Modeling Soil Organic Carbon Changes under Alternative Climatic Scenarios and Soil Properties Using DNDC Model at a Semi-Arid Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Site
2.2. Treatments
2.3. Description of DNDC Model
2.4. Required Data for DNDC Model Initialization
2.4.1. Climate and Soil Data
2.4.2. Farming Management Practices Data
2.4.3. DNDC Model Verification at the Study Site
2.5. Baseline and Alternative Scenarios
2.6. Sensitivity INDEX
3. Results
3.1. SOC Changes under Alternative Soil Properties
3.2. SOC Changes under Alternative Climatic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, G.; Huan, W.; Song, H.; Lu, D.; Chen, X.; Wang, H.; Zhou, J. Effects of Straw Incorporation and Potassium Fertilizer on Crop Yields, Soil Organic Carbon, and Active Carbon in the Rice–Wheat System. Soil Tillage Res. 2021, 209, 104958. [Google Scholar] [CrossRef]
- Moussadek, R.; Mrabet, R.; Zante, P.; Marie Lamachère, J.; Pépin, Y.; Le Bissonnais, Y.; Ye, L.; Verdoodt, A.; Van Ranst, E. Effets Du Travail Du Sol et de La Gestion Des Résidus Sur Les Propriétés Du Sol et Sur l’érosion Hydrique d’un Vertisol Méditerranéen. Can. J. Soil Sci. 2011, 91, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Liu, H.; Dai, Y.; Tian, H.; Zhou, W.; Lv, J. Soil Organic Carbon Transformation and Dynamics of Microorganisms under Different Organic Amendments. Sci. Total Environ. 2021, 750, 141719. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil Organic Matter Content and Crop Yield. J. Soil Water Conserv. 2020, 75, 27A–32A. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Han, X.; Du, S.; Li, L.-J. Profile Stock of Soil Organic Carbon and Distribution in Croplands of Northeast China. CATENA 2019, 174, 285–292. [Google Scholar] [CrossRef]
- Godde, C.M.; Thorburn, P.J.; Biggs, J.S.; Meier, E.A. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia. Front. Plant Sci. 2016, 7, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miah, M.D.; Akhter, J.; Chowdhury, T.K.; Gupta, K.K.; Mowla, S.G.; Hossain, M.A. Mound Plantation as an Effective Climate Change Adaptation and Mitigation Measure: Evaluation of the Growth in the Chittagong Coastal Forest Division of Bangladesh. Environ. Chall. 2021, 5, 100227. [Google Scholar] [CrossRef]
- Seyedabadi, M.R.; Eicker, U.; Karimi, S. Plant Selection for Green Roofs and Their Impact on Carbon Sequestration and the Building Carbon Footprint. Environ. Chall. 2021, 4, 100119. [Google Scholar] [CrossRef]
- Carpio, M.J.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Marín-Benito, J.M. Effect of Organic Residues on Pesticide Behavior in Soils: A Review of Laboratory Research. Environments 2021, 8, 32. [Google Scholar] [CrossRef]
- Fernandes, M.M.; de Moura Fernandes, M.R.; Garcia, J.R.; Matricardi, E.A.T.; de Souza Lima, A.H.; de Araújo Filho, R.N.; Filho, R.R.G.; Piscoya, V.C.; Piscoya, T.O.F.; Filho, M.C. Land Use and Land Cover Changes and Carbon Stock Valuation in the São Francisco River Basin, Brazil. Environ. Chall. 2021, 5, 100247. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of Soil Organic Matter Reduces Global Warming, Myth or Reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Sistani, K.R.; Simmons, J.R.; Jn-Baptiste, M.; Novak, J.M. Poultry Litter, Biochar, and Fertilizer Effect on Corn Yield, Nutrient Uptake, N2O and CO2 Emissions. Environments 2019, 6, 55. [Google Scholar] [CrossRef] [Green Version]
