Climate Change Impacts on Streamflow in the Krishna River Basin, India: Uncertainty and Multi-Site Analysis
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. Data and Methods
2.3. Reliability Ensemble Averaging (REA)
- Divide the total range of RCM variable data into 10 equal intervals of CDF with respect to the observed time series data and compute the RMSE. Inverse values of RMSE are considered as the proportional weights, and the sum of the weights of all RCMs is equal to one. Higher weights are assigned to models that perform better.
- Model convergence criteria are applied by considering the weights obtained from model performance criteria as the initial weight for their respective RCMs.
- The product of the initial weight (Wint) and the corresponding CDF of the future simulated with RCM (FRCMi) is taken as the weighted mean CDF (Fwm):
- The same procedure is repeated again as in Step 1, but the RMSE calculated with respect to the weighted CDF and future projection of RCM and weights obtained will be used in the next iteration for the respective RCMs, and a new weighted CDF with different weights is computed.
- Repeat Steps 2 to 4 until the same weight repeats and the model convergence criteria is met.
2.4. Quantile Mapping Method of Bias Correction
2.5. SWAT Model Setup
2.6. Calibration and Validation of the Model Using SWAT-CUP
2.7. Statistical Methods
3. Results and Discusion
3.1. Future Projections of REA Climate Data
3.2. Calibration and Validation of the SWAT Model
3.3. Future Streamflow Projections
3.4. Climate Change Impact Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satish Kumar, K.; Venkata Rathnam, E.; Sridhar, V. Tracking seasonal fluctuations of drought indices with GRACE terrestrial water storage over major river basins in South India. Sci. Total Environ. 2020, 763, 142994. [Google Scholar] [CrossRef]
- Sridhar, V.; Kang, H.; Ali, S.A. Human-Induced Alterations to Land Use and+ Climate and Their Responses for Hydrology and Water Management in the Mekong River Basin. Water 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Jaksa, W.; Fang, B.; Lakshmi, V.; Hubbard, K.G.; Jin, X. Evaluating Bias-Corrected AMSR-E Soil Moisture using in situ Observations and Model Estimates. Vadose Zone J. 2013, 12, 1–13. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Mach, K.J.; Mastrandrea, M.D.; van Aalst, M.; Adger, W.N.; Arent, D.J.; Barnett, J.; Betts, R.; Bilir, T.E.; et al. Technical summary. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 35–94. [Google Scholar]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.A.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A.; Patt, A.; Takeuchi, K.; et al. Adaptation Needs and Options. Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; IPCC: Geneva, Switzerland, 2015; pp. 833–868. [Google Scholar]
- Lal, M. Implications of climate change in sustained agricultural productivity in South Asia. Reg. Environ. Chang. 2011, 11 (Suppl. S1), 79–94. [Google Scholar] [CrossRef]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather. Clim. Extremes 2018, 20, 45–53. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Sridhar, V. Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A Case-Study of the Palar Sub-Watershed in Kodaikanal, South India. Water 2018, 10, 1608. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V.; Valayamkunnath, P. Land-Atmosphere Interactions in South Asia: A Regional Earth Systems Perspective: Chapter 30, Land-Atmospheric Research Applications in South and Southeast Asia; Vadrevu, K.P., Ohara, T., Justice, C., Eds.; Springer Remote Sensing/Photogrammetry: Berlin/Heidelberg, Germany, 2018; pp. 699–712. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate Extremes: Observations, Modeling, and Impacts. Science 2019, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, V.; Lilhare, R. Hydrologic sensitivity of Indian sub-continental river basins to climate change. Glob. Planet. Chang. 2016, 139, 78–96. [Google Scholar] [CrossRef]
