Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California
Abstract
:1. Introduction
1.1. Background
1.2. Motivation and Scope of the Study
1.3. Structure of the Paper
2. Materials and Methods
2.1. Study Area
2.2. Study Datasets
2.3. Study Variables and Metrics
3. Results
3.1. Delta Climate
3.2. Projected Changes in Mean Climate
3.3. Projected Changes in Extreme Climate
3.4. Projected Drought Trend
4. Discussion and Conclusions
4.1. Findings
4.2. Challenges
4.3. Delta Resiliency
4.4. Future Directions
4.5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model ID | Model Name | Model Institution |
---|---|---|
1 | ACCESS1.0 | Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Bureau of Meteorology, Australia |
2 | ACCESS1.3 | |
3 | bcc-csm1.1 | Beijing Climate Center, China |
4 | bcc-csm1.1.m | |
5 | CanESM2 | Canadian Centre for Climate Modeling and Analysis, Canada |
6 | CCSM4 | National Center for Atmospheric Research, USA |
7 | CESM1-BGC | National Science Foundation, Department of Energy, National Center for Atmospheric Research, USA |
8 | CESM1-CAM5 | |
9 | CMCC-CM | Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy |
10 | CMCC-CMS | |
11 | CNRM-CM5 | Centre National de Recherches Météorologiques/Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, France |
12 | CSIRO-Mk3.6.0 | CSIRO and Queensland Climate Change Centre of Excellence, Australia |
13 | EC-EARTH | EC-EARTH consortium published at Irish Centre for High-End Computing, Netherlands/Ireland |
14 | FGOALS-g2 | Institute of Atmospheric Physics, Chinese Academy of Sciences, China |
15 | GFDL-CM3 | National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, USA |
16 | GFDL-ESM2G | |
17 | GFDL-ESM2M | |
18 | GISS-E2-H | National Aeronautics and Space Administration Goddard Institute for Space Studies, USA |
19 | GISS-E2-R | |
20 | HadGEM2-AO | National Institute of Meteorological Research, Korea Meteorological Administration, South Korea |
21 | HadGEM2-CC | Met Office Hadley Centre, UK |
22 | HadGEM2-ES | |
23 | inmcm4 | Russian Academy of Sciences, Institute of Numerical Mathematics, Russia |
24 | IPSL-CM5A-LR | Institut Pierre Simon Laplace, France |
25 | IPSL-CM5A-MR | |
26 | MIROC5 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan |
27 | MIROC-ESM-CHEM | |
28 | MIROC-ESM | |
29 | MPI-ESM-LR | Max Planck Institute for Meteorology, Germany |
30 | MPI-ESM-MR | |
31 | MRI-CGCM3 | Meteorological Research Institute, Japan |
32 | NorESM1-M | Bjerknes Centre for Climate Research, Norwegian Meteorological Institute, Norway |
SPEI | North Delta | South Delta | West Delta | |||
---|---|---|---|---|---|---|
Slope (/Decade) | p-Value | Slope (/Decade) | p-Value | Slope (/Decade) | p-Value | |
Annual | 0.024 | 0.537 | 0.029 | 0.449 | 0.042 | 0.286 |
Two-Year | 0.068 | 0.102 | 0.063 | 0.096 | 0.091 * | 0.021 |
Three-Year | 0.077 | 0.059 | 0.082 | 0.064 | 0.119 * | 0.004 |
Four-Year | 0.074 | 0.083 | 0.083 | 0.055 | 0.135 * | 0.001 |
Scenario | Wettest 10% Days [-] | Remaining Wet Days [-] | ||||
---|---|---|---|---|---|---|
North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | |
RCP 4.5 Mid-Century | 0.933 | 0.913 | 0.941 | 0.949 | 0.955 | 0.964 |
RCP 4.5 Late-Century | 0.950 | 0.935 | 0.958 | 0.961 | 0.959 | 0.971 |
RCP 8.5 Mid-Century | 0.933 | 0.922 | 0.940 | 0.945 | 0.957 | 0.957 |
RCP 8.5 Late-Century | 0.956 | 0.955 | 0.963 | 0.940 | 0.959 | 0.963 |
Scenario | Metric | Change in Annual Total Precipitation (%) | Change in Mean Contribution from the Wettest 10% Days (%) | Change in Mean Contribution from the Remaining Wet Days (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | ||
RCP 4.5 Mid-Century | Maximum | 122.9 | 102.9 | 116.0 | 78.7 | 72.0 | 86.2 | 13.8 | 14.1 | 17.8 |
Mean | 19.7 | 14.4 | 19.6 | 12.7 | 9.8 | 11.5 | 1.3 | 0.2 | 1.4 | |
Minimum | −36.2 | −43.2 | −38.1 | −36.3 | −34.1 | −32.6 | −10.7 | −7.9 | −8.9 | |
RCP 4.5 Late-Century | Maximum | 151.4 | 135.0 | 142.0 | 96.8 | 82.5 | 81.3 | 15.0 | 18.2 | 14.6 |
