Frequency-Domain Evidence for Climate Change
Abstract
:1. Introduction
Literature Review
2. Methods
2.1. Estimation of the Memory Parameter
2.2. Testing
3. Empirical Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baiardi, Donatella, and Claudio Morana. 2020. Climate Change Awareness: Empirical Evidence for the European Union. University of Milan Bicocca Department of Economics, Management and Statistics Working Paper No. 426. January. Available online: https://ssrn.com/abstract=3513061 (accessed on 5 July 2020).
- Chang, Yoosoon, Robert K. Kaufmann, Chang Sik Kim, J. Isaac Miller, Joon Y. Park, and Sungkeun Park. 2020. Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate. Journal of Econometrics 214: 274–94. [Google Scholar] [CrossRef]
- Davidson, James E.H., David B. Stephenson, and Alemtsehai A. Turasie. 2016. Time series modeling of paleoclimate data. Environmetrics 27: 55–65. [Google Scholar] [CrossRef]
- Delworth, Thomas L., and Michael E. Mann. 2000. Observed and simulated multidecadal variability in the northern hemisphere. Climate Dynamics 16: 661–76. [Google Scholar] [CrossRef] [Green Version]
- Dickey, David A., and Wayne A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427–31. [Google Scholar]
- Dickey, David A., and Wayne A. Fuller. 1981. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Journal of the Econometric Society 49: 1057–72. [Google Scholar] [CrossRef]
- Estrada, Francisco, Luis Filipe Martins, and Pierre Perron. 2017. Characterizing and attributing the warming trend in sea and land surface temperatures. Atmósfera 30: 163–87. [Google Scholar] [CrossRef] [Green Version]
- Estrada, Francisco, and Pierre Perron. 2019. Breaks, trends and the attribution of climate change: A time-series analysis. Economía 42: 1–31. [Google Scholar] [CrossRef] [Green Version]
- Estrada, Francisco, Pierre Perron, and Benjamín Martínez-López. 2013. Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience 6: 1050–55. [Google Scholar] [CrossRef] [Green Version]
- Fomby, Thomas B., and Timothy J. Vogelsang. 2002. The application of size-robust trend statistics to global-warming temperature series. Journal of Climate 15: 117–23. [Google Scholar] [CrossRef] [Green Version]
- Gay-Garcia, Carlos, Francisco Estrada, and Armando Sánchez. 2009. Global and hemispheric temperatures revisited. Climatic Change 94: 333–49. [Google Scholar] [CrossRef]
- Geweke, John, and Susan Porter-Hudak. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis 4: 221–38. [Google Scholar] [CrossRef]
- Granger, Clive W.J., and Roselyne Joyeux. 1980. An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis 1: 15–29. [Google Scholar] [CrossRef]
- Grenander, Ulf, and Murray Rosenblatt. 1957. Statistical Analysis of Stationary Time Series. New York: John Wiley and Sons. [Google Scholar]
- Harvey, David I., Stephen J. Leybourne, and A.M. Robert Taylor. 2013. Testing for unit roots in the possible presence of multiple trend breaks using minimum dickey–fuller statistics. Journal of Econometrics 177: 265–84. [Google Scholar] [CrossRef]
- Hassler, Uwe. 1993. Regression of spectral estimators with fractionally integrated time series. Journal of Time Series Analysis 14: 369–80. [Google Scholar] [CrossRef]
- Hosking, Jonathan R. M. 1981. Fractional differencing. Biometrika 68: 165–76. [Google Scholar] [CrossRef]
- Hurvich, Clifford M., Rohit Deo, and Julia Brodsky. 1998. The mean squared error of geweke and porter-hudak’s estimator of the memory parameter of a long-memory time series. Journal of Time Series Analysis 19: 19–46. [Google Scholar] [CrossRef]
