The Use of Meta-Surfaces in Vehicular Networks
Abstract
:1. Introduction
- To describe the main characteristics of meta-surfaces.
- To highlight potential uses of reconfigurable meta-surfaces especially when adopted in vehicular environments. In this context, two main use cases are considered: cooperative driving and vulnerable road users (VRUs) detection.
- To demonstrate, through a simple analytical model (validated by simulation), the improvement that a reconfigurable meta-surface can provide in reducing the collision probability when random access to the medium is adopted for vehicle-to-vehicle (V2V) communications.
2. Technologies for Vehicular Networks
2.1. IEEE 802.11p
2.2. C-V2X
2.3. Challenges and Limits of Current Technologies
3. Reconfigurable Meta-Surfaces in Vehicular Scenarios
3.1. Reconfigurable Meta-Surfaces: Generalities
3.2. Reconfigurable Meta-Surfaces for Enhanced Vehicular Scenarios
3.3. Cooperative Driving
3.4. Pedestrian Detection
4. The Impact of Meta-Surfaces: Performance Example
5. Consclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- On the Road to Self-Driving Cars, 5G Will Make Us Better Drivers. Available online: https://spectrum.ieee.org/telecom/wireless/mwc-barcelona-2019-on-the-road-to-selfdriving-cars-5g-will-make-us-better-drivers (accessed on 1 March 2020).
- Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of Internet of Vehicles. China Commun. 2014, 11, 1–15. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Abdullah, A.H.; Cao, Y.; Altameem, A.; Prasad, M.; Lin, C.; Liu, X. Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects. IEEE Access 2016, 4, 5356–5373. [Google Scholar] [CrossRef]
- Aliyu, A.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N.; Usman, M. Towards Video Streaming in IoT Environments: Vehicular Communication Perspective. Comput. Commun. 2017. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, K.; Kumar, S.; Kaiwartya, O.; Cao, Y.; Zhou, H. Delimitated Anti Jammer Scheme for Internet of Vehicle: Machine Learning Based Security Approach. IEEE Access 2019, 7, 113311–113323. [Google Scholar] [CrossRef]
- Silva, C.M.; Masini, B.M.; Ferrari, G.; Thibault, I. A Survey on Infrastructure-Based Vehicular Networks. Mob. Inf. Syst. 2017, 2017, 28–56. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.M.; Silva, L.D.; Santos, L.A.L.; Sarubbi, J.F.M.; Pitsillides, A. Broadening Understanding on Managing the Communication Infrastructure in Vehicular Networks: Customizing the Coverage Using the Delta Network. Future Internet 2018, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- EUROPEAN COMMISSION. COMMISSION DELEGATED REGULATION (EU) of 13.3.2019 Supplementing Directive 2010/40/EU of the European Parliament and of the Council with Regard to the Deployment and Operational Use of Cooperative Intelligent Transport Systems. 2019. Available online: https://spectrum.ieee.org/telecom/wireless/mwc-barcelona-2019-on-the-road-to-selfdriving-cars-5g-will-make-us-better-drivers (accessed on 1 March 2020).
- Autotalks and NXP Semiconductors. IEEE 802.11p Ahead of LTE-V2V for Safety Applications. 2017. Available online: https://www.nxp.com/docs/en/white-paper/LTE-V2V-WP.pdf (accessed on 1 March 2020).
- Bazzi, A.; Cecchini, G.; Menarini, M.; Masini, B.M.; Zanella, A. Survey and Perspectives of Vehicular Wi-Fi versus Sidelink Cellular-V2X in the 5G Era. Future Internet 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- 5GAA. V2X Functional and Performance Test Report; Test Procedures and Results. 2018. Available online: https://5gaa.org/wp-content/uploads/2018/10/FCC-USDOT-CV2X-v2.14_wo_Video-c1_Final.pdf (accessed on 1 March 2020).