Mean | 28.0 | 21.3 | 29.4 | 17.0 | 12.6 | 17.0 | 1.3 | 1.6 | 2.5 | |
Minimum | −49.3 | −52.3 | −44.4 | −31.6 | −27.5 | −31.3 | −7.8 | −10.5 | −9.4 | |
RCP 8.5 Mid-Century | Maximum | 80.6 | 60.0 | 75.6 | 66.3 | 49.0 | 55.9 | 14.1 | 21.6 | 13.5 |
Mean | 10.3 | 6.3 | 11.2 | 7.0 | 6.5 | 7.7 | 1.4 | 0.9 | 1.5 | |
Minimum | −52.7 | −56.9 | −59.1 | −40.4 | −51.2 | −41.2 | −9.0 | −8.9 | −10.2 | |
RCP 8.5 Late-Century | Maximum | 359.6 | 263.3 | 399.4 | 238.8 | 139.9 | 229.1 | 22.8 | 26.2 | 32.3 |
Mean | 43.7 | 34.9 | 47.4 | 28.6 | 22.0 | 27.5 | 2.5 | 2.4 | 4.7 | |
Minimum | −52.1 | −59.0 | −48.2 | −30.3 | −31.6 | −39.9 | −9.2 | −11.3 | −10.5 |
Appendix B
References
- Allan, P.R.; Hawkins, E.; Bellouin, N.; Collins, B. IPCC, 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Cabanes, C.; Cazenave, A.; Le Provost, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 2001, 294, 840–842. [Google Scholar] [CrossRef] [Green Version]
- Levitus, S.; Antonov, J.I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.; Seidov, D.; Yarosh, E.S. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef]
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, P.A.; Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.-H.; Wang, S.S.; Gillies, R.R.; Kravitz, B.; Hipps, L.; Rasch, P.J. Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat. Commun. 2015, 6, 8657. [Google Scholar] [CrossRef] [Green Version]
- Chikamoto, Y.; Timmermann, A.; Widlansky, M.J.; Balmaseda, M.A.; Stott, L. Multi-year predictability of climate, drought, and wildfire in southwestern North America. Sci. Rep. 2017, 7, 6568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- USCB. United States Census Bureau QuickFacts: United States; U.S. Department of Commerce: Washington, DC, USA, 2019. [Google Scholar]
- Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric rivers, floods and the water resources of California. Water 2011, 3, 445–478. [Google Scholar] [CrossRef]
- Sabet, M.H.; Coe, J.Q. Models for water and power scheduling for the California State Water Project. J. Am. Water Resour. Assoc. 1986, 22, 587–596. [Google Scholar] [CrossRef]
- Becker, L.; Yeh, W.; Fults, D.; Sparks, D. Operations models for central valley project. J. Water Resour. Plann. Manag. Div. Am. Soc. Civ. Eng. 1976, 101, 101–115. [Google Scholar] [CrossRef]
- Mount, J.; Twiss, R. Subsidence, sea level rise, and seismicity in the Sacramento–San Joaquin Delta. San Franc. Estuary Watershed Sci. 2005, 3, 5. [Google Scholar]
- Deverel, S.J.; Leighton, D.A. Historic, recent, and future subsidence, Sacramento-San Joaquin Delta, California, USA. San Franc. Estuary Watershed Sci. 2010, 8. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853. [Google Scholar] [CrossRef]
- Moyle, P.B.; Brown, L.R.; Durand, J.R.; Hobbs, J.A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Healey, M.; Dettinger, M.; Norgaard, R. Perspectives on Bay–Delta Science and Policy. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- CSWRCB. Water Right Decision 1641; CSWRCB: Sacramento, CA, USA, 1999; p. 225. [Google Scholar]
- USFWS. Formal Endangered Species Act Consultation on The proposed Coordinated Operations of the Central Valley Project (CVP) and State Water Project (SWP); USFWS: Sacramento, CA, USA, 2008; p. 410. [Google Scholar]
- Bedsworth, L.; Cayan, D.; Franco, G.; Fisher, L.; Ziaja, S. California’s Fourth Climate Change Assessment Statewide Summary Report; California’s Fourth Climate Change Assessment; California Energy Commission: Sacramento, CA, USA, 2018; p. 133. [Google Scholar]