- Jones, Philip. D., Dave H. Lister, Timothy J. Osborn, Colin Harpham, Melissa Salmon, and Colin P. Morice. 2012. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research: Atmospheres 117. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, Robert K., Heikki Kauppi, and James H. Stock. 2006. Emissions, concentrations, & temperature: A time series analysis. Climatic Change 77: 249–78. [Google Scholar]
- Kaufmann, Robert K., Heikki Kauppi, and James H. Stock. 2010. Does temperature contain a stochastic trend? evaluating conflicting statistical results. Climatic Change 101: 395–405. [Google Scholar] [CrossRef]
- Kaufmann, Robert K., and David I. Stern. 2002. Cointegration analysis of hemispheric temperature relations. Journal of Geophysical Research: Atmospheres 107: ACL-8. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, John J., Nick A. Rayner, Robert O. Smith, David E. Parker, and Michael Saunby. 2011. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. Journal of Geophysical Research: Atmospheres 116. [Google Scholar] [CrossRef]
- Künsch, Hans Rudolph. 1986. Discrimination between monotonic trends and long-range dependence. Journal of applied Probability 23: 1025–30. [Google Scholar] [CrossRef]
- Künsch, Hans Rudolph. 1987. Statistical aspects of self-similar processes. In Proceedings of the First World Congress of the Bernoulli Society. Tashkent: VNU Science Press, pp. 67–74. [Google Scholar]
- Kwiatkowski, Denis, Peter C. B. Phillips, Peter Schmidt, and Yongcheol Shin. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics 54: 159–78. [Google Scholar] [CrossRef]
- Lai, Kon S., and Mann Yoon. 2018. Nonlinear trend stationarity in global and hemispheric temperatures. Applied Economics Letters 25: 15–18. [Google Scholar] [CrossRef]
- Lee, Tien Ming, Ezra M. Markowitz, Peter D. Howe, Chia-Ying Ko, and Anthony A. Leiserowitz. 2015. Predictors of public climate change awareness and risk perception around the world. Nature Climate Change 5: 1014–20. [Google Scholar] [CrossRef]
- Lenssen, Nathan J. L., Gavin A. Schmidt, James E. Hansen, Matthew J. Menne, Avraham Persin, Reto Ruedy, and Daniel Zyss. 2019. Improvements in the gistemp uncertainty model. Journal of Geophysical Research: Atmospheres 124: 6307–26. [Google Scholar] [CrossRef]
- Mangat, Manveer Kaur, and Erhard Reschenhofer. 2019. Testing for long-range dependence in financial time series. Central European Journal of Economic Modelling and Econometrics (CEJEME) 11: 93–106. [Google Scholar]
- Mills, Terence C. 2012. Semi-parametric modelling of temperature records. Journal of Applied Statistics 39: 361–83. [Google Scholar] [CrossRef]
- Morana, Claudio, and Giacomo Sbrana. 2019. Climate change implications for the catastrophe bonds market: An empirical analysis. Economic Modelling 81: 274–94. [Google Scholar] [CrossRef]
- Morice, Colin P., John J. Kennedy, Nick A. Rayner, and Phil D. Jones. 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The hadcrut4 data set. Journal of Geophysical Research: Atmospheres 117. [Google Scholar] [CrossRef]
- Ng, Serena, and Pierre Perron. 2001. Lag length selection and the construction of unit root tests with good size and power. Econometrica 69: 1519–54. [Google Scholar] [CrossRef] [Green Version]
- Peiris, M. Shelton, and J. R. Court. 1993. A note on the estimation of degree of differencing in long memory time series analysis. Probability and Mathematical Statistics 14: 223–229. [Google Scholar]
- Perron, Pierre, and Zhongjun Qu. 2007. A simple modification to improve the finite sample properties of ng and perron’s unit root tests. Economics Letters 94: 12–19. [Google Scholar] [CrossRef]
