic MLP-based DDoS attack detection method using feature selection and feedback. Comput. Secur. 2020, 88, 101645. [Google Scholar] [CrossRef]
- ElSayed, M.S.; Le-Khac, N.A.; Albahar, M.A.; Jurcut, A. A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique. J. Netw. Comput. Appl. 2021, 191, 103160. [Google Scholar] [CrossRef]
- Tonkal, Ö.; Polat, H.; Başaran, E.; Cömert, Z.; Kocaoğlu, R. Machine learning approach equipped with neighbourhood component analysis for DDoS attack detection in software-defined networking. Electronics 2021, 10, 1227. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Kim, H.; Shim, M.; Choi, E. CNN-based network intrusion detection against denial-of-service attacks. Electronics 2020, 9, 916. [Google Scholar] [CrossRef]
- Bouke, M.A.; Abdullah, A.; ALshatebi, S.H.; Abdullah, M.T.; El Atigh, H. An intelligent DDoS attack detection tree-based model using Gini index feature selection method. Microprocess. Microsyst. 2023, 98, 104823. [Google Scholar] [CrossRef]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Horowitz, M. 1.1 computing’s energy problem (and what we can do about it). In Proceedings of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 9–13 February 2014; IEEE: Washington, DC, USA, 2014; pp. 10–14. [Google Scholar]
- Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India, 1–3 October 2019; IEEE: Washington, DC, USA, 2019; pp. 1–8. [Google Scholar]
- Cil, A.E.; Yildiz, K.; Buldu, A. Detection of DDoS attacks with feed forward based deep neural network model. Expert Syst. Appl. 2021, 169, 114520. [Google Scholar] [CrossRef]
- Sindian, S.; Samer, S. An enhanced deep autoencoder-based approach for DDoS attack detection. Wseas Trans. Syst. Control 2020, 15, 716–725. [Google Scholar] [CrossRef]
- Shieh, C.S.; Lin, W.W.; Nguyen, T.T.; Chen, C.H.; Horng, M.F.; Miu, D. Detection of unknown ddos attacks with deep learning and gaussian mixture model. Appl. Sci. 2021, 11, 5213. [Google Scholar] [CrossRef]
- Wei, Y.; Jang-Jaccard, J.; Sabrina, F.; Singh, A.; Xu, W.; Camtepe, S. Ae-mlp: A hybrid deep learning approach for ddos detection and classification. IEEE Access 2021, 9, 146810–146821. [Google Scholar] [CrossRef]
- Setitra, M.A.; Fan, M.; Agbley, B.L.Y.; Bensalem, Z.E.A. Optimized MLP-CNN Model to Enhance Detecting DDoS Attacks in SDN Environment. Network 2023, 3, 538–562. [Google Scholar] [CrossRef]
- Chartuni, A.; Márquez, J. Multi-Classifier of DDoS Attacks in Computer Networks Built on Neural Networks. Appl. Sci. 2021, 11, 10609. [Google Scholar] [CrossRef]
- Ferrag, M.A.; Shu, L.; Djallel, H.; Choo, K.K.R. Deep learning-based intrusion detection for distributed denial of service attack in Agriculture 4.0. Electronics 2021, 10, 1257. [Google Scholar] [CrossRef]
Notation | Description | Notation | Description | Notation | Description |
---|---|---|---|---|---|