- Leon, A.S.; Kanashiro, E.A.; Valverde, R.; Sridhar, V. Dynamic Framework for Intelligent Control of River Flooding: Case Study. J. Water Resour. Plan. Manag. 2014, 140, 258–268. [Google Scholar] [CrossRef]
- Karl, T.R.; Meehl, G.A.; Miller, C.D.; Hassol, S.J. Weather and Climate Extremes in a Changing Climate Regions of Focus: North America, Hawaii, Caribbean, and U.S. Pacific Islands, Synthesis and Assessment Product 3.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Hoekema, D.J.; Sridhar, V.; Jin, X. The Adaptability and Sustainability of Surface Water Diversions Along the Main Stem of the Snake River in Southern Idaho. In Proceedings of the 2011 World Environmental and Water Resources Congress, Palm Springs, CA, USA, 22–26 May 2011. [Google Scholar]
- Hoekema, D.J.; Sridhar, V. Relating climatic attributes and water resources allocation: A study using surface water supply and soil moisture indices in the Snake River basin, Idaho. Water Resour. Res. 2011, 47, W07536. [Google Scholar] [CrossRef] [Green Version]
- Demaria, E.M.C.; Palmer, N.R.; and Roundy, K.J. Peer review report 2 on ‘Regional climate change projections of streamflow characteristics in the Northeast and Midwest. U.S.’. J. Hydrol. Reg. Stud. 2016, 5, 38–39. [Google Scholar]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Deshpande, K. Assessing Hydrological Response to Changing Climate in the Krishna Basin of India. J. Earth Sci. Clim. Change 2014, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Chandra, R.; Saha, U.; Mujumdar, P. Model and parameter uncertainty in IDF relationships under climate change. Adv. Water Resour. 2015, 79, 127–139. [Google Scholar] [CrossRef]
- Das, J.; Umamahesh, N.V. Uncertainty and Nonstationarity in Streamflow Extremes under Climate Change Scenarios over a River Basin. J. Hydrol. Eng. 2017, 22, 4017042. [Google Scholar] [CrossRef]
- Bejagam, V.; Keesara, V.R.; Sridhar, V. Climate change impact on water provisional service and hydropower production of Tungabhadra basin using InVEST model. River Res. Appl. 2021, 37, 9. [Google Scholar] [CrossRef]
- Ramabrahmam, K.; Keesara, V.R.; Srinivasan, R.; Pratap, D.; Sridhar, V. Flow Simulation and Storage Assessment in an Ungauged Irrigation Tank Cascade System Using the SWAT Model. Sustainability 2021, 13, 13158. [Google Scholar] [CrossRef]
- Serrão, E.A.D.O.; Silva, M.T.; Ferreira, T.R.; de Ataide, L.C.P.; Wanzeler, R.T.S.; Silva, V.D.P.R.D.; de Lima, A.M.M.; Sousa, F.D.A.S.D. Large-Scale hydrological modelling of flow and hydropower production, in a Brazilian watershed. Ecohydrol. Hydrobiol. 2020, 21, 23–35, ISSN 1642-3593. [Google Scholar] [CrossRef]
- de Andrade, C.W.; Montenegro, S.M.; Montenegro, A.A.; Lima, J.R.D.S.; Srinivasan, R.; Jones, C.A. Soil moisture and discharge modeling in a representative watershed in northeastern Brazil using SWAT. Ecohydrol. Hydrobiol. 2018, 19, 238–251, ISSN 1642-3593. [Google Scholar] [CrossRef]
- Hillard, U. Assessing snowmelt dynamics with NASA scatterometer (NSCAT) data and a hydrologic process model. Remote Sens. Environ. 2003, 86, 52–69. [Google Scholar] [CrossRef]
