Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels
Abstract
:1. Introduction
2. Transmission Model and Simulation Conditions
2.1. Application Example
2.2. Transmission Model
3. Simulation Results
3.1. Fundamental Bit Error Rate (BER) Performance under Additive White Gaussian Noise (AWGN)
3.2. SNR Penalty in the Presence of Phase Error
3.3. BER Performance in Multipath Fading Channels
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- 3GPP News. 3GPP system standards heading into the 5G era. 3GPP, 2014. Available online: http://www.3gpp.org/news-events/3gpp-news/1614-sa_5g (accessed on 18 March 2019).
- Draft new recommendation ITU-R M. IMT for 2020 and beyond. ITU-R, September 2015. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf (accessed on 18 March 2019).
- Soldani, D.; Manzalini, A. Horizon 2020 and beyond: On the 5G operating system for a truly digital society. IEEE Veh. Tech. Mag. 2015, 10, 32–42. [Google Scholar] [CrossRef]
- Nakamura, T.; Benjebbour, A.; Kishiyama, Y.; Suyama, S.; Imai, T. 5G radio access: Requirements, concept and experimental trials. IEICE Trans. Commun. 2015, E98B, 1397–1406. [Google Scholar] [CrossRef]
- Mu, Q.; Liu, L.; Chen, L.; Jiang, Y. CQI table design to support 256 QAM in small cell environment. In Proceedings of the 2013 International Conference on Wireless Communications and Signal Processing, Hangzhou, China, 24–26 October 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Mao, J.; Abdullahi, M.A.; Xiao, P.; Cao, A. A low complexity 256QAM soft demapper for 5G mobile system. In Proceedings of the 2016 European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- 3GPP TR 36.783. Evolved Universal Terrestrial Radio Access (E-UTRA); Introduction of 1024 Quadrature Amplitude Modulation (QAM) in LTE downlink (Release 15). 3GPP, April 2017. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3207 (accessed on 18 March 2019).
- Dahlman, E.; Dimou, K.; Parkvall, S.; Tullberg, H. Future wireless access small cells and heterogeneous deployments. In Proceedings of the ICT 2013, Casablanca, Morocco, 6–8 May 2013. [Google Scholar] [CrossRef]
- Elsherif, A.R.; Chen, W.P.; Ito, A.; Ding, Z. Resource allocation and inter-cell interference management for dual-access small cells. IEEE J. Sel. Areas Commun. 2015, 33, 1082–1096. [Google Scholar] [CrossRef]
- Ishii, H.; Kishiyama, Y.; Takahashi, H. A novel architecture for LTE-B: C-plane/U-plane split and phantom cell concept. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; pp. 624–630. [Google Scholar] [CrossRef]
- Maria, A.D.; Panno, D. A radio resource management scheme in future ultra-dense phantom networks. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Rome, Italy, 9–11 October 2017; Volume 1, pp. 1–6. [Google Scholar] [CrossRef]
- Ghosh, A.; Ratasuk, R.; Mondai, B.; Mangalvedhe, N.; Thomas, T. LTE-advanced: next-generation wireless broadband technology. IEEE Wireless Commun. 2010, 17, 10–22. [Google Scholar] [CrossRef]
- Khandekar, A.; Bhushan, N.; Tingfang, J.; Vanghi, V. LTE Advanced: Heterogeneous Networks. In Proceedings of the 2010 European Wireless Conference (EW), Lucca, Italy, 12–15 April 2010; pp. 978–982. [Google Scholar] [CrossRef]
- Deb, S.; Monogioudis, P.; Miernik, J.; Seymour, J.P. Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Netw. 2014, 22, 137–150. [Google Scholar] [CrossRef]
- Kikuchi, K.; Otsuka, H. Proposal of Adaptive Control CRE in Heterogeneous Networks. In Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications–(PIMRC), Sydney, Australia, 9–12 September 2012. [Google Scholar] [CrossRef]
- Nakazawa, S.; Naganuma, N.; Otsuka, H. Enhanced adaptive control CRE in heterogeneous networks. In Proceedings of the 2017 14th IEEE Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2017; pp. 645–646. [Google Scholar] [CrossRef]
- 3GPP TR 36.806. Relay architectures for E-UTRA (LTE-Advanced). 3GPP, March 2010. Available online: http://www.qtc.jp/3GPP/Specs/36806-900.pdf (accessed on 18 March 2019).