D | The model | The model parameters | Layer index | ||
The quantized parameters of the model | S | Scaling factor | b | Bias vector | |
A | Accumulator | W | Weight matrix | P | Processing unit |
Paper | Model | Dataset | BestAcc % | Nb Features | Feature Selection Approach | Balancing Method | Multiclass |
---|---|---|---|---|---|---|---|
[9] | RBF-SVM | SDN-DDoS | 99.40 | - | PCA | - | No |
[16] | GRU, LSTM, MLP, KNN, RF | CICDDoS2017 CICDDoS2019 | 99.47 (LSTM) 99.97 (KNN) | 49 50 | removed highly correlated variables | - | Yes |
[19] | KNN, SVM, DT | Their own dataset | 99.35 (DT) | 25 | minimum redundancy maximum relevance | - | Yes |
[20] | DCAE | CICIDS2017, NSL-KDD, CIC-DDoS2019 | 97.58 96.08 92.45 | - | - | - | No |
[21] | Renyi joint entropy, ANN, XGB, SVM, KNN | SDN-DDoS | 99.12 (ANN) | 14 | filter-based Fisher score, wrapper, ANOVA | - | No |
[22] | CNN, GRU | CICIDS2017 | 99.7 | 39 | - | - | No |
[23] | CNN-GRU, SVM | NSL-KDD | 98.45 (CNN-GRU) | - | PCA | - | No |
[24] | MLP | NSL-KDD | 97.66 | 31 | sequential backward selection | - | No |
[25] | CNN, RF, KNN, SVM, | CSE-CIC-IDS2018, UNSW-NB15 | 99.80 99.50 | 9 | SD-Reg | SMOTE | Yes |
[26] | ANN, DT, KNN, SVM | SDN-DDoS | 100 (DT) | 14 | NCS | - | No |
[27] | CNN | KDD CUP 1999, CSE-CIC-IDS2018 | 99.99 | 41 78 | - | - | Yes |
[28] | DT | UNSW-NB15 | 98 | 13 | Gini index | - | Yes |
Feature | Description | Feature | Description | Feature | Description | Feature | Description |
---|---|---|---|---|---|---|---|
Total Length of Fwd Packets | Total packets in the forward direction | Fwd Packet Length Max | Maximum size of packet in forward direction | CWE Flag Count | Number of packets with CWE | Down/Up Ratio | Download and upload ratio |
Fwd Packet Length Min | Minimum size of packet in forward direction | Fwd Packet Length Mean | Mean size of packet in forward direction | Average Packet Size | Average size of packet | Avg Fwd Segment Size | Average forward direction segment size |
Fwd Packet Length Std | Standard deviation size of packet in forward direction | Bwd Packet Length Max | Maximum size of packet in backward direction | Avg Bwd Segment Size | Average backward direction segment size | Subflow Fwd Bytes | The average number of bytes in a subflow in the forward direction |
Bwd Packet Length Min | Minimum size of packet in backward direction | Bwd Packet Length Mean | Mean size of packet in backward direction | Init Win bytes forward | Initial Window Size in Bytes Forward | Inbound | Direction traffic moves between networks |
Bwd Packet Length Std | Standard deviation size of packet in backward direction | Flow Bytes/s | Number of flow bytes per second | ACK Flag Count | Number of packets with ACK | URG Flag Count | Number of packets with URG |