- Drebenstedt, I.; Hart, L.; Poll, C.; Marhan, S.; Kandeler, E.; Böttcher, C.; Meiners, T.; Hartung, J.; Högy, P. Do Soil Warming and Changes in Precipitation Patterns Affect Seed Yield and Seed Quality of Field-Grown Winter Oilseed Rape? Agronomy 2020, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Poll, C.; Marhan, S.; Back, F.; Niklaus, P.A.; Kandeler, E. Field-Scale Manipulation of Soil Temperature and Precipitation Change Soil CO2 Flux in a Temperate Agricultural Ecosystem. Agric. Ecosyst. Environ. 2013, 165, 88–97. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.A.-K.; Adger, W.N.; Anokhin, Y.A.; Anisimov, O.A.; Arent, D.J.; Barnett, J.; et al. Summary for Policymakers. In Climate Change 2014; Field, C.B., Barros, V.R., Dokken, D.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015; pp. 1–32. [Google Scholar]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for Drought Assessment in the Mediterranean Region under Future Climate Scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Jones, C.; McConnell, C.; Coleman, K.; Cox, P.; Falloon, P.; Jenkinson, D.; Powlson, D. Global Climate Change and Soil Carbon Stocks; Predictions from Two Contrasting Models for the Turnover of Organic Carbon in Soil. Glob. Chang. Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Hag Husein, H.; Lucke, B.; Bäumler, R.; Sahwan, W. A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands. Soil Syst. 2021, 5, 42. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Gattinger, A.; Gimeno, B. Managing Soil Carbon for Climate Change Mitigation and Adaptation in Mediterranean Cropping Systems: A Meta-Analysis. Agric. Ecosyst. Environ. 2013, 168, 25–36. [Google Scholar] [CrossRef]
- Adolph, B.; Butterworth, J.A. Soil Fertility Management in Semi-Arid India: Its Role in Agricultural Systems and the Livelihoods of Poor People. A Review of Field Experiences, Literature and Policies; NRI: Chatham, UK, 2002; pp. 1–67. [Google Scholar]
- Paustian, K.; Larson, E.; Kent, J.; Marx, E.; Swan, A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim. 2019, 1, 8. [Google Scholar] [CrossRef]
- Gmach, M.R.; Cherubin, M.R.; Kaiser, K.; Cerri, C.E.P. Processes That Influence Dissolved Organic Matter in the Soil: A Review. Sci. Agric. 2019, 77, 3. [Google Scholar] [CrossRef]
- Trivedi, P.; Singh, B.P.; Singh, B.K. Chapter 1—Soil Carbon: Introduction, Importance, Status, Threat, and Mitigation. In Soil Carbon Storage; Singh, B.K., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- van Noordwijk, M. Climate Change: Agricultural Mitigation. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Academic Press: Oxford, UK, 2014; pp. 220–231. [Google Scholar] [CrossRef]
- Mureva, A.; Ward, D. Soil Microbial Biomass and Functional Diversity in Shrub-Encroached Grasslands along a Precipitation Gradient. Pedobiologia 2017, 63, 37–45. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Dwivedi, B.S.; Meena, M.C.; Agarwal, B.K.; Mahapatra, P.; Shahi, D.K.; Salwani, R.; Agnihorti, R. Temperature Sensitivity of Soil Organic Carbon Decomposition as Affected by Long-Term Fertilization under a Soybean Based Cropping System in a Sub-Tropical Alfisol. Agric. Ecosyst. Environ. 2016, 233, 202–213. [Google Scholar] [CrossRef]
- Tayebi, M.; Fim Rosas, J.T.; Mendes, W.d.S.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.C.; dos Santos, N.V.; Cerri, C.E.P.; Silva, S.H.G.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. [Google Scholar] [CrossRef]
