Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks
Abstract
:1. Introduction
2. Traffic Adaptive Dynamic Meshed Backhaul Construction For Outdoor Dynamic Crowd
2.1. Dynamic Traffic Distribution in Outdoor Dynamic Crowd
2.2. Network Architecture and System Models
2.2.1. System Architecture
2.2.2. IEEE802.11ad Based mmWave Meshed Backhaul
2.3. Traffic Adaptive Mesh Construction
2.3.1. Initial ON/OFF Status Selection
2.3.2. Initial Path Creation for Backhaul Network
2.3.3. Reactivation and Path Creation for Isolated SC-BSs
2.4. C-plane for SDN-Based Mesh Construction
2.5. Numerical Results
3. SDN-Based Implementation As A Proof-Of-Concept
3.1. SDN-Based Mesh Backhaul Architectural Principles
3.2. MmWave Mesh Backhaul Resiliency
- Fast-Failover reconfiguration: Initially both N1 interfaces are alive, staying active during the first 5 s, with network traffic routed through the first active group bucket i.e., N1-N2 link. The N2 interface of the N1-N2 link is then disabled by using ifconfig command after 5 s, and re-enabled after 1 s, leaving all the N1 links active until the end of the experiment. With this approach, the network traffic is sent through path 1 (N1-N2-N4), until BFD changes N1’s interface state to down, and consequently sending packets through path 2 (N1-N3-N4) due to the FF configuration. The usage of path 1 usage is then resumed when the disabled interface is reactivated. A 10, 15 and 20 ms BFD monitoring intervals were used in this scenario;
- SDN Controller triggered reconfiguration: Flow forwarding rules are initially installed, forwarding the traffic from N1 to N4 through N2. After 5 s, the controller modifies the forwarding rules rules in N1 and N4 to forward packets via N3. The N2 interface of the N1-N2 is then disabled during 1 s. The controller sets all the flows to the initial state after the N2 interface is reactivated. These experiments can represent a scenario where the controller has knowledge of an upcoming failure, reconfiguring the network before it happens (e.g., prediction of link disruption due to obstacle blockage).
- No Failover: Similar initial forwarding rules are installed as previously described (traffic between N1 and N4 is forwarded through N2). However, when the N2 interface is disabled, no reconfiguration operation is triggered.
3.3. MmWave Mesh Backhaul Route Multiplexing Against Intensive Traffic
3.4. Future Works
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Study on New Radio Access Technology: RF and Co-Existence Aspects; Technical Report TR 38.803 (RNA4); 3GPP: Sophia Antipolis CEDEX, France, May 2016.
- Sakaguchi, K.; Sampei, S.; Shimodaira, H.; Rezagah, R.; Tran, G.; Araki, K. Cloud Cooperated Heterogeneous Cellular Networks. In Proceedings of the 2013 International Symposium on Intelligent Signal Processing and Communication Systems, Naha, Japan, 12–15 Novemebr 2013; pp. 787–791. [Google Scholar]
- Bai, T.; Heath, R.W. Coverage and rate analysis for millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 2014, 14, 1100–1114. [Google Scholar] [CrossRef]
- Singh, S.; Kulkarni, M.; Ghosh, A.; Andrews, J. Modeling and analyzing millimeter wave cellular systems. IEEE Trans. Commun. 2017, 65, 403–430. [Google Scholar]
- Sakaguchi, K.; Tran, G.; Shimodaira, H.; Nanba, S.; Sakurai, T.; Takinami, K.; Siaud, I.; Strinati, E.; Capone, A.; Karls, I.; et al. Millimeter-wave evolution for 5G cellular networks. IEICE Trans. Commun. 2015, 98, 388–402. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Haustein, T.; Barbarossa, S.; Strinati, E.; Clemente, A.; Destino, G.; Pärssinen, A.; Kim, I.; Chung, H.; Kim, J. Where, when, and how mmwave is used in 5G and beyond. IEICE Trans. Electron. 2017, 100, 790–808. [Google Scholar] [CrossRef]