- Uniyal, B.; Jha, M.K.; Verma, A.K. Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model. Water Resour. Manag. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Quantification of hydrologic impacts of climate change in a Mediterranean basin in Sardinia, Italy, through high-resolution simulations. Hydrol. Earth Syst. Sci. 2014, 18, 5201–5217. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, V. Tracking the Influence of Irrigation on Land Surface Fluxes and Boundary Layer Climatology. J. Contemp. Water Res. Educ. 2013, 152, 79–93. [Google Scholar] [CrossRef]
- Sridhar, V.; Hubbard, K.G.; Wedin, D.A. Assessment of Soil Moisture Dynamics of the Nebraska Sandhills Using Long-Term Measurements and a Hydrology Model. J. Irrig. Drain. Eng. 2006, 132, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Valayamkunnath, P.; Sridhar, V.; Zhao, W.; Allen, R.G. Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric. For. Meteorol. 2018, 248, 22–47. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340. [Google Scholar] [CrossRef]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Jha, M.; Pan, Z.; Takle, E.S.; Gu, R. Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. J. Geophys. Res. Atmos. 2004, 109, D09105. [Google Scholar] [CrossRef]
- Bhadoriya, U.P.S.; Mishra, A.; Singh, R.; Chatterjee, C. Implications of climate change on water storage and filling time of a multipurpose reservoir in India. J. Hydrol. 2020, 590, 125542. [Google Scholar] [CrossRef]
- Das, J.; Treesa, A.; Umamahesh, N.V. Modelling Impacts of Climate Change on a River Basin: Analysis of Uncertainty Using REA & Possibilistic Approach. Water Resour. Manag. 2018, 32, 4833–4852. [Google Scholar] [CrossRef]
- Das, J.; Nanduri, U.V. Assessment and evaluation of potential climate change impact on monsoon flows using machine learning technique over Wainganga River basin, India. Hydrol. Sci. J. 2018, 63, 1020–1046. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Raje, D.; Mujumdar, P.P. Mahanadi streamflow_climate change impacts assessment and adaptive strategies.pdf. Curr. Sci. 2010, 98, 1084–1091. [Google Scholar]
- Islam, A.; Sikka, A.K.; Saha, B.; Singh, A. Streamflow Response to Climate Change in the Brahmani River Basin, India. Water Resour. Manag. 2012, 26, 1409–1424. [Google Scholar] [CrossRef]
- Das, J.; Nanduri, U.V. Future Projection of Precipitation and Temperature Extremes Using Change Factor Method over a River Basin: Case Study. J. Hazard. Toxic Radioact. Waste 2018, 22, 04018006. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Arora, A. Climate change impact assessment of water resources of {India}. Curr. Sci. 2011, 101, 356–371. [Google Scholar]
- Anandhi, A.; Srinivas, V.V.; Nanjundiah, R.S.; Kumar, D.N. Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int. J. Clim. 2007, 28, 401–420. [Google Scholar] [CrossRef]
- Coulibaly, P.; Dibike, Y.; Anctil, F. Downscaling Precipitation and Temperature with Temporal Neural Networks. J. Hydrometeorol. 2005, 6, 483–496. [Google Scholar] [CrossRef]
- Das, J.; Umamahesh, N.V. Assessment of uncertainty in estimating future flood return levels under climate change. Nat. Hazards 2018, 93, 109–124. [Google Scholar] [CrossRef]
- Mujumdar, P.P.; Ghosh, S. Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India. Water Resour. Res. 2008, 44, W06407. [Google Scholar] [CrossRef]