- García-Palacios, P.; Crowther, T.W.; Dacal, M.; Hartley, I.P.; Reinsch, S.; Rinnan, R.; Rousk, J.; van den Hoogen, J.; Ye, J.-S.; Bradford, M.A. Evidence for Large Microbial-Mediated Losses of Soil Carbon under Anthropogenic Warming. Nat. Rev. Earth Environ. 2021, 2, 507–517. [Google Scholar] [CrossRef]
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration. Front. Environ. Sci. 2020, 8, 218. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; Easter, M.; Paustian, K. Climate Change Effects on Organic Carbon Storage in Agricultural Soils of Northeastern Spain. Agric. Ecosyst. Environ. 2012, 155, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Gabarrón-Galeote, M.A.; Trigalet, S.; van Wesemael, B. Soil Organic Carbon Evolution after Land Abandonment along a Precipitation Gradient in Southern Spain. Agric. Ecosyst. Amp Environ. 2015, 199, 114–123. [Google Scholar] [CrossRef]
- Gerten, D.; Luo, Y.; Maire, G.L.; Parton, W.J.; Keough, C.; Weng, E.; Beier, C.; Ciais, P.; Cramer, W.; Dukes, J.S.; et al. Modelled Effects of Precipitation on Ecosystem Carbon and Water Dynamics in Different Climatic Zones. Glob. Chang. Biol. 2008, 14, 2365–2379. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil Physical Quality: Part I. Theory, Effects of Soil Texture, Density, and Organic Matter, and Effects on Root Growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Marschner, P. Retention and Loss of Water Extractable Carbon in Soils: Effect of Clay Properties. Sci. Total Environ. 2014, 470–471, 400–406. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Zornoza, R.; Acosta, J.A.; Gabarrón, M.; Gómez-Garrido, M.; Sánchez-Navarro, V.; Terrero, A.; Martínez-Martínez, S.; Faz, Á.; Pérez-Pastor, A. Greenhouse Gas Emissions and Soil Organic Matter Dynamics in Woody Crop Orchards with Different Irrigation Regimes. Sci. Total Environ. 2018, 644, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Han, G.; Liu, M.; Zeng, J.; Liang, B.; Liu, J.; Qu, R. Determining the Distribution and Interaction of Soil Organic Carbon, Nitrogen, PH and Texture in Soil Profiles: A Case Study in the Lancangjiang River Basin, Southwest China. Forests 2020, 11, 532. [Google Scholar] [CrossRef]
- Kemmitt, S.J.; Wright, D.; Goulding, K.W.T.; Jones, D.L. PH Regulation of Carbon and Nitrogen Dynamics in Two Agricultural Soils. Soil Biol. Biochem. 2006, 38, 898–911. [Google Scholar] [CrossRef]
- Aciego Pietri, J.C.; Brookes, P.C. Relationships between Soil PH and Microbial Properties in a UK Arable Soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Andersson, S.; Nilsson, S.I. Influence of PH and Temperature on Microbial Activity, Substrate Availability of Soil-Solution Bacteria and Leaching of Dissolved Organic Carbon in a Mor Humus. Soil Biol. Biochem. 2001, 33, 1181–1191. [Google Scholar] [CrossRef]
- Saby, N.P.A.; Arrouays, D.; Antoni, V.; Lemercier, B.; Follain, S.; Walter, C.; Schvartz, C. Changes in Soil Organic Carbon in a Mountainous French Region 1990–2004. Soil Use Manag. 2008, 24, 254–262. [Google Scholar] [CrossRef]