Flow Packets/s | Number of flow packets per second | Fwd PSH Flags | Number of times the PSH flag was set in packets | Packet Length Variance | Packet Length Variance | RST Flag Count | Number of packets with RST |
Fwd Packets/s | Number of forward packets per second | Bwd Packets/s | Number of backward packets per second | Packet Length Mean | Mean size of packet length | Packet Length Std | Standard deviation size of packet length |
Min Packet Length | Minimum size of packet length | Max Packet Length | Maximum size of packet length |
Model | Loss | Accuracy | Val-Loss | Val-Accuracy | Precision | Recall | F1 Score | N Parms |
---|---|---|---|---|---|---|---|---|
B10-16 | 0.0011 | 0.9997 | 0.0009 | 0.9997 | 0.9999 | 0.9997 | 0.9998 | 465 |
B10-32 | 0.0009 | 0.9997 | 0.0008 | 0.9997 | 0.9997 | 0.9998 | 1441 | |
B10-64 | 0.0008 | 0.9997 | 0.0007 | 0.9998 | 0.9998 | 0.9998 | 4929 | |
B15-16 | 0.0008 | 0.9998 | 0.0008 | 0.9998 | 0.9998 | 0.9998 | 545 | |
B15-32 | 0.0005 | 0.9998 | 0.0005 | 0.9998 | 0.9998 | 0.9998 | 1601 | |
B15-64 | 0.0007 | 0.9998 | 0.0007 | 0.9998 | 0.9998 | 0.9998 | 5249 | |
B20-16 | 0.0007 | 0.9998 | 0.0007 | 0.9998 | 0.9998 | 0.9998 | 625 | |
B20-32 | 0.0006 | 0.9998 | 0.0006 | 0.9998 | 0.9998 | 0.9998 | 1761 | |
B20-64 | 0.0006 | 0.9998 | 0.0006 | 0.9998 | 0.9999 | 0.9999 | 5569 | |
B25-16 | 0.0006 | 0.9998 | 0.0006 | 0.9998 | 0.9999 | 0.9999 | 705 | |
B25-32 | 0.0005 | 0.9998 | 0.0005 | 0.9998 | 0.9999 | 0.9999 | 1921 | |
B25-64 | 0.0003 | 0.9999 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 5889 | |
B30-16 | 0.0005 | 0.9998 | 0.0005 | 0.9998 | 0.9999 | 0.9999 | 785 | |
B30-32 | 0.0003 | 0.9999 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 2081 | |
B30-64 | 0.0003 | 0.9999 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 6209 | |
B30-32-60 | 0.0003 | 0.9999 | 0.0003 | 0.9999 | 0.9999 | 0.9999 | 2081 | |
B25-64-60 | 0.0003 | 0.9999 | 0.0003 | 0.9998 | 0.9999 | 0.9999 | 5889 |
Paper | Method | Number of Features | Loss | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|---|---|
[13] | RNN-Autoencoder | 77 | <0.0025 | 0.9950 | 0.99 | 0.99 | 0.99 |
[33] | DNN | 69 | >0.10 | 0.9999 | 0.9998 | 0.9998 | 0.9997 |
[34] | EDSA, DNN using autoencoder | 80 | <0.01 | 0.91 | 0.981 | 0.9441 | 0.98 |
[35] | Bidirectional LSTM-GMM | 80 | - | 0.895 | 0.953 | 0.923 | 0.942 |
Eye-Net | MLP (B30-64Q) | 30 | 0.0002 | 0.9999 | 0.9999 | 0.9999 | 0.9999 |
Model | Loss | Accuracy | Val-Loss | Val-Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|---|
M30-64 without SMOTE | 0.1089 | 0.9691 | 0.1100 | 0.9559 | 0.7526 | 0.7257 | 0.7228 |
M30-64 with SMOTE | 0.0743 | 0.9775 | 0.0709 | 0.9807 | 0.9772 | 0.9822 | 0.9796 |
Model | Loss | Accuracy | Val-Loss | Val-Accuracy | Precision | Recall | F1 Score | N Parms |
---|---|---|---|---|---|---|---|---|
M10-16 | 0.1816 | 0.9449 | 0.2232 | 0.8842 | 0.7717 | 0.8152 | 0.7922 | 567 |
M10-32 | 0.1318 | 0.9591 | 0.1257 | 0.9605 | 0.9590 | 0.9640 | 0.9612 | 1639 |
