Impacts of Multiple Hurricanes and Tropical Storms on Watershed Hydrological Processes in the Florida Panhandle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Hurricanes, and Tropical Storms
2.2. The HAWQS Model and Statistical Analysis
2.3. Model Calibration and Validation
3. Results and Discussion
3.1. Impact of Hurricane
3.2. Impact of Tropical Storm
3.3. Identification of Most-Impacted Hydrological Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms
ACFRB | Apalachicola–Chattahoochee–Flint River basin |
ET | evapotranspiration |
HAWQS | Hydrologic and Water Quality System |
PCA | principal component analysis |
PET | potential evapotranspiration |
PFA | principal factor analysis |
TS | tropical storm |
WYLD | water yield |
References
- Conner, W.H.; Duberstein, J.A.; Day, J.W.; Hutchinson, S. Impacts of Changing Hydrology and Hurricanes on Forest Structure and Growth Along a Flooding/Elevation Gradient in a South Louisiana Forested Wetland from 1986 to 2009. Wetlands 2014, 34, 803–814. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 46, 686–688. [Google Scholar] [CrossRef]
- Swiss Re Institute. News Release. 2018. Available online: https://www.swissre.com/media/news-releases/2018/nr20180410_sigma_global_insured_loses_highest_ever.html (accessed on 8 September 2021).
- Vieten, R.; Warken, S.; Winter, A.; Schroder-Ritzrau, A.; Scholz, D.; Spotl, C. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico. J. Geophys. Res. Biogeosci. 2018, 123, 879–888. [Google Scholar] [CrossRef]
- Vidon, P.; Marchese, S.; Rook, S. Impact of Hurricane Irene and Tropical Storm Lee on riparian zone hydrology and biogeochemistry. Hydrol. Processes 2017, 31, 476–488. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, F.; Yu, H.C.; Sun, W.L.; Moghimi, S.; Myers, E.; Nunez, K.; Zhang, R.Y.; Wang, H.; Roland, A.; et al. Simulating compound flooding events in a hurricane. Ocean. Dyn. 2020, 70, 621–640. [Google Scholar] [CrossRef]
- Jayakaran, A.D.; Williams, T.M.; Ssegane, H.; Amatya, D.M.; Song, B.; Trettin, C.C. Hurricane impacts on a pair of coastal forested watersheds: Implications of selective hurricane damage to forest structure and streamflow dynamics. Hydrol. Earth Syst. Sci. 2014, 18, 1151–1164. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.M.; Bass, B.; Irza, N.; Fang, Z.; Proft, J.; Dawson, C.; Kiani, M.; Bedient, P. Characterizing the hydraulic interactions of hurricane storm surge and rainfall-runoff for the Houston-Galveston region. Coast. Eng. 2015, 106, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Brena-Naranjo, J.A.; Pedrozo-Acuna, A.; Pozos-Estrada, O.; Jimenez-Lopez, S.A.; Lopez-Lopez, M.R. The contribution of tropical cyclones to rainfall in Mexico. Phys. Chem. Earth 2015, 83–84, 111–122. [Google Scholar] [CrossRef]
- Hou, Y.P.; Zhang, M.F.; Liu, S.R.; Sun, P.S.; Yin, L.H.; Yang, T.L.; Li, Y.D.; Li, Q.; Wei, X.H. The Hydrological Impact of Extreme Weather-Induced Forest Disturbances in a Tropical Experimental Watershed in South China. Forests 2018, 9, 734. [Google Scholar] [CrossRef] [Green Version]
- Vidon, P.; Karwan, D.L.; Andres, A.S.; Inamdar, S.; Kaushal, S.; Morrison, J.; Mullaney, J.; Ross, D.S.; Schroth, A.W.; Shanley, J.B.; et al. In the path of the Hurricane: Impact of Hurricane Irene and Tropical Storm Lee on watershed hydrology and biogeochemistry from North Carolina to Maine, USA. Biogeochemistry 2018, 141, 351–364. [Google Scholar] [CrossRef]
- USGS (US Geological Survey). As One of Several National Focus Area Studies within the USGS National Water Census (NWC) the USGS Completed a 3-Year Study of Water Availability and Use in the Apalachicola-Chattahoochee-Flint (ACF) River Basin. 2021. Available online: https://www.usgs.gov/mission-areas/water-resources/science/apalachicola-chattahoochee-flint-river-basin-focus-area-study?qt-science_center_objects=0#qt-science_center_objects (accessed on 5 December 2021).