- Zhao, G.; Bryan, B.A.; King, D.; Luo, Z.; Wang, E.; Song, X.; Yu, Q. Impact of Agricultural Management Practices on Soil Organic Carbon: Simulation of Australian Wheat Systems. Glob. Chang. Biol. 2013, 19, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Zhao, Y.; Shi, X.; Xu, S.; Yu, D. Uncertainty and Sensitivity Analyses for Modeling Long-Term Soil Organic Carbon Dynamics of Paddy Soils Under Different Climate-Soil-Management Combinations. Pedosphere 2017, 27, 912–925. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Lakshmi, G.; Chaubey, I. Application of a Pseudo Simulator to Evaluate the Sensitivity of Parameters in Complex Watershed Models. Environ. Model. Softw. 2011, 26, 135–143. [Google Scholar] [CrossRef]
- Tang, Y.; Reed, P.; Wagener, T.; van Werkhoven, K. Comparing Sensitivity Analysis Methods to Advance Lumped Watershed Model Identification and Evaluation. Hydrol. Earth Syst. Sci. 2007, 11, 793–817. [Google Scholar] [CrossRef] [Green Version]
- Lembaid, I.; Moussadek, R.; Mrabet, R.; Douaik, A.; Bouhaouss, A. Modeling the Effects of Farming Management Practices on Soil Organic Carbon Stock under Two Tillage Practices in a Semi-Arid Region, Morocco. Heliyon 2021, 7, e05889. [Google Scholar] [CrossRef]
- Working Group World Reference Base International Union of Soil Sciences. World Reference Base for Soil Resources 2006: A Framework for International Classification, Correlation and Communication; FAO: Rome, Italy, 2006. [Google Scholar]
- Li, C.; Frolking, S.; Frolking, T.A. A Model of Nitrous Oxide Evolution from Soil Driven by Rainfall Events: 2. Model Applications. J. Geophys. Res. Atmos. 1992, 97, 9777–9783. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Harriss, R. Modeling Carbon Biogeochemistry in Agricultural Soils. Glob. Biogeochem. Cycles 1994, 8, 237–254. [Google Scholar] [CrossRef]
- Li, C.; Farahbakhshazad, N.; Jaynes, D.B.; Dinnes, D.L.; Salas, W.; McLaughlin, D. Modeling Nitrate Leaching with a Biogeochemical Model Modified Based on Observations in a Row-Crop Field in Iowa. Ecol. Model. 2006, 196, 116–130. [Google Scholar] [CrossRef]
- Moussadek, R. Impacts de l’Agriculture de Conservation Sur Les Propriétés et La Productivité Des Vertisols Du Maroc Central. Ph.D. Thesis, Université de Gent, Ghent, Belgium, 2012; p. 231. [Google Scholar]
- IPCC. Climate Change 2013: Synthesis Report. Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Moussadek, R.; Mrabet, R.; Dahan, R.; Zouahri, A.; El Mourid, M.; Ranst, E.V. Tillage System Affects Soil Organic Carbon Storage and Quality in Central Morocco. Appl. Environ. Soil Sci. 2014, 2014, e654796. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, Á.; Zornoza, R. The Impact of Intercropping, Tillage and Fertilizer Type on Soil and Crop Yield in Fruit Orchards under Mediterranean Conditions: A Meta-Analysis of Field Studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Friend, A.D.; Schugart, H.H.; Running, S.W. A Physiology-Based Gap Model of Forest Dynamics. Ecology 1993, 74, 792–797. [Google Scholar] [CrossRef]
- Qin, F.; Zhao, Y.; Shi, X.; Xu, S.; Yu, D. Sensitivity and Uncertainty Analysis for the DeNitrification–DeComposition Model, a Case Study of Modeling Soil Organic Carbon Dynamics at a Long-Term Observation Site with a Rice–Bean Rotation. Comput. Electron. Agric. 2016, 124, 263–272. [Google Scholar] [CrossRef]
- Werner, C.; Butterbach-Bahl, K.; Haas, E.; Hickler, T.; Kiese, R. A Global Inventory of N2O Emissions from Tropical Rainforest Soils Using a Detailed Biogeochemical Model. Glob. Biogeochem. Cycles 2007, 21, GB3010. [Google Scholar] [CrossRef]
- Farahbakhshazad, N.; Dinnes, D.L.; Li, C.; Jaynes, D.B.; Salas, W. Modeling Biogeochemical Impacts of Alternative Management Practices for a Row-Crop Field in Iowa. Agric. Ecosyst. Environ. 2008, 123, 30–48. [Google Scholar] [CrossRef]