- Bouwer, L.M.; Aerts, J.C.J.H.; Droogers, P.; Dolman, A.J. Detecting the long-term impacts from climate variability and increasing water consumption on runo ff in the Krishna river basin (India). Hydrol. Earth Syst. Sci. 2006, 10, 1249–1280. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate change impact assessment on hydrology of Indian river basins. Current 2006, 90, 346–353. [Google Scholar]
- Amarasinghe, U.; Sharma, B.R.; Aloysius, N.; Scott, C.; Smakhtin, V.; De Fraiture, C. Spatial Variation in Water Supply and Demand across River Basins of India; International Water Management Institute: Colombo, Sri Lanka, 2004; Volume 83. [Google Scholar]
- Amarasinghe, U.A.; Shah, T.; Turral, H.; Anand, B.K. India’s Water Future to 2025–2050: Business-as-Usual Scenario and Deviations; IWMI: Colombo, Sri Lanka, 2007. [Google Scholar]
- Biggs, T.W.; Gaur, A.; Scott, C.; Thenkabail, P.S.; Rao, P.G.; Gumma, M.K.; Acharya, S.; Turral, H.N. Closing of the Krishna Basin: Irrigation, Streamflow Depletion and Macroscale Hydrology; IWMI: Colombo, Sri Lanka, 2007. [Google Scholar]
- Chanapathi, T.; Thatikonda, S.; Raghavan, S. Analysis of rainfall extremes and water yield of Krishna river basin under future climate scenarios. J. Hydrol. Reg. Stud. 2018, 19, 287–306. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Sowjanya, P.N.; Venkata Reddy, K.; Shashi, M. Intra- and interannual streamflow variations of Wardha watershed under changing climate. ISH J. Hydraul. Eng. 2020, 26, 197–208. [Google Scholar] [CrossRef]
- Sarma, J. Impact of High Rinfall/Floods on Groundwater Resources in the Krishna River Basin (during 1999–2009); India Environment Portal: New Delhi, India, 2011. [Google Scholar]
- Giorgi, F.; Mearns, L.O. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys. Res. Lett. 2003, 30, 2–5. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Piani, C.; Haerter, J.O.; Coppola, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Clim. 2009, 99, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend Author(s): Henry B. Mann Published by: The Econometric Society Stable URL: http://www.jstor.org/stable/1907187 REFERENCES Linked references are available on JSTOR for this article: You may need to log in to JSTOR t. J. Econom. Soc. 2016, 13, 245–259. [Google Scholar] [CrossRef]
- Nayak, P.C.; Wardlaw, R.; Kharya, A.K. Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India. Int. J. River Basin Manag. 2015, 13, 243–261. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Singh, L.; Saravanan, S. Simulation of monthly streamflow using the SWAT model of the Ib River watershed, India. J. Hydro-Environ. Res. 2020, 3, 95–105. [Google Scholar] [CrossRef]
- Jha, M.K. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis. Water 2011, 3, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Nikam, B.R.; Garg, V.; Jeyaprakash, K.; Gupta, P.K.; Srivastav, S.K.; Thakur, P.K.; Aggarwal, S.P. Analyzing future water availability and hydrological extremes in the Krishna basin under changing climatic conditions. Arab. J. Geosci. 2018, 11, 581. [Google Scholar] [CrossRef]
- Buri, E.S.; Keesara, V.R.; Loukika, K.N.; Sridhar, V. Spatio-Temporal Analysis of Climatic Variables in the Munneru River Basin, India, Using NEX-GDDP Data and the REA Approach. Sustainability 2022, 14, 1715. [Google Scholar] [CrossRef]
Data Type | Resolution | Source |
---|---|---|
Digital Elevation Model | 30 m | Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), |
Land use/Land cover | 400 m | https://swat.tamu.edu/data/india-dataset/, accessed on 15 March 2019 |
Soil | 1:5,000,000 | https://swat.tamu.edu/data/india-dataset/, accessed on 15 March 2019 |