- Stallins, J.A.; Nesius, M.; Smith, M.; Watson, K. Biogeomorphic characterization of floodplain forest change in response to reduced flows along the Apalachicola River, Florida. River Res. Appl. 2010, 26, 242–260. [Google Scholar] [CrossRef]
- Wharton, C.H. The Natural Environments of Georgia; Georgia Department of Natural Resources: Atlanta, GA, USA, 1978; p. 227. [Google Scholar]
- Ouyang, Y. New insights on evapotranspiration and water yield in crop and forest lands under changing climate. J. Hydrol. 2021, 603, 127192. [Google Scholar] [CrossRef]
- Manly, B.F.; Alberto, J.A.N. Multivariate Statistical Methods: A Primer; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef] [PubMed]
- Bryant, F.B.; Yarnold, P.R. Principal-components analysis and exploratory and confirmatory factor analysis. In Reading and Understanding Multivariate Statistics; Grimm, L.G., Yarnold, P.R., Eds.; American Psychological Association: Washington, DC, USA, 1995; pp. 99–136. [Google Scholar]
- Betancur, S.B.; Gastmans, D.; Vasquez, K.V.; Santarosa, L.V.; dos Santos, V.; Kirchheim, R.E. Hydrological responses in equatorial watersheds indicated by Principal Components Analysis (PCA)-study case in Atrato River Basin (Colombia). Rev. Bras. Recur. Hídr. 2020, 25, 1–12. [Google Scholar] [CrossRef]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water quality sample collection, data treatment and results presentation for principal components analysis-literature review and Illinois River watershed case study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of seasonal variations in surface water quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, C.J.; Starkey, E.N.; Bartz, K.K.; Wilson, M.H.; Mueter, F.J. A practitioner’s guide for exploring water quality patterns using principal components analysis and Procrustes. Environ. Monit. Assess. 2016, 188, 249. [Google Scholar] [CrossRef] [PubMed]
Parameter | Definition | Value | Unit/Method/Explanation | Reference |
---|---|---|---|---|
SFTMP | Snowfall temperature | 1 | °C | Local observation |
SMTMP | Snow melt base temperature | 0.5 | °C | Local observation |
SMFMX | Melt factor for snow on 21 June | 4.5 | mm H2O/°C-day | Local observation |
SMFMN | Melt factor for snow on 21 December | 4.5 | mm H2O/°C-day | Local observation |
TIMP | TIMP: Snow pack temperature lag factor | 1 | Local observation | |
IPET | Potential evapotranspiration (PET) method | 0 | Priestley-Taylor method | |
ESCO | Soil evaporation compensation factor | 1 | Calibrated | |
EPCO | EPCO: Plant uptake compensation factor | 1 | Calibrated | |
ICN | Daily curve number calculation method | 0 | Calculate daily CN value as a function of soil moisture | Calibrated |
CNCOEF | Plant ET curve number coefficient | 2 | ||
ICRK | Crack flow code | 0 | Do not model crack flow in soil | Local observation |
SURLAG | Surface runoff lag time | 4 | days | Calibrated |
CN2 | Subbasins curve number | −10% | CN2 decreased 10% for all subbasins | Calibrated |
IRTE | Channel water routing method | 0 | Variable Storage Method | Calibrated |
MSK_COL1 | Calibration coefficient used to control impact of the storage time constant for normal flow | 0 | Calibrated | |