- Saleh, A.B.; Redana, S.; Raaf, B.; Riihonen, T.; Hamalainen, J.; Wiehman, R. Performance of amplify-and-forward and decode-and-forward relays in LTE-Advanced. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009. [Google Scholar] [CrossRef]
- Bulakci, O.; Redana, S.; Raaf, B.; Hamalainen, J. Performance enhancement in LTE-Advanced relay networks via relay site planning. In Proceedings of the 2010 IEEE 71st Vehicular Technology Conference, Taipei, Taiwan, 16–19 May 2010. [Google Scholar] [CrossRef]
- Song, Y.; Yun, X.; Nagata, S.; Chen, L. Investigation on elevation beamforming for future LTE-Advanced. In Proceedings of the 2013 IEEE International Conference on Communications Workshops (ICC), Budapest, Hungary, 9–13 June 2013. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, R.; Kang, S.; Su, X.; Xu, J. 3D beamforming methods with user-specific elevation beamforming. In Proceedings of the 9th International Conference on Communications and Networking in China, Maoming, China, 14–16 August 2014; pp. 383–386. [Google Scholar] [CrossRef]
- Koppenborg, J.; Halbauer, H.; Saur, S.; Hoek, C. 3D beamforming trials with an active antenna. In Proceedings of the 2012 International ITG Workshop on Smart Antennas (WSA), Dresden, Germany, 7–8 March 2012; pp. 110–114. [Google Scholar] [CrossRef]
- Iwamoto, M.; Matsuoka, S.; Iwasaki, H.; Otsuka, H. Transmission Performance of OFDM with 1024-QAM in the Presence of EVM Degradation. In Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile, Bali, Indonesia, 28–30 August 2014; pp. 12–16. [Google Scholar] [CrossRef]
- Ota, T.; Nakamura, M.; Otsuka, H. Performance Evaluation of OFDM-based 256- and 1024-QAM in Multipath Fading Propagation Conditions. In Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), Milan, Italy, 4–7 July 2017; pp. 554–556. [Google Scholar] [CrossRef]
- Tian, R.; Senda, K.; Ota, T.; Otsuka, H. Transmission performance of OFDM-based 1024-QAM in multipath fading conditions. IEICE Commun. Express 2018, 7, 272–277. [Google Scholar] [CrossRef]
- Tian, R.; Ota, T.; Otsuka, H. Influence of phase error on OFDM-based 4096-QAM with turbo coding. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand, 10–12 January 2018; pp. 352–355. [Google Scholar] [CrossRef]
- Otsuka, H.; Tanoi, N.; Ogura, N.; Kubo, T.; Asai, T.; Okumura, Y. Performance analysis of fiber-optic inband relaying in the presence of self-interferences. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014. [Google Scholar] [CrossRef]
- Mathworks Documentations. Turbo Encoder. Available online: https://jp.mathworks.com/help/comm/ref/turboencoder.html?lang=en (accessed on 18 March 2019).
- 3GPP TS 36.212. Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 13). 3GPP, June 2016. Available online: https://www.arib.or.jp/english/html/overview/doc/STD-T104v4_10/5_Appendix/Rel13/36/36212-d20.pdf (accessed on 18 March 2019).
- 3GPP TS 36.104. Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 8). 3GPP, May 2008. Available online: http://www.qtc.jp/3GPP/Specs/36104-820.pdf (accessed on 18 March 2019).
Parameter | Value |
---|---|
Symbol modulation | QPSK to 4096-QAM |
Encoder | Turbo encoding Coding rate R = 1/3, 1/2, 2/3, 3/4, 1 Constraint length = 4 |
Signal mapping | Gray code |
Transmission bandwidth | 20 MHz |
IFFT/FFT size | 2048 |
Cyclic prefix length | 144 |
The number of transmitter/receiver antennas | 1/1 |
Decoder | Soft-decision Viterbi decoding |
Type | Parameter | Value |
---|---|---|
EPA | Path delay (ns) | 0, 30, 70, 90, 110, 190, 410 |
Path gain (dB) | 0, −1, −2, −3, −8, −17.2, −20.8 | |
EVA | Path delay (ns) | 0, 30, 150, 310, 370, 710, 1090, 1730, 2510 |
Path gain (dB) | 0, −1.5, −1.4, −3.6, −0.6, −9.1, −7.0, −12.0, −16.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, H.; Tian, R.; Senda, K. Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels. J. Sens. Actuator Netw. 2019, 8, 19. https://doi.org/10.3390/jsan8020019
Otsuka H, Tian R, Senda K. Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels. Journal of Sensor and Actuator Networks. 2019; 8(2):19. https://doi.org/10.3390/jsan8020019
Chicago/Turabian StyleOtsuka, Hiroyuki, Ruxiao Tian, and Koki Senda. 2019. "Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels" Journal of Sensor and Actuator Networks 8, no. 2: 19. https://doi.org/10.3390/jsan8020019
APA StyleOtsuka, H., Tian, R., & Senda, K. (2019). Transmission Performance of an OFDM-Based Higher-Order Modulation Scheme in Multipath Fading Channels. Journal of Sensor and Actuator Networks, 8(2), 19. https://doi.org/10.3390/jsan8020019