- Molina-Masegosa, R.; Gozalvez, J. LTE-V for Sidelink 5G V2X Vehicular Communications: A New 5G Technology for Short-Range Vehicle-to-Everything Communications. IEEE Veh. Technol. Mag. 2017, 12, 30–39. [Google Scholar] [CrossRef]
- Min, W.; Winbjork, M.; Zhang, Z.; Blasco, R.; Do, H.; Sorrentino, S.; Belleschi, M.; Zang, Y. Comparison of LTE and DSRC-Based Connectivity for Intelligent Transportation Systems. In Proceedings of the IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Shailesh, P.; Sudhir, B.; Kapil, G.; Jiang, L.; Wu, Z.; Malladi, D.; Li, J. A Comparison of cellular vehicle-to-everything and dedicated short range communication. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017. [Google Scholar]
- Bazzi, A.; Masini, B.M.; Zanella, A.; Thibault, I. On the Performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of Connected Vehicles. IEEE Trans. Veh. Technol. 2017, 66, 10419–10432. [Google Scholar] [CrossRef]
- Cecchini, G.; Bazzi, A.; Masini, B.M.; Zanella, A. Performance comparison between IEEE 802.11p and LTE-V2V in-coverage and out-of-coverage for cooperative awareness. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 109–114. [Google Scholar] [CrossRef]
- Vukadinovic, V.; Bakowski, K.; Marsch, P.; Garcia, I.D.; Xu, H.; Sybis, M.; Sroka, P.; Wesolowski, K.; Lister, D.; Thibault, I. 3GPP C-V2X and IEEE 802.11p for Vehicle-to-Vehicle communications in highway platooning scenarios. Ad Hoc Netw. 2018, 74, 17–29. [Google Scholar] [CrossRef]
- Thota, J.; Abdullah, N.F.; Doufexi, A.; Armour, S. Performance of Car to Car Safety Broadcast Using Cellular V2V and IEEE 802.11P. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Anwar, W.; Kulkarni, K.; Augustin, T.R.; Franchi, N.; Fettweis, G. PHY Abstraction Techniques for IEEE 802.11p and LTE-V2V: Applications and Analysis. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, UAE, 9–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Kühlmorgen, S.; Schmager, P.; Festag, A.; Fettweis, G. Simulation-based Evaluation of ETSI ITS-G5 and Cellular-VCS in a Real-World Road Traffic Scenario. In Proceedings of the IEEE Vehicular Technology Conference (VTC Fall), Chicago, IL USA, 27–30 August 2018. [Google Scholar]
- Bastos, A.V.; Silva, C.M.; Silva, D., Jr. Assisted Routing Algorithm for D2D Communication in 5G Wireless Networks. In Proceedings of the 2018 Wireless Days (WD) (WD’18), Dubai, UAE, 3–5 April 2018. [Google Scholar] [CrossRef]
- Silva, C.M.; Pitangui, C.G.; Miguel, E.C.; Santos, L.A.; Torres, K.B. Gamma-Reload Deployment: Planning the communication infrastructure for serving streaming for connected vehicles. Veh. Commun. 2020, 21, 100197. [Google Scholar] [CrossRef]
- Silva, C.M.; Aquino, A.L.L.; Meira, W., Jr. Smart Traffic Light for Low Traffic Conditions. Mob. Netw. Appl. 2015, 1–9. [Google Scholar] [CrossRef]
- Oliveira, T.R.; Silva, C.M.; Macedo, D.F.; Nogueira, J.M.S. SNVC: Social networks for vehicular certification. Comput. Netw. 2016, 111, 129–140. [Google Scholar] [CrossRef]
- Silva, C.M.; Sarubbi, J.F.; Silva, D.F.; Porto, M.F.; Nunes, N.T. A Mixed Load Solution for the Rural School Bus Routing Problem. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), Las Palmas, Spain, 15–18 September 2015; pp. 1940–1945. [Google Scholar] [CrossRef]
- Silva, C.M.; Guidoni, D.; Souza, F.S.; Pitangui, C.; Pitsillides, A. Using the Inter-Contact Time for Planning the Distribution of Roadside Units in Vehicular Networks. In Proceedings of the 19th IEEE International Conference on Intelligent Transportation Systems (ITSC 2016), Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar]
- Sarubbi, J.F.M.; Mesquita, C.M.R.; Wanner, E.F.; Santos, V.F.; Silva, C.M. A strategy for clustering students minimizing the number of bus stops for solving the school bus routing problem. In Proceedings of the NOMS 2016—2016 IEEE/IFIP Network Operations and Management Symposium, Istanbul, Turkey, 25–29 April 2016; pp. 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.M.; Meira, W., Jr. Design of roadside communication infrastructure with QoS guarantees. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus, 6–9 July 2015; pp. 439–444. [Google Scholar] [CrossRef]