- Perron, Pierre, and Gabriel Rodríguez. 2003. Gls detrending, efficient unit root tests and structural change. Journal of Econometrics 115: 1–27. [Google Scholar] [CrossRef] [Green Version]
- Perron, Pierre, and Tomoyoshi Yabu. 2009. Testing for shifts in trend with an integrated or stationary noise component. Journal of Business & Economic Statistics 27: 369–96. [Google Scholar]
- Phillips, Peter C. B., and Pierre Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–46. [Google Scholar] [CrossRef]
- Poortinga, Wouter, Stephen Fisher, Gisela Bohm, Linda Steg, Lorraine Whitmarsh, and Charles Ogunbode. 2018. European Attitudes to Climate Change and Energy: Topline Results from Round 8 of the European Social Survey. ESS Topline Results Series; London: University of London. [Google Scholar]
- Pötscher, Benedikt M. 2002. Lower risk bounds and properties of confidence sets for ill-posed estimation problems with applications to spectral density and persistence estimation, unit roots, and estimation of long memory parameters. Econometrica 70: 1035–65. [Google Scholar] [CrossRef]
- Pretis, Felix. 2020. Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions. Journal of Econometrics 214: 256–73. [Google Scholar] [CrossRef]
- Reisen, Valderio A. 1994. Estimation of the fractional difference parameter in the arima (p, d, q) model using the smoothed periodogram. Journal of Time Series Analysis 15: 335–50. [Google Scholar] [CrossRef]
- Reschenhofer, Erhard. 2013. Robust testing for stationarity of global surface temperature. Journal of Applied Statistics 40: 1349–61. [Google Scholar] [CrossRef]
- Reschenhofer, Erhard, and Manveer Kaur Mangat. 2020. Detecting long-range dependence with truncated ratios of periodogram ordinates. Communications in Statistics—Theory and Methods, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Reschenhofer, Erhard, Manveer Kaur Mangat, and Thomas Stark. 2020. Improved estimation of the memory parameter. Theoretical Economics Letters 10: 47–68. [Google Scholar] [CrossRef] [Green Version]
- Robinson, Peter M. 1995. Gaussian semiparametric estimation of long range dependence. The Annals of Statistics 23: 1630–61. [Google Scholar] [CrossRef]
- Schmidt, Peter, and Peter C. B. Phillips. 1992. Lm tests for a unit root in the presence of deterministic trends. Oxford Bulletin of Economics and Statistics 54: 257–87. [Google Scholar] [CrossRef]
- Stern, David I., and Robert K. Kaufmann. 1999. Econometric analysis of global climate change. Environmental Modelling & Software 14: 597–605. [Google Scholar]
- Vogelsang, Timothy J. 1998. Trend function hypothesis testing in the presence of serial correlation. Econometrica 66: 123–48. [Google Scholar] [CrossRef]
K | ||||||
---|---|---|---|---|---|---|
6 | 0.90 | 0.95 | 1.14 | 0.94 | 0.90 | 0.93 |
7 | 0.90 | 0.94 | 1.15 | 0.97 | 0.90 | 0.92 |
8 | 1.48 | 1.98 | 1.11 | 0.97 | 1.06 | 1.16 |
9 | 1.30 | 1.57 | 1.10 | 0.97 | 0.96 | 0.90 |
10 | 1.17 | 1.32 | 1.04 | 0.95 | 0.91 | 0.87 |
11 | 1.14 | 1.25 | 1.01 | 0.94 | 0.94 | 0.92 |
12 | 1.12 | 1.20 | 0.98 | 0.93 | 0.97 | 0.96 |
13 | 1.12 | 1.19 | 0.98 | 0.93 | 1.00 | 1.00 |
14 | 1.10 | 1.16 | 0.96 | 0.91 | 1.02 | 1.03 |
15 | 1.02 | 1.04 | 0.93 | 0.90 | 0.93 | 0.86 |
K | Global | Excl. 3rd | NH | SH | NH (GISS) | AMO-detr. (HP) | |
---|---|---|---|---|---|---|---|
0.4 | 8 | 0.446 ** | 0.486 ** | 0.444 ** | 0.444 ** | 0.46 ** | 0.444 ** |
10 | 0.437 ** | 0.447 ** | 0.447 ** | 0.42 ** | 0.46 ** | 0.447 ** | |
12 | 0.456 *** | 0.448 ** | 0.473 *** | 0.427 ** | 0.418 ** | 0.473 *** | |
14 | 0.468 *** | 0.459 *** | 0.475 *** | 0.444 *** | 0.412 *** | 0.475 *** | |
0.49 | 8 | 0.404 * | 0.425 * | 0.405 * | 0.398 * | 0.407 * | 0.405 * |
