Influence of Meteo-Climatic Variables and Fertilizer Use on Crop Yields in the Sahel: A Nonlinear Neural-Network Analysis
Abstract
:1. Introduction
2. Data
3. Methods and Analyses
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Toreti, A.; Deryng, D.; Tubiello, F.N.; Müller, C.; Kimball, B.A.; Moser, G.; Boote, K.; Asseng, S.; Pugh, T.A.M.; Vanuytrecht, E.; et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 2020, 1, 775–782. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Nat. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Hua, W.; Zhou, L.; Chen, H.; Nicholson, S.E.; Raghavendra, A.; Jiang, Y. Possible causes of the Central Equatorial African long-term drought. Environ. Res. Lett. 2016, 11, 124002. [Google Scholar] [CrossRef]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 054016. [Google Scholar] [CrossRef]
- UNCCD. Desertification: The invisible frontline. In Secretariat of the United Nations Convention to Combat Desertification, 2nd ed.; UNCCD: Bonn, Germany, 2014. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. Cropland nutrient budget. In Global, Regional and Country Trends, 1961–2020; FAOSTAT Analytical Brief 52; FAO: Rome, Italy, 2022. [Google Scholar]
- FAO. FAOSTAT Crops and Livestock Production Dataset. FAOSTAT Fertilizers by Nutrient Dataset. FAOSTAT Livestock Manure Dataset. FAO, Rome, Italy. Available online: https://www.fao.org/faostat/en/#data/CL; https://www.fao.org/faostat/en/#data/RFN; https://www.fao.org/faostat/en/#data/EMN (accessed on 11 July 2022).
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.-K. (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Cai, R.; Feng, S.; Oppenheimer, M.; Pytlikova, M. Climate variability and international migration: The importance of the agricultural linkage. J. Environ. Econ. Manag. 2016, 79, 135–151. [Google Scholar] [CrossRef] [Green Version]
- Haupt, S.E.; Pasini, A.; Marzban, C. Artificial Intelligence Methods in the Environmental Sciences; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hsieh, W.W. Machine Learning Methods in the Environmental Sciences; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Pasini, A.; Modugno, G. Climatic attribution at the regional scale: A case study on the role of circulation patterns and external forcings. Atmos. Sci. Lett. 2013, 14, 301–305. [Google Scholar] [CrossRef]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953–960. [Google Scholar] [PubMed]
- LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient BackProp. In Neural Networks: Tricks of the Trade; Orr, G.B., Müller, K.-R., Eds.; Springer: New York, NY, USA, 1998; pp. 9–50. [Google Scholar]
- Pasini, A.; Racca, P.; Amendola, S.; Cartocci, G.; Cassardo, C. Attribution of recent temperature behaviour reassessed by a neural-network method. Sci. Rep. 2017, 7, 17681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasini, A.; Amendola, S. Linear and nonlinear influences of climatic changes on migration flows: A case study for the ‘Mediterranean bridge’. Environ. Res. Comm. 2019, 1, 11005. [Google Scholar] [CrossRef]
- Pasini, A.; Amendola, S.; Giacomi, A.; Calderini, P.; Barlozzari, G.; Macrì, G.; Pombi, M.; Gabrielli, S. Neural network modelling for estimating linear and nonlinear influences of meteo-climatic variables on Sergentomyia minuta abundance using small datasets. Ecol. Inform. 2020, 56, 101055. [Google Scholar] [CrossRef]
- Pasini, A.; Amendola, S.; Federbusch, E. Is natural variability really natural? The case of Atlantic Multidecadal Oscillation investigated by a neural network model. Theor. Appl. Clim. 2022, 150, 881–892. [Google Scholar] [CrossRef]
- Gong, Z.; Dong, L.; Lam, S.; Zhang, D.; Zong, Y.; Hao, X.; Li, P. Nutritional quality in response to elevated CO2 concentration in foxtail millet (Setaria italica). J. Cereal Sci. 2021, 102, 103318. [Google Scholar] [CrossRef]
- Zhu, P.; Zhuang, Q.; Archontoulis, S.V.; Bernacchi, C.; Müller, C. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Glob. Chang. Biol. 2019, 25, 2470–2484. [Google Scholar] [CrossRef] [PubMed]