- Pierce, D.W.; Kalansky, J.F.; Cayan, D.R. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment; California’s Fourth Climate Change Assessment; Publication Number: CNRA-CEC-2018-006; California Energy Commission: Sacramento, CA, USA, 2018. [Google Scholar]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 485–498. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Schwarz, A.; Lynn, E.; Anderson, M. Projected changes in precipitation, temperature, and drought across California’s hydrologic regions in the 21st century. Climate 2018, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M.; Anderson, J.; Anderson, M.; Brown, L.R.; Cayan, D.; Maurer, E. Climate change and the Delta. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Dettinger, M. Historical and future relations between large storms and droughts in California. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Knowles, N.; Cronkite-Ratcliff, C.; Pierce, D.; Cayan, D. Responses of Unimpaired Flows, Storage, and Managed Flows to Scenarios of Climate Change in the San Francisco Bay-Delta Watershed. Water Resour. Res. 2018, 54, 7631–7650. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Anderson, M.; Schwarz, A.; Das, T.; Lynn, E.; Anderson, J.; Munévar, A.; Vasquez, J.; Arnold, W. Potential Changes in Runoff of California’s Major Water Supply Watersheds in the 21st Century. Water 2019, 11, 1651. [Google Scholar] [CrossRef] [Green Version]
- Ray, P.; Wi, S.; Schwarz, A.; Correa, M.; He, M.; Brown, C. Vulnerability and risk: Climate change and water supply from California’s Central Valley water system. Clim. Chang. 2020, 161, 177–199. [Google Scholar] [CrossRef]
- Wang, J.; Yin, H.; Reyes, E.; Smith, T.; Chung, F. Mean and Extreme Climate Change Impacts on the State Water Project; California’s Fourth Climate Change Assessment; California Energy Commission: Sacramento, CA, USA, 2018. [Google Scholar]
- He, M.; Russo, M.; Anderson, M. Hydroclimatic characteristics of the 2012–2015 California drought from an operational perspective. Climate 2017, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Lund, J.R. California’s agricultural and urban water supply reliability and the Sacramento–San Joaquin Delta. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Vahedifard, F.; Robinson, J.D.; AghaKouchak, A. Can Protracted Drought Undermine the Structural Integrity of California’s Earthen Levees? J. Geotech. Geoenviron. 2016, 142, 02516001. [Google Scholar] [CrossRef] [Green Version]
- Livneh, B.; Rosenberg, E.A.; Lin, C.; Nijssen, B.; Mishra, V.; Andreadis, K.M.; Maurer, E.P.; Lettenmaier, D.P. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States: Update and extensions. J. Clim. 2013, 26, 9384–9392. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeorol. 2014, 15, 2558–2585. [Google Scholar] [CrossRef]
- Lund, J.; Medellin-Azuara, J.; Durand, J.; Stone, K. Lessons from California’s 2012–2016 drought. J. Water Resour. Plan. Manag. 2018, 144, 04018067. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer Drought Severity Index. J. Hydrometeorol. 2010, 11, 1033–1043. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Thiel, H. A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of the Koninalijke Nederlandse Akademie van Weinenschatpen A, Amsterdam, The Netherlands, September 1950; Royal Netherlands Academy of Arts and Sciences: Amsterdam, The Netherlands, 1950; pp. 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mallakpour, I.; Sadegh, M.; AghaKouchak, A. A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. J. Hydrol. 2018, 567, 203–211. [Google Scholar] [CrossRef]
- Swain, D.L.; Langenbrunner, B.; Neelin, J.D.; Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Chang. 2018, 8, 427–433. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour. Res. 2013, 49, 2765–2782. [Google Scholar] [CrossRef]
- Jeffries, K.M.; Connon, R.E.; Davis, B.E.; Komoroske, L.M.; Britton, M.T.; Sommer, T.; Todgham, A.E.; Fangue, N.A. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 2016, 219, 1705–1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.E.; Hansen, M.J.; Cocherell, D.E.; Nguyen, T.X.; Sommer, T.; Baxter, R.D.; Fangue, N.A.; Todgham, A.E. Consequences of temperature and temperature variability on swimming activity, group structure, and predation of endangered delta smelt. Freshwater Biol. 2019, 64, 2156–2175. [Google Scholar] [CrossRef]