- Silva, C.M.; Guidoni, D.L.; Souza, F.S.H.; Pitangui, C.G.; Sarubbi, J.F.M.; Pitsillides, A. Gamma Deployment: Designing the Communication Infrastructure in Vehicular Networks Assuring Guarantees on the V2I Inter-Contact Time. In Proceedings of the 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Brasilia, Brazil, 10–13 October 2016; pp. 263–271. [Google Scholar] [CrossRef]
- Laplante, P. “Smarter” Roads and Highways. IEEE Internet Things Mag. 2018, 1, 30–35. [Google Scholar] [CrossRef]
- Vegni, A.M.; Loscrí, V. A Survey on Vehicular Social Networks. IEEE Commun. Surv. Tutor. 2015, 17, 2397–2419. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Renzo, M.D.; Debbah, M.; Huy, D.T.P.; Zappone, A.; Alouini, M.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart Radio Environments Empowered by AI Reconfigurable Meta-Surfaces: An Idea Whose Time Has Come. arXiv 2019, arXiv:1903.08925. [Google Scholar] [CrossRef] [Green Version]
- Bukhari, S.; Vardaxoglou, J.; Whittow, W. A Metasurfaces Review: Definitions and Applications. Appl. Sci. 2019, 9, 2727. [Google Scholar] [CrossRef] [Green Version]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I.F. Realizing Wireless Communication through Software-defined HyperSurface Environments. arXiv 2018, arXiv:1903.08925. [Google Scholar]
- Liaskos, C.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I.F. Using any Surface to Realize a New Paradigm for Wireless Communications. arXiv 2018, arXiv:1903.08925. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Sun, Z.; Jornet, J.M.; Pados, D. Increasing indoor spectrum sharing capacity using smart reflect-array. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Guo, J.; Zhao, L.; Shen, X.; Yin, Y. A Meta-Surface Decoupling Method for Two Linear Polarized Antenna Array in Sub-6 GHz Base Station Applications. IEEE Access 2019, 7, 2759–2768. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent Reflecting Surface Enhanced Wireless Network: Joint Active and Passive Beamforming Design. arXiv 2018, arXiv:1903.08925. [Google Scholar]
- Huang, C.; Zappone, A.; Alexandropoulos, G.; Debbah, M.; Yuen, C. Large Intelligent Surfaces for Energy Efficiency in Wireless Communication. 2018. Available online: https://deepai.org/publication/large-intelligent-surfaces-for-energy-efficiency-in-wireless-communication (accessed on 1 March 2020).
- C-V2X Plugtest. Available online: https://www.etsi.org/events/1659-cv2x-plugtests#pane-1/ (accessed on 1 March 2020).
- Fallah, Y.P.; Huang, C.; Sengupta, R.; Krishnan, H. Analysis of Information Dissemination in Vehicular Ad-Hoc Networks With Application to Cooperative Vehicle Safety Systems. IEEE Trans. Veh. Technol. 2011, 60, 233–247. [Google Scholar] [CrossRef]
- Balador, A.; Bohm, A.; Calafate, C.T.; Cano, J. A reliable token-based MAC protocol for V2V communication in urban VANET. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–7 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Bazzi, A.; Campolo, C.; Masini, B.M.; Molinaro, A.; Zanella, A.; Berthet, A.O. Enhancing Cooperative Driving in IEEE 802.11 Vehicular Networks Through Full-Duplex Radios. IEEE Trans. Wirel. Commun. 2018, 17, 2402–2416. [Google Scholar] [CrossRef]
- Bazzi, A.; Cecchini, G.; Zanella, A.; Masini, B.M. Study of the Impact of PHY and MAC Parameters in 3GPP C-V2V Mode 4. IEEE Access 2018. [Google Scholar] [CrossRef]
- NXP USA, I. A of the Comments of NXP USA, Inc., in the Letter before the Federal Communications Commission, Washington, DC. 2019. Available online: https://autoalliance.org/wp-content/uploads/2017/01/5.9-GHz-Comments.pdf (accessed on 1 March 2020).