10 | 0.382 * | 0.375 * | 0.397 ** | 0.358 * | 0.403 ** | 0.397 ** | |
12 | 0.396 ** | 0.376 ** | 0.42 ** | 0.36 ** | 0.353 ** | 0.42 ** | |
14 | 0.41 *** | 0.387 ** | 0.418 *** | 0.375 ** | 0.345 ** | 0.418 *** | |
0.5 | 8 | 0.399 * | 0.418 * | 0.4 * | 0.393 * | 0.401 * | 0.4 * |
10 | 0.376 * | 0.367 * | 0.391 ** | 0.351 * | 0.397 ** | 0.391 ** | |
12 | 0.39 ** | 0.369 * | 0.414 ** | 0.352 * | 0.346 * | 0.414 ** | |
14 | 0.403 ** | 0.379 ** | 0.412 *** | 0.367 ** | 0.338 ** | 0.412 *** | |
−0.4 | 8 | 0.468 ** | 0.494 ** | 0.525 ** | 0.292 | 0.528 ** | 0.525 ** |
10 | 0.444 ** | 0.47 ** | 0.504 *** | 0.268 | 0.5 *** | 0.504 *** | |
12 | 0.414 ** | 0.439 ** | 0.469 *** | 0.25 | 0.442 *** | 0.469 *** | |
14 | 0.404 *** | 0.428 *** | 0.455 *** | 0.23 | 0.419 *** | 0.455 *** |
1% | 5% | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.4 | −0.1 | 0.011 | 0.011 | 0.012 | 0.010 | 0.052 | 0.054 | 0.058 | 0.052 |
0 | 0.010 | 0.012 | 0.010 | 0.010 | 0.059 | 0.049 | 0.055 | 0.062 | |
0.1 | 0.011 | 0.012 | 0.011 | 0.012 | 0.056 | 0.060 | 0.059 | 0.050 | |
0.49 | −0.1 | 0.014 | 0.012 | 0.011 | 0.012 | 0.059 | 0.059 | 0.056 | 0.064 |
0 | 0.012 | 0.012 | 0.012 | 0.013 | 0.053 | 0.061 | 0.058 | 0.059 | |
0.1 | 0.012 | 0.014 | 0.015 | 0.014 | 0.062 | 0.059 | 0.060 | 0.064 | |
0.5 | −0.1 | 0.010 | 0.013 | 0.013 | 0.012 | 0.054 | 0.057 | 0.058 | 0.056 |
0 | 0.013 | 0.016 | 0.011 | 0.012 | 0.062 | 0.059 | 0.059 | 0.060 | |
0.1 | 0.009 | 0.013 | 0.010 | 0.013 | 0.059 | 0.063 | 0.065 | 0.058 | |
−0.4 | −0.1 | 0.017 | 0.014 | 0.015 | 0.015 | 0.069 | 0.066 | 0.072 | 0.071 |
0 | 0.016 | 0.017 | 0.014 | 0.019 | 0.070 | 0.070 | 0.065 | 0.067 | |
0.1 | 0.014 | 0.017 | 0.017 | 0.015 | 0.073 | 0.069 | 0.065 | 0.068 |
0.4 | −0.1 | 0.363 | 0.45 | 0.545 | 0.619 | 0.649 | 0.777 | 0.854 | 0.914 | 0.797 | 0.903 | 0.963 | 0.983 |
0 | 0.381 | 0.459 | 0.555 | 0.623 | 0.663 | 0.781 | 0.877 | 0.915 | 0.797 | 0.897 | 0.960 | 0.985 | |
0.1 | 0.372 | 0.476 | 0.551 | 0.63 | 0.653 | 0.785 | 0.864 | 0.915 | 0.792 | 0.906 | 0.956 | 0.985 | |
0.49 | −0.1 | 0.259 | 0.321 | 0.393 | 0.439 | 0.527 | 0.659 | 0.762 | 0.837 | 0.658 | 0.812 | 0.901 | 0.949 |
0 | 0.259 | 0.331 | 0.384 | 0.445 | 0.526 | 0.668 | 0.754 | 0.84 | 0.663 | 0.805 | 0.903 | 0.947 | |
0.1 | 0.271 | 0.321 | 0.389 | 0.446 | 0.547 | 0.67 | 0.774 | 0.839 | 0.663 | 0.818 | 0.900 | 0.946 | |
0.5 | −0.1 | 0.257 | 0.314 | 0.372 | 0.428 | 0.517 | 0.643 | 0.748 | 0.817 | 0.657 | 0.795 | 0.895 | 0.942 |
0 | 0.248 | 0.299 | 0.374 | 0.413 | 0.517 | 0.659 | 0.745 | 0.817 | 0.656 | 0.792 | 0.891 | 0.948 | |
0.1 | 0.252 | 0.326 | 0.379 | 0.431 | 0.518 | 0.64 | 0.755 | 0.828 | 0.651 | 0.808 | 0.883 | 0.943 | |
−0.4 | −0.1 | 0.142 | 0.171 | 0.194 | 0.211 | 0.394 | 0.498 | 0.578 | 0.655 | 0.697 | 0.809 | 0.891 | 0.937 |
0 | 0.140 | 0.181 | 0.195 | 0.221 | 0.392 | 0.493 | 0.591 | 0.665 | 0.704 | 0.810 | 0.892 | 0.939 | |
0.1 | 0.152 | 0.170 | 0.202 | 0.224 | 0.406 | 0.506 | 0.588 | 0.669 | 0.692 | 0.813 | 0.894 | 0.943 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangat, M.K.; Reschenhofer, E. Frequency-Domain Evidence for Climate Change. Econometrics 2020, 8, 28. https://doi.org/10.3390/econometrics8030028
Mangat MK, Reschenhofer E. Frequency-Domain Evidence for Climate Change. Econometrics. 2020; 8(3):28. https://doi.org/10.3390/econometrics8030028
Chicago/Turabian StyleMangat, Manveer Kaur, and Erhard Reschenhofer. 2020. "Frequency-Domain Evidence for Climate Change" Econometrics 8, no. 3: 28. https://doi.org/10.3390/econometrics8030028
APA StyleMangat, M. K., & Reschenhofer, E. (2020). Frequency-Domain Evidence for Climate Change. Econometrics, 8(3), 28. https://doi.org/10.3390/econometrics8030028