- Dettinger, M.; Cayan, D.R. Drought and the California Delta—A matter of extremes. San Franc. Estuary Watershed Sci. 2014, 12. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.P.; Seager, R.; Abatzoglou, J.T.; Cook, B.I.; Smerdon, J.E.; Cook, E.R. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 2015, 42, 6819–6828. [Google Scholar] [CrossRef] [Green Version]
- Kimmerer, W.; Wilkerson, F.; Downing, B.; Dugdale, R.; Gross, E.S.; Kayfetz, K.; Khanna, S.; Parker, A.E.; Thompson, J. Effects of Drought and the Emergency Drought Barrier on the Ecosystem of the California Delta. San Franc. Estuary Watershed Sci. 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; He, M.; Sandhu, N. 2018 Suisun Marsh Salinity Control Gates Pilot Study: Water Cost Analysis. In 40th Annual Progress Report “Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh”; California Department of Water Resources: Sacramento, CA, USA, 2019. [Google Scholar]
- Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; Van der Wegen, M.; Wagner, R.W. Projected evolution of California’s San Francisco Bay-Delta-River system in a century of climate change. PLoS ONE 2011, 6, e24465. [Google Scholar] [CrossRef]
- Farr, T.; Jones, C.; Liu, Z. Progress Report: Subsidence in California, March 2015–September 2016; California Department of Water Resources: Sacramento, CA, USA, 2016. [Google Scholar]
- Murray, K.D.; Lohman, R.B. Short-lived pause in Central California subsidence after heavy winter precipitation of 2017. Sci. Adv. 2018, 4, eaar8144. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; He, R.; Marino, G.; Whiting, M.; Kent, E.; Sanden, B.L.; Culumber, M.; Ferguson, L.; Little, C.; Grattan, S. Spatially variable evapotranspiration over salt affected pistachio orchards analyzed with satellite remote sensing estimates. Agr. For. Meteorol. 2018, 262, 178–191. [Google Scholar] [CrossRef]
- Thomas, B.F.; Famiglietti, J.S.; Landerer, F.W.; Wiese, D.N.; Molotch, N.P.; Argus, D.F. GRACE groundwater drought index: Evaluation of California Central Valley groundwater drought. Remote Sens. Environ. 2017, 198, 384–392. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Longuevergne, L.; Long, D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Stampoulis, D.; Reager, J.T.; David, C.H.; Andreadis, K.M.; Famiglietti, J.S.; Farr, T.G.; Trangsrud, A.R.; Basilio, R.R.; Sabo, J.L.; Osterman, G.B. Model-data fusion of hydrologic simulations and GRACE terrestrial water storage observations to estimate changes in water table depth. Adv. Water Resour. 2019, 128, 13–27. [Google Scholar] [CrossRef]
- Liang, L.; Suits, B.; Kadir, T. Refining the spatial-temporal distribution of Delta consumptive use based on remote sensing studies. In 41st Annual Progress Report “Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh”; California Department of Water Resources: Sacramento, CA, USA, 2020. [Google Scholar]
- Jayasundara, N.C.; Seneviratne, S.A.; Reyes, E.; Chung, F.I. Artificial Neural Network for Sacramento–San Joaquin Delta Flow–Salinity Relationship for CalSim 3.0. J. Water Resour. Plan. Manag. 2020, 146, 04020015. [Google Scholar] [CrossRef]
- Smith, T. Delta Modeling for Emergency Drought Barriers. In 35th Annual Progress Report “Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh”; California Department of Water Resources: Sacramento, CA, USA, 2014. [Google Scholar]
- Ateljevich, E.; Nam, K. SCHISM Modeling in Support of Franks Tract Restoration Feasibility Study. In 39th Annual Progress Report “Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh”; California Department of Water Resources: Sacramento, CA, USA, 2018. [Google Scholar]
- CDWR, Calibration and verification of DWRDSM. In 12th Annual Progress Report “Methodology for Flow and Salinity Estimates in the Sacramento-San Joaquin Delta and Suisun Marsh”; California Department of Water Resources: Sacramento, CA, USA, 1991.