- Grace, J.; José, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and Carbon Fluxes of Tropical Savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Zhang, L.; Zhuang, Q.; He, Y.; Liu, Y.; Yu, D.; Zhao, Q.; Shi, X.; Xing, S.; Wang, G. Toward Optimal Soil Organic Carbon Sequestration with Effects of Agricultural Management Practices and Climate Change in Tai-Lake Paddy Soils of China. Geoderma 2016, 275, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhang, H.; Li, C.; Zhao, Q.; Cao, L. Quantifying Nitrogen Loading from a Paddy Field in Shanghai, China with Modified DNDC Model. Agric. Ecosyst. Environ. 2014, 197, 212–221. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Zheng, Q.; Liu, Y.; Liu, S.; Yu, D.; Shi, X.; Xing, S.; Chen, H.; Fan, X. Combined Effects of Temperature and Precipitation on Soil Organic Carbon Changes in the Uplands of Eastern China. Geoderma 2019, 337, 1105–1115. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Hui, J.; Sivakumar, B.; Meng, X.; Liu, S. Projected Soil Organic Carbon Loss in Response to Climate Warming and Soil Water Content in a Loess Watershed. Carbon Balance Manag. 2021, 16, 24. [Google Scholar] [CrossRef]
- Karhu, K.; Auffret, M.D.; Dungait, J.A.J.; Hopkins, D.W.; Prosser, J.I.; Singh, B.K.; Subke, J.-A.; Wookey, P.A.; Agren, G.I.; Sebastià, M.-T.; et al. Temperature Sensitivity of Soil Respiration Rates Enhanced by Microbial Community Response. Nature 2014, 513, 81–84. [Google Scholar] [CrossRef]
- Guntiñas, M.E.; Gil-Sotres, F.; Leirós, M.C.; Trasar-Cepeda, C. Sensitivity of Soil Respiration to Moisture and Temperature. J. Soil Sci. Plant Nutr. 2013, 13, 445–461. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Fallu, D.J.; Cucchiaro, S.; Tarolli, P.; Waddington, C.; Cockcroft, D.; Snape, L.; Lang, A.; Doetterl, S.; Brown, A.G.; et al. SOC Stabilization Mechanisms and Temperature Sensitivity in Old Terraced Soils. In Proceedings of the 23rd EGU General Assembly, Online, 19–30 April 2021; pp. 1–24. [Google Scholar] [CrossRef]
- Jebari, A.; Del Prado, A.; Pardo, G.; Rodríguez Martín, J.A.; Álvaro-Fuentes, J. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain. J. Environ. Qual. 2018, 47, 644–653. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Denardin, L.G.; Alves, L.A.; Ortigara, C.; Winck, B.; Coblinski, J.A.; Schmidt, M.R.; Carlos, F.S.; de Toni, C.A.G.; de Oliveira Camargo, F.A.; Anghinoni, I.; et al. How Different Soil Moisture Levels Affect the Microbial Activity. Ciênc. Rural 2020, 50, 6. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, J.; Liang, G.; Du, Z.; Zhou, J.; Zhu, C.; Huang, K.; Zhou, X.; Luo, Y.; Yan, L.; et al. Global Variation of Soil Microbial Carbon-Use Efficiency in Relation to Growth Temperature and Substrate Supply. Sci. Rep. 2019, 9, 5621. [Google Scholar] [CrossRef]