- Sarubbi, J.F.M.; Silva, T.R.; Martins, F.V.C.; Wanner, E.F.; Silva, C.M. Allocating Roadside Units in VANETs Using a Variable Neighborhood Search Strategy. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Naik, G.; Choudhury, B.; Park, J. IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications. arXiv 2019, arXiv:1903.08925. [Google Scholar]
- Loscrí, V.; Natalizio, E.; Costanzo, C. Simulations of the Impact of Controlled Mobility for Routing Protocols. EURASIP J. Wirel. Commun. Netw. 2009, 2010, 315381. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.T.; Taylor, A.; Yu, N. A review of metasurfaces: Physics and applications. Rep. Prog. Phys. 2016, 79. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, Q.U.A.; Kammoun, A.; Chaaban, A.; Debbah, R.; Alouini, M.S. Intelligent Reflecting Surface Assisted Multi-User MISO Communication. arXiv 2019, arXiv:1906.02360. [Google Scholar]
- A European strategy on Cooperative Intelligent Transport Systems, a Milestone towards Cooperative, Connected and Automated Mobility. 2016. Available online: https://ec.europa.eu/transport/themes/its/c-its_en (accessed on 1 March 2020).
- Hasan, S.; Balador, A.; Girs, S.; Uhlemann, E. Towards Emergency Braking as a Fail-Safe State in Platooning: A Simulative Approach. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Ammoun, S.; Nashashibi, F.; Laurgeau, C. An analysis of the lane changing manoeuvre on roads: The contribution of inter-vehicle cooperation via communication. In Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007; pp. 1095–1100. [Google Scholar] [CrossRef]
- Kim, S.; Qin, B.; Chong, Z.J.; Shen, X.; Liu, W.; Ang, M.H.; Frazzoli, E.; Rus, D. Multivehicle Cooperative Driving Using Cooperative Perception: Design and Experimental Validation. IEEE Trans. Intell. Transp. Syst. 2015, 16, 663–680. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.; Palacharla, P.; Ikeuchi, T. Cooperative autonomous driving for traffic congestion avoidance through vehicle-to-vehicle communications. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Amsterdam, The Netherlands, 14–16 November 2011; pp. 327–330. [Google Scholar] [CrossRef]
- U.S. Department of Transportation (DOT), NHTSA Research Note. 2018 Fatal Motor Vehicle Crashes Overview; U.S. Department of Transportation Report; NHTSA’s National Center for Statistics and Analysis 1200 New Jersey Avenue SE: Washington, DC, USA, 2019. [Google Scholar]
- Hussein, A.; Garcia, F.; Armingol, J.M.; Olaverri-Monreal, C. P2V and V2P communication for Pedestrian warning on the basis of Autonomous Vehicles. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2034–2039. [Google Scholar] [CrossRef]
- Wu, X.; Miucic, R.; Yang, S.; Al-Stouhi, S.; Misener, J.; Bai, S.; Chan, W. Cars Talk to Phones: A DSRC Based Vehicle-Pedestrian Safety System. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, WC, Canada, 14–17 September 2014; pp. 1–7. [Google Scholar] [CrossRef]
- Tahmasbi-Sarvestani, A.; Nourkhiz Mahjoub, H.; Fallah, Y.P.; Moradi-Pari, E.; Abuchaar, O. Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application. IEEE Intell. Transp. Syst. Mag. 2017, 9, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Anaya, J.J.; Merdrignac, P.; Shagdar, O.; Nashashibi, F.; Naranjo, J.E. Vehicle to pedestrian communications for protection of vulnerable road users. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Merdrignac, P.; Shagdar, O.; Nashashibi, F. Fusion of Perception and V2P Communication Systems for the Safety of Vulnerable Road Users. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1740–1751. [Google Scholar] [CrossRef] [Green Version]
- Sewalkar, P.; Krug, S.; Seitz, J. Towards 802.11p-based vehicle-to-pedestrian communication for crash prevention systems. In Proceedings of the 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany, 6–8 November 2017; pp. 404–409. [Google Scholar] [CrossRef]
- Sewalkar, P.; Seitz, J. Vehicle-to-Pedestrian Communication for Vulnerable Road Users: Survey, Design Considerations, and Challenges. Sensors 2019, 19, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Themann, P.; Kotte, J.; Raudszus, D.; Eckstein, L. Impact of positioning uncertainty of vulnerable road users on risk minimization in collision avoidance systems. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 29 June–1 July 2015; pp. 1201–1206. [Google Scholar] [CrossRef]