Observed Climate data | 0.5° grid | Indian Meteorological Department, Pune. |
Climate Model data | 0.5° grid | Centre for Climate Change Research (CCCR), Indian Institute of Meteorology (IITM) Pune. ftp://cccr.tropmet.res.in/iRODS_DATA/CORDEX-Data, accessed on 23 May 2017 |
River Discharge | 14 stations | Central Water Commission (CWC) |
Acronym | RCP | Full Name | |
---|---|---|---|
ACCESS | 4.5 | 8.5 | Australian Community Climate and Earth System Simulator |
CCSM4 | 4.5 | 8.5 | Community Climate System Model |
CNRM_CM5 | 4.5 | 8.5 | Centre National de Recherché Meteorologiques |
NorESM 1 | 4.5 | 8.5 | Norwegian Earth System Model 1 |
MPI-ESM-LR | 4.5 | - | Max Plank Institute Earth System Model |
S.No | Parameter | Initial | Final | Huvinhedgi | Narsingpur | Yadgir | Damercherla | Keesara |
---|---|---|---|---|---|---|---|---|
1 | R__CN2.mgt | −0.20 | 0.20 | −0.19 | 0.03 | 0.05 | −0.17 | 0.17 |
2 | V__ALPHA_BF.gw | 0 | 1.00 | 0.20 | 0.96 | 0.95 | 0.16 | 0.26 |
3 | V__GW_DELAY.gw | 0 | 500 | 275 | 45 | 427 | 414 | 352 |
4 | V__GWQMN.gw | 0 | 5000 | 1.24 | 1.75 | 1.70 | 1050 | 1100 |
5 | V__GW_REVAP.gw | 0.02 | 0.20 | 0.19 | 0.19 | 0.17 | 0.16 | 0.14 |
6 | R__SOL_K(..).sol | 0.14 | 0.99 | 0.99 | 0.37 | 0.66 | 0.55 | 0.72 |
7 | R__SOL_AWC(..).sol | −0.15 | 0.60 | 0.04 | 0.55 | 0.29 | 0.34 | 0.42 |
8 | R__SOL_BD(..).sol | 0.05 | 0.70 | 0.69 | 0.12 | 0.67 | 0.61 | 0.58 |
9 | V__ALPHA_BNK.rte | 0.00 | 1.00 | 0.60 | 0.40 | 0.43 | 0.36 | 0.65 |
10 | V__CH_N2.rte | −0.09 | 0.09 | 0.09 | 0.11 | 0.08 | 0.07 | 0.04 |
11 | V__CH_K2.rte | 18.72 | 103.96 | 88.36 | 86.75 | 47.45 | 48.42 | 53.26 |
12 | V__ESCO.hru | 0 | 1.00 | 0.94 | 0.55 | 0.83 | 0.46 | 0.62 |
13 | R__EPCO.hru | 0 | 1.00 | 0.30 | 0.59 | 0.16 | 0.51 | 0.48 |
14 | R__SLSUBBSN.hru | −0.12 | 0.30 | 0.13 | 0.09 | −0.05 | 0.25 | 0.06 |
Stream Gauge Station | Calibration | Validation | ||||
---|---|---|---|---|---|---|
R2 | NSE | PBias | R2 | NSE | PBias | |
Huvinhedgi | 0.62 | 0.62 | −13.50 | 0.42 | 0.42 | 79.80 |
Narsingapur | 0.62 | 0.52 | −41.90 | 0.50 | 0.47 | −73.50 |
Yadgir | 0.86 | 0.58 | −27.10 | 0.40 | 0.32 | −88.50 |
Damercherla | 0.80 | 0.75 | −8.35 | 0.58 | 0.43 | −57.80 |
Keesara | 0.68 | 0.62 | −12.40 | 0.52 | 0.48 | 65.40 |
Climate Period | RCP 4.5 | RCP 8.5 | ||
---|---|---|---|---|
Increasing | Decreasing | Increasing | Decreasing | |
Historic | 1 | 28 | ||
Future I | - | 50 | - | 48 |
Future II | 17 | 2 | 27 | 2 |
Future III | - | 24 | 38 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naga Sowjanya, P.; Keesara, V.R.; Mesapam, S.; Das, J.; Sridhar, V. Climate Change Impacts on Streamflow in the Krishna River Basin, India: Uncertainty and Multi-Site Analysis. Climate 2022, 10, 190. https://doi.org/10.3390/cli10120190
Naga Sowjanya P, Keesara VR, Mesapam S, Das J, Sridhar V. Climate Change Impacts on Streamflow in the Krishna River Basin, India: Uncertainty and Multi-Site Analysis. Climate. 2022; 10(12):190. https://doi.org/10.3390/cli10120190
Chicago/Turabian StyleNaga Sowjanya, Ponguru, Venkata Reddy Keesara, Shashi Mesapam, Jew Das, and Venkataramana Sridhar. 2022. "Climate Change Impacts on Streamflow in the Krishna River Basin, India: Uncertainty and Multi-Site Analysis" Climate 10, no. 12: 190. https://doi.org/10.3390/cli10120190
APA StyleNaga Sowjanya, P., Keesara, V. R., Mesapam, S., Das, J., & Sridhar, V. (2022). Climate Change Impacts on Streamflow in the Krishna River Basin, India: Uncertainty and Multi-Site Analysis. Climate, 10(12), 190. https://doi.org/10.3390/cli10120190