- Wang, G.; Mayes, M.A.; Gu, L.; Schadt, C.W. Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling. PLoS ONE 2014, 9, e89252. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; Frey, S.D.; DeAngelis, K.M.; Werner, W.J.; Bernard, M.J.; Bowles, F.P.; Pold, G.; Knorr, M.A.; Grandy, A.S. Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science 2017, 358, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Heisler, J.L.; Weltzin, J.F. Variability Matters: Towards a Perspective on the Influence of Precipitation on Terrestrial Ecosystems. New Phytol. 2006, 172, 189–192. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, D.; Liang, G.; Qiu, Q.; Liu, J.; Zhou, G.; Liu, S.; Chu, G.; Yan, J. Effects of Precipitation on Soil Organic Carbon Fractions in Three Subtropical Forests in Southern China. J. Plant Ecol. 2016, 9, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Mishra, G.; Sarkar, A.; Giri, K.; Nath, A.J.; Lal, R.; Francaviglia, R. Changes in Soil Carbon Stocks under Plantation Systems and Natural Forests in Northeast India. Ecol. Model. 2021, 446, 109500. [Google Scholar] [CrossRef]
- Huang, W.; Ye, C.; Hockaday, W.C.; Hall, S.J. Trade-Offs in Soil Carbon Protection Mechanisms under Aerobic and Anaerobic Conditions. Glob. Chang. Biol. 2020, 26, 3726–3737. [Google Scholar] [CrossRef]
- Saiz, G.; Bird, M.I.; Domingues, T.; Schrodt, F.; Schwarz, M.; Feldpausch, T.R.; Veenendaal, E.; Djagbletey, G.; Hien, F.; Compaore, H.; et al. Variation in Soil Carbon Stocks and Their Determinants across a Precipitation Gradient in West Africa. Glob. Change Biol. 2012, 18, 1670–1683. [Google Scholar] [CrossRef]
- Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, D.; Yan, J. Factors Influencing Leaf Litter Decomposition: An Intersite Decomposition Experiment across China. Plant Soil 2008, 311, 61. [Google Scholar] [CrossRef]
- Goebel, M.-O.; Bachmann, J.; Reichstein, M.; Janssens, I.A.; Guggenberger, G. Soil Water Repellency and Its Implications for Organic Matter Decomposition—Is There a Link to Extreme Climatic Events? Glob. Chang. Biol. 2011, 17, 2640–2656. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Zhang, K.; Dang, H.; Zhang, Q.; Cheng, X. Soil Carbon Dynamics Following Land-Use Change Varied with Temperature and Precipitation Gradients: Evidence from Stable Isotopes. Glob. Chang. Biol. 2015, 21, 2762–2772. [Google Scholar] [CrossRef] [PubMed]
- Grogan, D.S.; Zhang, F.; Prusevich, A.; Lammers, R.B.; Wisser, D.; Glidden, S.; Li, C.; Frolking, S. Quantifying the Link between Crop Production and Mined Groundwater Irrigation in China. Sci. Total Environ. 2015, 511, 161–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; Lin, E.; Xiong, W.; Guo, L. Modeling the Impact of Climate Change on Soil Organic Carbon Stock in Upland Soils in the 21st Century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Peinetti, H.R.; Menezes, R.S.C.; Tiessen, H.; Perez Marin, A.M. Simulating Plant Productivity under Different Organic Fertilization Practices in a Maize/Native Pasture Rotation System in Semi-Arid NE Brazil. Comput. Electron. Agric. 2008, 62, 204–222. [Google Scholar] [CrossRef]
- Meier, I.C.; Leuschner, C. Variation of Soil and Biomass Carbon Pools in Beech Forests across a Precipitation Gradient. Glob. Chang. Biol. 2010, 16, 1035–1045. [Google Scholar] [CrossRef]
- Goidts, E.; van Wesemael, B.; Oost, K.V. Driving Forces of Soil Organic Carbon Evolution at the Landscape and Regional Scale Using Data from a Stratified Soil Monitoring. Glob. Chang. Biol. 2009, 15, 2981–3000. [Google Scholar] [CrossRef]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, G.J.D. Carbon Losses from All Soils across England and Wales 1978–2003. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaumont-Guay, D.; Black, T.A.; Griffis, T.J.; Barr, A.G.; Jassal, R.S.; Nesic, Z. Interpreting the Dependence of Soil Respiration on Soil Temperature and Water Content in a Boreal Aspen Stand. Agric. For. Meteorol. 2006, 140, 220–235. [Google Scholar] [CrossRef]