- Kaiwartya, O.; Cao, Y.; Lloret, J.; Kumar, S.; Aslam, N.; Kharel, R.; Abdullah, A.H.; Shah, R.R. Geometry-Based Localization for GPS Outage in Vehicular Cyber Physical Systems. IEEE Trans. Veh. Technol. 2018, 67, 3800–3812. [Google Scholar] [CrossRef]
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mmWave Positioning for Vehicular Networks. IEEE Wirel. Commun. 2017, 24, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Siekkinen, M.; Nurminen, J.K. Cellular-based vehicle to pedestrian (V2P) adaptive communication for collision avoidance. In Proceedings of the 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, Austria, 3–7 November 2014; pp. 450–456. [Google Scholar] [CrossRef] [Green Version]
- Yahiaoui, S.; Omar, M.; Bouabdallah, A.; Natalizio, E.; Challal, Y. An energy efficient and QoS aware routing protocol for wireless sensor and actuator networks. AEU Int. J. Electron. Commun. 2018, 83, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Khairnar, V.; Kotecha, K. Performance of Vehicle-to-Vehicle Communication using IEEE 802.11p in Vehicular Ad-hoc Network Environment. Int. J. Netw. Secur. Its Appl. 2013, 5. [Google Scholar] [CrossRef]
Pros | Cons |
---|---|
Enlarge the concept of software networks | Only prototypes are currently available |
No generation of new signals but reuse of existing ones | Not immediate integration in wireless networks |
Programmable frequency selection | Performance of wireless networks with meta-surfaces still under investigation |
Potential increasing of information reliability | More sensitive to channel estimation errors |
Sensing capabilities | Potential need of power sources |
Storage capabilities | Potential need of storage capabilities |
Deployment scalability | Can introduce delays by storing and releasing the reflected signals |
Can offer new services without emitting additional radio waves | Reflected waves are phase shifted and delayed |
Potential Uses of Reconfigurable Meta-Surfaces | Safety | Non-Safety |
---|---|---|
Beamforming | Incident detection | Video Sharing |
Hazardous warning | ||
Cooperative collision avoidance | ||
Trajectories alignment | ||
Range extension | Information sharing for automated driving | Info-traffic sharing |
Precise long horizon information | ||
Cooperative platooning | ||
Cooperative driving | ||
Uplink bottleneck | Remote driving information uploading | Traffic information uploading |
resolution for V2I | in dense environments | |
Positioning | V2R detection | Personalized information |
V2P communication | Location aware information | |
Remote sensing | Hazard prevention | Environment detection |
Extended sensors |
Parameter (Symbol) | Value |
---|---|
IEEE 802.11p mode | 3 |
Modulation | QPSK |
Coding rate | 1/2 |
Raw data rate | 6 Mb/s |
Vehicle density () | Variable |
Beacon frequency () | 10 Hz |
Vehicle density () | Variable |
Equivalent radiated power () | 33 dBm |
Receiver antenna gain () | 3 dB |
Path loss at 1 m at 5.9 GHz () | 47.86 dB |
Path loss exponent () | 2.75 |
Noise power over 10 MHz () | −95 dBm |
Beacon size () | 300 bytes |
Contention window () | 15 |
Slot duration () | 13 s |
AIFS duration () | 58 s |
Overhead per packet | 40 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masini, B.M.; Silva, C.M.; Balador, A. The Use of Meta-Surfaces in Vehicular Networks. J. Sens. Actuator Netw. 2020, 9, 15. https://doi.org/10.3390/jsan9010015
Masini BM, Silva CM, Balador A. The Use of Meta-Surfaces in Vehicular Networks. Journal of Sensor and Actuator Networks. 2020; 9(1):15. https://doi.org/10.3390/jsan9010015
Chicago/Turabian StyleMasini, Barbara M., Cristiano M. Silva, and Ali Balador. 2020. "The Use of Meta-Surfaces in Vehicular Networks" Journal of Sensor and Actuator Networks 9, no. 1: 15. https://doi.org/10.3390/jsan9010015
APA StyleMasini, B. M., Silva, C. M., & Balador, A. (2020). The Use of Meta-Surfaces in Vehicular Networks. Journal of Sensor and Actuator Networks, 9(1), 15. https://doi.org/10.3390/jsan9010015