- Gangakhedkar, S.; Cao, H.; Ali, A.; Ganesan, K.; Gharba, M.; Eichinger, J. Use cases, requirements and challenges of 5G communication for industrial automation. In Proceedings of the International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Jaber, M.; Imran, M.; Tafazolli, R.; Tukmanov, A. 5G backhaul challenges and emerging research directions: A survey. IEEE Access 2016, 4, 1743–1766. [Google Scholar] [CrossRef]
- Peters, S.W.; Heath, R.W., Jr. The future of WiMAX: Multihop relaying with IEEE 802.16j. IEEE Commun. Mag. 2009, 47, 104–111. [Google Scholar] [CrossRef]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Rappaport, T.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.; Schulz, J.; Samimi, M.; Gutierrez, F. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access 2013, 1, 335–349. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; MacCartney, G.R., Jr.; Molisch, A.F.; Mellios, E.; Zhang, J. Overview of millimeter wave communications for fifth-generation (5G) wireless networks: With a focus on propagation models. IEEE Trans. Antennas Propag. 2017, 65. [Google Scholar] [CrossRef]
- Karttunen, A.; Molisch, A.F.; Hur, S.; Park, J.; Zhang, C.J. Spatially consistent street-by-street path loss model for 28-GHz channels in micro cell urban environments. IEEE Trans. Wirel. Commun. 2017, 16, 7538–7550. [Google Scholar] [CrossRef]
- Maltsev, A.; Sadri, A.; Pudeyev, A.; Bolotin, I. Highly directional steerable antennas: High-gain antennas supporting user mobility or beam switching for reconfigurable backhauling. IEEE Veh. Technol. Mag. 2016, 11, 32–39. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Tran, G.K.; Ogawa, H. mmWave meshed network with traffic and energy management mechanism. In Proceedings of the 18th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017. [Google Scholar]
- Tran, G.; Shimodaira, H.; Sakaguchi, K. User satisfaction constraint adaptive sleeping in 5G mmwave heterogeneous cellular network. IEICE Trans. Commun. 2018, 101. [Google Scholar] [CrossRef]
- Shimodaira, H.; Tran, G.; Araki, K.; Sakaguchi, K.; Namba, S.; Hayashi, T.; Konishi, S. Cell Association Method for Multiband Heterogeneous Networks. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014. [Google Scholar]
- Scott-Hayward, S.; Garcia-Palacios, E. Channel Time Allocation PSO for Gigabit Multimedia Wireless Networks. IEEE Trans. Multimedia 2014, 16, 828–836. [Google Scholar] [CrossRef] [Green Version]
- Pyo, C.W.; Harada, H. Throughput analysis and improvement of hybrid multiple access in IEEE 802.15.3c mm-wave WPAN. IEEE J. Sel. Areas Commun. 2009, 27, 1414–1424. [Google Scholar]
- Singh, S.; Kulkarni, M.; Ghosh, A.; Andrews, J. Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE J. Sel. Areas Commun. 2015, 33, 2196–2211. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, Y.; Li, Y.; Zeng, M.; Han, Z. Exploiting Multi-Hop Relay to Achieve Mobility-Aware Transmission Scheduling in mmWave Systems. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Du, J.; Onaran, E.; Chizhik, D.; Venkatesan, S.; Valenzuela, R. Gbps user rates using mmWave relayed backhaul with high gain antennas. IEEE J. Sel. Areas Commun. 2017, 35, 1363–1372. [Google Scholar] [CrossRef]
- Kulkarni, M.; Andrews, J.; Ghosh, A. Performance of dynamic and static TDD in self-backhauled millimeter wave cellular networks. IEEE Trans. Wireless Commun. 2017, 16, 6460–6478. [Google Scholar] [CrossRef]