- DeGeorge, J.F. A Multi-Dimensional Finite Element Transport Model Utilizing a Characteristic-Galerkin Algorithm; University of California: Davis, CA, USA, 1996. [Google Scholar]
- MacWilliams, M.; Bever, A.J.; Foresman, E. 3-D simulations of the San Francisco Estuary with subgrid bathymetry to explore long-term trends in salinity distribution and fish abundance. San Franc. Estuary Watershed Sci. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Kernkamp, H.W.; Van Dam, A.; Stelling, G.S.; de Goede, E.D. Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf. Ocean Dyn. 2011, 61, 1175–1188. [Google Scholar] [CrossRef]
Study Area | Area (km2) | Total Annual Precipitation (mm) | Average Annual Temperature (°C) | Percentage of | 90th Percentile Daily Precipitation (mm/day) | ||
---|---|---|---|---|---|---|---|
Wet Days (>0 mm) | Very Wet Days (>10 mm) | Extremely Wet Days (>20 mm) | |||||
North Delta | 1174 | 397 | 16.2 | 31.6% | 3.2% | 0.7% | 10.0 |
South Delta | 1748 | 329 | 16.4 | 31.0% | 2.3% | 0.3% | 8.3 |
West Delta | 485 | 449 | 15.9 | 31.1% | 3.8% | 0.9% | 11.2 |
Scenario | Metric | Change in Annual Total Precipitation (%) | Change in Mean Contribution from the Wettest 10% Days (%) | Change in Mean Contribution from the Remaining Wet Days (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | ||
RCP 4.5 Mid-Century | Maximum | 26.7 | 23.2 | 25.7 | 14.1 | 12.2 | 13.0 | 12.7 | 11.0 | 12.7 |
Mean | −1.2 | −2.5 | −0.9 | 0.2 | −0.3 | 0.3 | −1.4 | −2.1 | −1.2 | |
Minimum | −19.2 | −16.9 | −18.3 | −7.6 | −4.9 | −6.5 | −11.6 | −12.1 | −11.8 | |
RCP 4.5 Late-Century | Maximum | 25.4 | 19.3 | 25.7 | 15.0 | 12.0 | 14.1 | 10.4 | 8.6 | 11.6 |
Mean | 1.7 | −0.4 | 2.2 | 2.1 | 0.8 | 2.2 | −0.4 | −1.2 | 0.0 | |
Minimum | −22.4 | −22.4 | −21.1 | −10.3 | −9.0 | −8.9 | −12.1 | −13.4 | −12.2 | |
RCP 8.5 Mid-Century | Maximum | 23.0 | 17.8 | 23.1 | 11.4 | 9.6 | 12.1 | 11.6 | 8.5 | 11.0 |
Mean | 1.8 | 0.3 | 2.2 | 1.6 | 0.8 | 1.7 | 0.1 | −0.5 | 0.5 | |
Minimum | −17.6 | −17.8 | −15.4 | −7.4 | −6.7 | −5.9 | −10.2 | −11.0 | −9.6 | |
RCP 8.5 Late-Century | Maximum | 47.2 | 38.9 | 49.1 | 32.3 | 23.9 | 30.4 | 15.6 | 15.0 | 18.7 |
Mean | 2.2 | −0.3 | 3.1 | 3.0 | 1.5 | 2.9 | −0.8 | −1.8 | 0.2 | |
Minimum | −32.0 | −35.1 | −30.4 | −14.4 | −14.5 | −12.4 | −17.7 | −20.6 | −17.9 |
Scenario | Wettest 10% Days (%) | Remaining Wet Days (%) | ||||
---|---|---|---|---|---|---|
North Delta | South Delta | West Delta | North Delta | South Delta | West Delta | |
RCP 4.5 Mid-Century | 80 | 78 | 78 | 27 | 29 | 27 |
RCP 4.5 Late-Century | 87 | 83 | 86 | 12 | 19 | 16 |
RCP 8.5 Mid-Century | 83 | 69 | 86 | 25 | 27 | 28 |
RCP 8.5 Late-Century | 96 | 86 | 94 | 54 | 62 | 61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M. Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate 2022, 10, 16. https://doi.org/10.3390/cli10020016
He M. Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate. 2022; 10(2):16. https://doi.org/10.3390/cli10020016
Chicago/Turabian StyleHe, Minxue. 2022. "Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California" Climate 10, no. 2: 16. https://doi.org/10.3390/cli10020016
APA StyleHe, M. (2022). Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate, 10(2), 16. https://doi.org/10.3390/cli10020016