M10-64 | 0.1131 | 0.9642 | 0.1117 | 0.9705 | 0.9696 | 0.9710 | 0.9701 | 5319 |
M15-16 | 0.1403 | 0.9593 | 0.1318 | 0.9630 | 0.9627 | 0.9656 | 0.9638 | 647 |
M15-32 | 0.1064 | 0.9677 | 0.0986 | 0.9693 | 0.9667 | 0.9717 | 0.9691 | 1799 |
M15-64 | 0.0900 | 0.9728 | 0.0838 | 0.9727 | 0.9667 | 0.9717 | 0.9691 | 5639 |
M20-16 | 0.1359 | 0.9588 | 0.1539 | 0.9620 | 0.9667 | 0.9717 | 0.9691 | 727 |
M20-32 | 0.0994 | 0.9694 | 0.0983 | 0.9756 | 0.9735 | 0.9760 | 0.9747 | 1959 |
M20-64 | 0.0836 | 0.9747 | 0.0778 | 0.9785 | 0.9753 | 0.9798 | 0.9774 | 5959 |
M25-16 | 0.1241 | 0.9626 | 0.1254 | 0.9662 | 0.9680 | 0.9559 | 0.9613 | 807 |
M25-32 | 0.1007 | 0.9696 | 0.0933 | 0.9721 | 0.9694 | 0.9736 | 0.9714 | 2119 |
M25-64 | 0.0829 | 0.9751 | 0.0785 | 0.9802 | 0.9774 | 0.9807 | 0.9789 | 6279 |
M30-16 | 0.1115 | 0.9646 | 0.1238 | 0.9621 | 0.9611 | 0.9653 | 0.9627 | 887 |
M30-32 | 0.0872 | 0.9724 | 0.0901 | 0.9724 | 0.9702 | 0.9734 | 0.9717 | 2279 |
M30-64 | 0.0743 | 0.9775 | 0.0709 | 0.9807 | 0.9772 | 0.9822 | 0.9796 | 6599 |
Model | Loss | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
M30-64 | 0.0709 | 0.9807 | 0.9772 | 0.9822 | 0.9796 |
M30-64Q | 0.0878 | 0.9647 | 0.9673 | 0.9637 | 0.9643 |
Paper | Method | Number of Features | Loss | Precision | Recall | F1 Score | Accuracy |
---|---|---|---|---|---|---|---|
[33] | DNN | 69 | <0.12 | 0.8049 | 0.9515 | 0.8721 | 0.9457 |
[38] | DNN | 72 | - | 0.9421 | 0.9403 | 0.9412 | 0.9421 |
[39] | CNN | 86 | - | 0.90 | 0.90 | 0.90 | 0.9590 |
[36] | AE-MLP | 78 | - | 0.9791 | 0.9848 | 0.9818 | 0.9834 |
[37] | MLP-CNN | - | - | 0.999 | 0.9998 | 0.9994 | 0.9995 |
Eye-Net | MLP (M30-64) | 30 | 0.0709 | 0.9772 | 0.9822 | 0.9796 | 0.9807 |
Eye-Net | MLP (M30-64Q) | 30 | 0.0878 | 0.9673 | 0.9637 | 0.9643 | 0.9647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khantouchi, R.; Gasmi, I.; Ferrag, M.A. Eye-Net: A Low-Complexity Distributed Denial of Service Attack-Detection System Based on Multilayer Perceptron. J. Sens. Actuator Netw. 2024, 13, 45. https://doi.org/10.3390/jsan13040045
Khantouchi R, Gasmi I, Ferrag MA. Eye-Net: A Low-Complexity Distributed Denial of Service Attack-Detection System Based on Multilayer Perceptron. Journal of Sensor and Actuator Networks. 2024; 13(4):45. https://doi.org/10.3390/jsan13040045
Chicago/Turabian StyleKhantouchi, Ramzi, Ibtissem Gasmi, and Mohamed Amine Ferrag. 2024. "Eye-Net: A Low-Complexity Distributed Denial of Service Attack-Detection System Based on Multilayer Perceptron" Journal of Sensor and Actuator Networks 13, no. 4: 45. https://doi.org/10.3390/jsan13040045
APA StyleKhantouchi, R., Gasmi, I., & Ferrag, M. A. (2024). Eye-Net: A Low-Complexity Distributed Denial of Service Attack-Detection System Based on Multilayer Perceptron. Journal of Sensor and Actuator Networks, 13(4), 45. https://doi.org/10.3390/jsan13040045