- Mesodiakaki, A.; Zolab, E.; Santos, R.; Kassler, A. Optimal user association, backhaul routing and switching off in 5G heterogeneous networks with mesh millimeter wave backhaul links. Ad Hoc Netw. 2018, 78, 99–114. [Google Scholar] [CrossRef]
- Ogawa, H.; Tran, G.K.; Sakaguchi, K.; Haustein, T. Traffic Adaptive Formation Algorithm for mmWave Meshed Backhaul Networks. In Proceedings of the International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Santos, R.; Ogawa, H.; Tran, G.K.; Sakaguchi, K.; Kassler, A. Turning the Knobs on OpenFlow-Based Resiliency in mmWave Small Cell Meshed Networks. In Proceedings of the IEEE GLOBECOM Workshops 2017, Singapore, 4–8 December 2017. [Google Scholar]
- Tran, G.; Shimodaira, H.; Rezagah, R.; Sakaguchi, K.; Araki, K. Practical evaluation of on-demand smallcell ON/OFF based on traffic model for 5G cellular networks. In Proceedings of the Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016. [Google Scholar]
- Cai, S.; Che, Y.; Duan, L.; Wang, J.; Zhou, S.; Zhang, R. Green 5G heterogeneous networks through dynamic small-cell operation. IEEE J. Sel. Areas Commun. 2016, 34, 1103–1115. [Google Scholar] [CrossRef]
- Li, X.; Ferdous, R.; Chiasserini, C.; Casetti, C.; Moscatelli, F.; Landi, G.; Casellas, R.; Sakaguchi, K.; Chundrigar, S.; Vilalta, R.; et al. Novel Resource and Energy Management for 5G Integrated Backhaul/ Fronthaul (5G-Crosshaul). In Proceedings of the International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Nishiuchi, H.; Tran, G.; Sakaguchi, K. Performance Evaluation of 5G mmWave Edge Cloud with Prefetching Algorithm. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Takinami, K.; Shirakata, N.; Kobayashi, M.; Urushihara, T.; Takahashi, H.; Motozuka, H.; Irie, M.; Shimizu, M.; Tomisawa, Y.; Takahashi, K. Design and Experimental Evaluation of 60GHz Multiuser Gigabit/s Small Cell Radio Access Based on IEEE 802.11ad/WiGig. IEICE Trans. Commun. 2016, 100, 1196–1205. [Google Scholar] [CrossRef]
- Nakamura, M.; Tran, G.; Sakaguchi, K. Interference Management for Millimeter-Wave Mesh Backhaul Networks. In Technical Report of IEICE TCSR; IEICE: Hakodate, Japan, 2018. (In Japanese) [Google Scholar]
- González, S.; Oliva, A.; Costa-Pérez, X.; Giglio, A.; Cavaliere, F.; Deiß, T.; Li, X.; Mourad, A. 5G-Crosshaul: An SDN/NFV control and data plane architecture for the 5G integrated fronthaul/backhaul. Trans. Emerg. Telecommun. Technol. 2016, 27, 1196–1205. [Google Scholar] [CrossRef]
- Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.J.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P.; et al. The Design and Implementation of Open vSwitch. Proceddings of the 12th USENIX Conference on Networked Systems Design and Implementation, Oakland, CA, USA, 4–6 May 2015; pp. 117–130. [Google Scholar]
- Medved, J.; Varga, R.; Tkacik, A.; Gray, K. Opendaylight: Towards a model-driven SDN controller architecture. In Proceedings of the 2014 IEEE 15th International Symposium on aWorld of Wireless, Mobile and Multimedia Networks (WoWMoM), Sydney, NSW, Australia, 19 June 2014. [Google Scholar]
- Ho, I.; Lam, P.; Chong, P.; Liew, S. Harnessing the High Bandwidth of Multiradio Multichannel 802.11n Mesh Networks. IEEE Trans. Mobile Comput. 2014, 13, 448–456. [Google Scholar] [CrossRef]
- Katz, D.; Ward, D. Bidirectional Forwarding Detection (BFD); IETF RFC 5880, June 2010. Available online: https://tools.ietf.org/html/rfc5880 (accessed on 1 July 2017).