MSK_COL2 | Calibration coefficient used to control impact of the storage time constant for low flow | 3.5 | Calibrated | |
MSK_X | Weighting factor controlling relative importance of inflow rate and outflow rate in determining water storage in reach segment | 0.2 | Calibrated | |
TRNSRCH | Fraction of transmission losses from main channel that enter deep aquifer | 0 | Calibrated | |
EVRCH | Reach evaporation adjustment factor | 1 | ||
IDEG | Channel degradation code | 0 | Channel dimension is not updated as a result of degradation | Local observation |
Dataset 1 | NCDC NWS/NOAA | Measured | Base scenario | Downloaded from HAWQS |
Parameter | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 |
---|---|---|---|---|---|---|---|---|
Precipitation | 0.2069 | −0.6412 | −0.2687 | 0.4357 | −0.1773 | 0.4809 | −0.1419 | 0.0334 |
PET | −0.3386 | −0.3881 | 0.4167 | −0.0570 | −0.0406 | −0.3055 | −0.6789 | 0.0437 |
ET | −0.3712 | −0.3020 | 0.2830 | 0.0231 | 0.6968 | 0.2615 | 0.3684 | −0.0268 |
Percolation | 0.3835 | −0.2590 | −0.2982 | 0.1910 | 0.4423 | −0.6787 | 0.0400 | 0.0514 |
Runoff | 0.3535 | −0.3865 | 0.1826 | −0.6682 | −0.1501 | 0.0260 | 0.2363 | 0.4084 |
Groundwater discharge | 0.3724 | 0.3561 | 0.1336 | 0.0644 | 0.4328 | 0.3242 | −0.4548 | 0.4618 |
Water yield (WYLD) | 0.4227 | −0.0482 | 0.1373 | −0.2963 | 0.1780 | 0.1581 | −0.2063 | −0.7830 |
Stream discharge | 0.3396 | 0.0380 | 0.7177 | 0.4812 | −0.2101 | −0.1248 | 0.2765 | −0.0210 |
Proportion of variance | 68.0% | 21.1% | 8.3% | 1.2% | 1.1% | 0.2% | 0.1% | 0.0% |
Cumulative proportion | 68.0% | 89.0% | 97.4% | 98.6% | 99.6% | 99.9% | 100.0% | 100.0% |
Parameter | Factor1 | Factor2 | Factor3 | Factor4 |
---|---|---|---|---|
Rainfall | −0.0561 | 0.9664 | 0.0332 | 0.0099 |
PET | −0.9780 | −0.0910 | −0.1721 | −0.0288 |
ET | −0.9094 | −0.1860 | −0.2789 | 0.0953 |
Percolation | 0.5042 | 0.8049 | 0.2816 | 0.1173 |
Runoff | 0.1895 | 0.7785 | 0.5517 | −0.2223 |
Groundwater discharge | 0.7893 | 0.0360 | 0.6029 | 0.0913 |
Water yield | 0.5637 | 0.5173 | 0.6398 | −0.0590 |
Stream discharge | 0.2959 | 0.1973 | 0.8702 | 0.0044 |
Proportion of variance | 38.8% | 31.7% | 25.3% | 1.1% |
Cumulative proportion | 38.8% | 70.5% | 95.8% | 96.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y.; Grace, J.M.; Parajuli, P.B.; Caldwell, P.V. Impacts of Multiple Hurricanes and Tropical Storms on Watershed Hydrological Processes in the Florida Panhandle. Climate 2022, 10, 42. https://doi.org/10.3390/cli10030042
Ouyang Y, Grace JM, Parajuli PB, Caldwell PV. Impacts of Multiple Hurricanes and Tropical Storms on Watershed Hydrological Processes in the Florida Panhandle. Climate. 2022; 10(3):42. https://doi.org/10.3390/cli10030042
Chicago/Turabian StyleOuyang, Ying, Johnny M. Grace, Prem B. Parajuli, and Peter V. Caldwell. 2022. "Impacts of Multiple Hurricanes and Tropical Storms on Watershed Hydrological Processes in the Florida Panhandle" Climate 10, no. 3: 42. https://doi.org/10.3390/cli10030042
APA StyleOuyang, Y., Grace, J. M., Parajuli, P. B., & Caldwell, P. V. (2022). Impacts of Multiple Hurricanes and Tropical Storms on Watershed Hydrological Processes in the Florida Panhandle. Climate, 10(3), 42. https://doi.org/10.3390/cli10030042