- Tian, Q.; He, H.; Cheng, W.; Bai, Z.; Wang, Y.; Zhang, X. Factors Controlling Soil Organic Carbon Stability along a Temperate Forest Altitudinal Gradient. Sci. Rep. 2016, 6, 18783. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, R.; Barré, P.; Moyano, F.E.; Christensen, B.T.; Bardoux, G.; Eglin, T.; Girardin, C.; Houot, S.; Kätterer, T.; van Oort, F.; et al. Higher Temperature Sensitivity for Stable than for Labile Soil Organic Carbon—Evidence from Incubations of Long-Term Bare Fallow Soils. Glob. Chang. Biol. 2014, 20, 633–640. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, T.; van Groenigen, K.J.; Yang, Y.; Wang, P.; Cheng, K.; Zhu, Z.; Wang, J.; Li, Y.; Guggenberger, G.; et al. Rice Paddy Soils Are a Quantitatively Important Carbon Store According to a Global Synthesis. Commun. Earth Environ. 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Bailey, V.L.; Pries, C.H.; Lajtha, K. What Do We Know about Soil Carbon Destabilization? Environ. Res. Lett. 2019, 14, 083004. [Google Scholar] [CrossRef] [Green Version]
- Desyatkin, A.R.; Iwasaki, S.; Desyatkin, R.V.; Hatano, R. Changes of Soil C Stock under Establishment and Abandonment of Arable Lands in Permafrost Area—Central Yakutia. Atmosphere 2018, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Dignac, M.-F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B.; et al. Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Matus, F.J. Fine Silt and Clay Content Is the Main Factor Defining Maximal C and N Accumulations in Soils: A Meta-Analysis. Sci. Rep. 2021, 11, 6438. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.A. Chapter 1—Soil Microbiology, Ecology, and Biochemistry: An Exciting Present and Great Future Built on Basic Knowledge and Unifying Concepts. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Paul, E.A., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 1–14. [Google Scholar] [CrossRef]
- Kämpf, I.; Hölzel, N.; Störrle, M.; Broll, G.; Kiehl, K. Potential of Temperate Agricultural Soils for Carbon Sequestration: A Meta-Analysis of Land-Use Effects. Sci. Total Environ. 2016, 566–567, 428–435. [Google Scholar] [CrossRef]
- De Mastro, F.; Cocozza, C.; Brunetti, G.; Traversa, A. Chemical and Spectroscopic Investigation of Different Soil Fractions as Affected by Soil Management. Appl. Sci. 2020, 10, 2571. [Google Scholar] [CrossRef] [Green Version]
- Paul, K.I.; Polglase, P.J.; Nyakuengama, J.G.; Khanna, P.K. Change in Soil Carbon Following Afforestation. For. Ecol. Manag. 2002, 168, 241–257. [Google Scholar] [CrossRef]
- Reichenbach, M.; Fiener, P.; Garland, G.; Griepentrog, M.; Six, J.; Doetterl, S. The Role of Geochemistry in Organic Carbon Stabilization against Microbial Decomposition in Tropical Rainforest Soils. Soil 2021, 7, 453–475. [Google Scholar] [CrossRef]
- Chellappa, J.; Sagar, K.L.; Sekaran, U.; Kumar, S.; Sharma, P. Soil Organic Carbon, Aggregate Stability and Biochemical Activity under Tilled and No-Tilled Agroecosystems. J. Agric. Food Res. 2021, 4, 100139. [Google Scholar] [CrossRef]
- Camarotto, C.; Dal Ferro, N.; Piccoli, I.; Polese, R.; Furlan, L.; Chiarini, F.; Morari, F. Conservation Agriculture and Cover Crop Practices to Regulate Water, Carbon and Nitrogen Cycles in the Low-Lying Venetian Plain. Catena 2018, 167, 236–249. [Google Scholar] [CrossRef]