- Van Adrichem, N.L.; Van Asten, B.J.; Kuipers, F.A. Fast recovery in software-defined networks. In Proceedings of the 2014 Third European Workshop on Software Defined Networks, London, UK, 1–3 September 2014. [Google Scholar]
- Vestin, J.; Kassler, A. Low frequency assist for mmWave backhaul-the case for SDN resiliency mechanisms. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICCWorkshops), Paris, France, 21–25 May 2017. [Google Scholar]
- Nguyen, K.; Ishizu, K.; Murakami, H.; Kojima, F.; Yano, H. A Scalable and Robust OpenFlow Channel for Software Defined Wireless Access Networks. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), Boston, MA, USA, 6–9 September 2015. [Google Scholar]
- Santos, R.; Kassler, A. Small Cell Wireless Backhaul Reconfiguration Using Software-Defined Networking. In Proceedings of the Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017. [Google Scholar]
- Vestin, J.; Kassler, A. Resilient SDN based small cell backhaul networks using mmWave bands. In Proceedings of the 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 21–24 June 2016. [Google Scholar]
- Tirumala, A.; Qin, F.; Dugan, J.; Ferguson, J.; Gibbs, K. Iperf: The TCP/UDP Bandwidth Measurement Tool. 2015. Available online: http://dast.nlanr.net/Projects (accessed on 1 July 2017).
- Nakamura, M.; Santos, R.; Koslowski, K.; Nishiuchi, H.; Tran, G.; Sakaguchi, K. Performance Evaluation for Millimeter-wave Backhaul and Edge Cloud Networks. In Proceedings of the SmartCom 2018, Bangkok, Thailand, 30–31 October 2018; IEICE: Bangkok, Thailand. [Google Scholar]
Parameter | LTE | mmW SC-BS |
---|---|---|
Carrier freq. | 2 GHz | 60 GHz |
Bandwidth | 10 MHz | GHz |
Antenna height | 25 m | 4 m/25 m (SC-BS/GW) |
Antenna gain | 17 dBi | 26 dBi |
Tx power | 46 dBm | 10 dBm |
Path loss | 3 GPP | [5] |
Beam pattern | 3 GPP | 802.11 ad |
No. of BSs | 1 | 90 |
Noise level | 174 dBm/Hz |
Path | Throughput (Gbps) | RTT (ms) |
---|---|---|
N1-N2 | 1.51 | 0.835 |
N1-N2-N4 | 1.51 | 1.088 |
Failover | Mean (ms) | Stdev (ms) |
---|---|---|
BFD 10 ms | 31.18 | ±3.04 |
BFD 15 ms | 45.68 | ±6.23 |
BFD 20 ms | 58.86 | ±6.31 |
SDN Controller | 6.14 | ±0.87 |
No Failover | 1226.99 | ±18.07 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, G.K.; Santos, R.; Ogawa, H.; Nakamura, M.; Sakaguchi, K.; Kassler, A. Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks. J. Sens. Actuator Netw. 2018, 7, 43. https://doi.org/10.3390/jsan7040043
Tran GK, Santos R, Ogawa H, Nakamura M, Sakaguchi K, Kassler A. Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks. Journal of Sensor and Actuator Networks. 2018; 7(4):43. https://doi.org/10.3390/jsan7040043
Chicago/Turabian StyleTran, Gia Khanh, Ricardo Santos, Hiroaki Ogawa, Makoto Nakamura, Kei Sakaguchi, and Andreas Kassler. 2018. "Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks" Journal of Sensor and Actuator Networks 7, no. 4: 43. https://doi.org/10.3390/jsan7040043
APA StyleTran, G. K., Santos, R., Ogawa, H., Nakamura, M., Sakaguchi, K., & Kassler, A. (2018). Context-Based Dynamic Meshed Backhaul Construction for 5G Heterogeneous Networks. Journal of Sensor and Actuator Networks, 7(4), 43. https://doi.org/10.3390/jsan7040043