- Iizumi, T.; Ramankutti, N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environ. Res. Lett. 2016, 11, 034003. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, T.; Lassaletta, L.; Mueller, N.D.; Tubiello, F.N.; Lisk, M.D.; Lu, C.; Conant, R.T.; Dorich, C.D.; Gerber, J.; et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2021, 2, 529–540. [Google Scholar] [CrossRef]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. Int. J. Clim. 2018, 38, 5405–5417. [Google Scholar] [CrossRef]
Country | Maize Yield–Mean (hg/ha) (min–max) | Millet Yield–Mean (hg/ha) (min–max) |
---|---|---|
Burkina Faso | 13,207.9 (5647–19,444) | 6688.3 (4215–9603) |
Eritrea | 5528.5 (2076–9755) | 3399.2 (1072–6932) |
Gambia | 13,284.8 (8687–18,085) | 10,403.1 (7983–12,696) |
Mali | 14,751.1 (8836–33,349) | 7604.5 (5105–10,925) |
Niger | 7141.3 (2612–15,173) | 4102.7 (2548–5291) |
Nigeria | 14,307 (9707–21,961) | 12,502.2 (8336–18,483) |
Senegal | 13,048.7 (7274–27,961) | 6280.1 (4048–7872) |
Country | p–Mean (mm/Month) (min–max) | T–Mean (°C) (min–max) | #hT > 30–Mean (h) (min–max) | N + Manure-Mean (kg/ha) (min–max) | CO2–Mean (ppm) (min–max) |
---|---|---|---|---|---|
Burkina Faso | 49.7 (28.2–92.3) | 29 (25.9–31) | 987.4 (514.6–1318.5) | 9.8 (3.7–16.2) | 362.6 (338.8–390.1) |
Eritrea | 56.2 (45.6–66.9) | 27.4 (26.4–28.4) | 20.4 (4.6–67.6) | 12.2 (6.5–21.5) | 372.4 (357.2–390.1) |
Gambia | 62.9 (51.1–77.3) | 27.9 (27.4–28.7) | 56.1 (16.3–147.8) | 7.8 (4.5–21.1) | 362.2 (338.8–390.1) |
Mali | 51.5 (33.6–83.9) | 29.2 (27–31) | 491.6 (186.2–942.5) | 10 (5.5–15.5) | 362.6 (338.8–390.1) |
Niger | 30.8 (12.8–62.3) | 29.2 (26.4–31.3) | 1001.6 (631.7–1355.8) | 1.3 (1–1.8) | 362.6 (338.8–390.1) |
Nigeria | 132.7 (104.6–180.4) | 25.9 (24.7–26.8) | 1124.5 (624.5–1459.5) | 7 (4.8–10.9) | 362.6 (338.8–390.1) |
Senegal | 45.3 (33.8–58.6) | 27.7 (27–28.3) | 671.7 (526.8–778.3) | 6.4 (3.3–11.4) | 362.6 (338.8–390.1) |
NN | Inputs | R2 (NN) | RMSE (NN) | R2 (Linear) | RMSE (Linear) |
---|---|---|---|---|---|
4-5-1 | p, T, #hT > 30, N + manure | 0.594 | 3884.90 | 0.457 | 4287.33 |
3-5-1 | T, #hT > 30, N + manure | 0.558 | 4006.88 | 0.290 | 4618.01 |
3-5-1 | p, #hT > 30, N + manure | 0.589 | 3906.97 | 0.368 | 4483.21 |
3-5-1 | p, T, N + manure | 0.514 | 4133.76 | 0.463 | 4271.62 |
3-5-1 | p, T, #hT > 30 | 0.507 | 4162.38 | 0.419 | 4376.25 |
NN | Inputs | R2 (NN) | RMSE (NN) | R2 (Linear) | RMSE (Linear) |
---|---|---|---|---|---|
5-5-1 | p, T, #hT > 30, N + manure, CO2 | 0.789 | 2040.29 | 0.742 | 2223.94 |
4-5-1 | p, T, #hT > 30, N + manure | 0.782 | 2068.31 | 0.743 | 2219.52 |
4-5-1 | T, #hT > 30, N + manure, CO2 | 0.779 | 2092.79 | 0.466 | 2937.33 |
4-5-1 | p, #hT > 30, N + manure, CO2 | 0.778 | 2087.50 | 0.708 | 2344.47 |
4-5-1 | p, T, N + manure, CO2 | 0.761 | 2154.80 | 0.730 | 2265.67 |
4-5-1 | p, T, #hT > 30, CO2 | 0.781 | 2073.84 | 0.747 | 2203.92 |
3-5-1 | T, #hT > 30, N + manure | 0.758 | 2170.96 | 0.463 | 2942.41 |
3-5-1 | p, #hT > 30, N + manure | 0.769 | 2119.05 | 0.711 | 2331.71 |
3-5-1 | p, T, N + manure | 0.753 | 2184.58 | 0.733 | 2256.44 |
3-5-1 | p, T, #hT > 30 | 0.767 | 2128.63 | 0.748 | 2200.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasini, A.; De Felice Proia, G.; Tubiello, F.N. Influence of Meteo-Climatic Variables and Fertilizer Use on Crop Yields in the Sahel: A Nonlinear Neural-Network Analysis. Climate 2022, 10, 193. https://doi.org/10.3390/cli10120193
Pasini A, De Felice Proia G, Tubiello FN. Influence of Meteo-Climatic Variables and Fertilizer Use on Crop Yields in the Sahel: A Nonlinear Neural-Network Analysis. Climate. 2022; 10(12):193. https://doi.org/10.3390/cli10120193
Chicago/Turabian StylePasini, Antonello, Giuseppina De Felice Proia, and Francesco N. Tubiello. 2022. "Influence of Meteo-Climatic Variables and Fertilizer Use on Crop Yields in the Sahel: A Nonlinear Neural-Network Analysis" Climate 10, no. 12: 193. https://doi.org/10.3390/cli10120193
APA StylePasini, A., De Felice Proia, G., & Tubiello, F. N. (2022). Influence of Meteo-Climatic Variables and Fertilizer Use on Crop Yields in the Sahel: A Nonlinear Neural-Network Analysis. Climate, 10(12), 193. https://doi.org/10.3390/cli10120193