- Liu, M.; Han, G.; Zhang, Q. Effects of Soil Aggregate Stability on Soil Organic Carbon and Nitrogen under Land Use Change in an Erodible Region in Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Bolan, N.; Farrell, M.; Sarkar, B.; Sarker, J.R.; Kirkham, M.B.; Hossain, M.Z.; Kim, G.-H. Chapter Two—Role of Cultural and Nutrient Management Practices in Carbon Sequestration in Agricultural Soil. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 166, pp. 131–196. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, K.; Dheri, G.S. Carbon Sequestration and Soil Carbon Pools in a Rice–Wheat Cropping System: Effect of Long-Term Use of Inorganic Fertilizers and Organic Manure. Soil Tillage Res. 2013, 128, 30–36. [Google Scholar] [CrossRef]
- Motavalli, P.P.; Palm, C.A.; Parton, W.J.; Elliott, E.T.; Frey, S.D. Soil PH and Organic C Dynamics in Tropical Forest Soils: Evidence from Laboratory and Simulation Studies. Soil Biol. Biochem. 1995, 27, 1589–1599. [Google Scholar] [CrossRef]
- Li, C.; Mosier, A.; Wassmann, R.; Cai, Z.; Zheng, X.; Huang, Y.; Tsuruta, H.; Boonjawat, J.; Lantin, R. Modeling Greenhouse Gas Emissions from Rice-Based Production Systems: Sensitivity and Upscaling. Glob. Biogeochem. Cycles 2004, 18, GB1043. [Google Scholar] [CrossRef]
Scenario | Conditions or Variations |
---|---|
Baseline | Climate: 2008–2016, daily T and P data with mean annual temperature 23 °C and precipitation 450 mm Clay content: 0.50%, SOC 1.2%, pH 7.6, Crop: winter wheat-legumes, Crop residue: 30% Tillage: No-tillage system |
Change in temperature | Decrease and increase by 2 °C and 4 °C |
Change in precipitation | Decrease and increase by 10% and 20% |
Change in Clay content% | 0.19, 0.34, 0.40, 0.63 |
Change in initial SOC content (kg C kg−1) | 0.005, 0.02, 0.03 |
Change in Soil pH | 5.3, 6.5, 8.9, 9.6 |
Parameter | Baseline | Range Tested | Sensitivity Index (SI) of SOC Stocks |
---|---|---|---|
Annual temperature (°C) | 23 | Decrease by 2 °C and 4 °C and increase by 2 °C and 4 °C | −0.2 |
Total annual precipitation (mm) | 450 | Decrease by 10% and 20% and increase by 10% and 20% | 0.04 |
Clay content% | 50.5% | 0.19, 0.34, 0.4, 0.63 | 0.03 |
Initial SOC content (kg C kg −1) | 0.01 | 0.005, 0.02, 0.03 | −0.03 |
Soil pH | 7.6 | 5.3, 6.5, 8.9, 9.6 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lembaid, I.; Moussadek, R.; Mrabet, R.; Bouhaouss, A. Modeling Soil Organic Carbon Changes under Alternative Climatic Scenarios and Soil Properties Using DNDC Model at a Semi-Arid Mediterranean Environment. Climate 2022, 10, 23. https://doi.org/10.3390/cli10020023
Lembaid I, Moussadek R, Mrabet R, Bouhaouss A. Modeling Soil Organic Carbon Changes under Alternative Climatic Scenarios and Soil Properties Using DNDC Model at a Semi-Arid Mediterranean Environment. Climate. 2022; 10(2):23. https://doi.org/10.3390/cli10020023
Chicago/Turabian StyleLembaid, Ibtissame, Rachid Moussadek, Rachid Mrabet, and Ahmed Bouhaouss. 2022. "Modeling Soil Organic Carbon Changes under Alternative Climatic Scenarios and Soil Properties Using DNDC Model at a Semi-Arid Mediterranean Environment" Climate 10, no. 2: 23. https://doi.org/10.3390/cli10020023
APA StyleLembaid, I., Moussadek, R., Mrabet, R., & Bouhaouss, A. (2022). Modeling Soil Organic Carbon Changes under Alternative Climatic Scenarios and Soil Properties Using DNDC Model at a Semi-Arid Mediterranean Environment. Climate, 10(2), 23. https://doi.org/10.3390/cli10020023