Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Homogeneity Test of the Data Used
2.3.2. Analysis of Climate Extremes Indices
2.3.3. Trend Analysis
2.3.4. Spatial Interpolation of Climate Indices
3. Results
3.1. Analysis of the Zanzan Region’s Spatio-Temporal Evolution of Extreme Precipitation Trends
3.1.1. Total Annual Precipitation Index (PRCPTOT)
3.1.2. Daily Precipitation Intensity Index (SDII)
3.1.3. Index of Consecutive Wet Days (CWD)
3.1.4. Index of Consecutive Dry Days (CDD)
3.1.5. Index of Total Annual Precipitations from Very Heavy Rain Days (R99p)
3.1.6. Contribution of Extremely Wet Days (R99pTOT)
3.2. Analysis of the Spatio-Temporal Evolution of Extreme Temperature Trends in the Zanzan Region
3.2.1. Evolution of the Index of the Number of Cool Days (TX10p)
3.2.2. Changes in the Index of the Number of Cold Nights (TN10p)
3.2.3. Evolution of the Index of Cold Spell Duration Indicator (CSDI)
3.2.4. Changes in the Number of Hot Days’ Index (TX90p)
3.2.5. Evolution of the Index of the Number of Warm Nights (TN90p)
3.2.6. Evolution of the Warm Spell Duration Indicator (WSDI)
4. Discussion
4.1. Extreme Precipitations
4.2. Temperature Extremes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orellana, M. Climate Change and the Millennium Development Goals: The Right to Development, International Cooperation and the Clean Development Mechanism. Sur.-Int. J. Hum. Rights 2010, 7, 144. [Google Scholar]
- Akpoti, K.; Kabo-bah, A.T.; Zwart, S.J. Agricultural Land Suitability Analysis: State-of-the-Art and Outlooks for Integration of Climate Change Analysis. Agric. Syst. 2019, 173, 172–208. [Google Scholar] [CrossRef]
- World Bank World Development Indicators. 2006. Available online: Https://Openknowledge.Worldbank.Org/Handle/10986/8151 (accessed on 8 June 2021).
- Rockström, J.; Folke, C.; Gordon, L.; Hatibu, N.; Jewitt, G.; Penning de Vries, F.; Rwehumbiza, F.; Sally, H.; Savenije, H.; Schulze, R. A Watershed Approach to Upgrade Rainfed Agriculture in Water Scarce Regions through Water System Innovations: An Integrated Research Initiative on Water for Food and Rural Livelihoods in Balance with Ecosystem Functions. Phys. Chem. Earth 2004, 29, 1109–1118. [Google Scholar] [CrossRef]
- Dixon, J.; Gulliver, A.; Gibbon, D. Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World. In Farming Systems and Poverty: Improving Farmers’ Livelihoods in a Changing World. Food and Agriculture Organization and the World Bank. 2001. Available online: Https://Www.Fao.Org/3/Ac349e/Ac349e (accessed on 8 June 2021).
- Akpoti, K.; Higginbottom, T.P.; Foster, T.; Adhikari, R.; Zwart, S.J. Mapping Land Suitability for Informal, Small-Scale Irrigation Development Using Spatial Modelling and Machine Learning in the Upper East Region, Ghana. Sci. Total Environ. 2022, 803, 149959. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Rolinski, S. Separate and Combined Effects of Temperature and Precipitation Change on Maize Yields in Sub-Saharan Africa for Mid-to Late-21st Century. Glob. Planet. Chang. 2013, 106, 1–12. [Google Scholar] [CrossRef]
- Siabi, E.K.; Kabobah, A.T.; Akpoti, K.; Anornu, G.K.; Amo-Boateng, M.; Nyantakyi, E.K. Statistical Downscaling of Global Circulation Models to Assess Future Climate Changes in the Black Volta Basin of Ghana. Environ. Chall. 2021, 5, 100299. [Google Scholar] [CrossRef]
- Ibe, G.O.; Amikuzuno, J. Climate Change in Sub-Saharan Africa: A Menace to Agricultural Productivity and Ecological Protection. J. Appl. Sci. Environ. Manag. 2019, 23, 329. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The Scientific Basis, Summary for Policy Makers—Contribution of Working Group I to the Third Assessment Report of the Intergovermental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Eds.; IPCC: Geneva, Switzerland, 2001. [Google Scholar]
- Akpoti, K.; Dossou-Yovo, E.R.; Zwart, S.J.; Kiepe, P. The Potential for Expansion of Irrigated Rice under Alternate Wetting and Drying in Burkina Faso. Agric. Water Manag. 2021, 247, 106758. [Google Scholar] [CrossRef]
- Shoko, R.R.; Chaminuka, P.; Belete, A. Maize yield sensitivity to climate variability in south africa: Application of the ardl-ecm approach. J. Agribus. Rural Dev. 2019, 2016, 363–371. [Google Scholar] [CrossRef]
- Blanc, E. The Impact of Climate Change on Crop Yields in Sub-Saharan Africa. Am. J. Clim. Change 2012, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Grace, K.; Nagle, N.N.; Husak, G. Can Small-Scale Agricultural Production Improve Children’s Health? Examining Stunting Vulnerability among Very Young Children in Mali, West Africa. Ann. Am. Assoc. Geogr. 2016, 106, 722–737. [Google Scholar] [CrossRef]
- Belesova, K.; Gasparrini, A.; Sié, A.; Sauerborn, R.; Wilkinson, P. Household Cereal Crop Harvest and Children’s Nutritional Status in Rural Burkina Faso. Environ. Health A Glob. Access Sci. Source 2017, 16, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. The State of Food and Agriculture. Food Aid for Food Security? FAO: Rome, Italy, 2006; ISBN 9789251056004. [Google Scholar]
- Alagidede, P.; Adu, G.; Frimpong, P.B. The Effect of Climate Change on Economic Growth: Evidence from Sub-Saharan Africa. Environ. Econ. Policy Stud. 2016, 18, 417–436. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Bank. World Development Indicators 2007. In World Development Indicators; World Bank: Washington, DC, USA, 2007; ISBN 0821369598. [Google Scholar]
- Müller, C. Climate Change Impact on Sub-Saharan Africa? An Overview and Analysis of Scenarios and Models. (DIE Discussion Paper, 3/2009). In Bonn: Deutsches Institut Für Entwicklungspolitik GGmbH; DIE: Bonn, Germany, 2009; ISBN 9783889854513. [Google Scholar]
- Chen, H.; Githeko, A.K.; Zhou, G.; Githure, J.I.; Yan, G. New Records of Anopheles Arabiensis Breeding on the Mount Kenya Highlands Indicate Indigenous Malaria Transmission. Malar. J. 2006, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Reich, P.; Numbe, S.; Almaraz, R.; Eswaran, H. Land Resources Stresses and Desertification in Africa. AgroSci 2001, 2, 1–10. [Google Scholar] [CrossRef]
- Mitchell, S.A. The Status of Wetlands, Threats and the Predicted Effect of Global Climate Change: The Situation in Sub-Saharan Africa. Aquat. Sci. 2013, 75, 95–112. [Google Scholar] [CrossRef]
- Pelling, M.; Wisner, B. (Eds.) Urbanisation, Human Security and Disaster Risk in Africa. In Disaster Risk Reduction—Cases from Urban Africa; Earthscan: London, UK, 2009; pp. 3–16. [Google Scholar]
- Akpoti, K.; Kabo-bah, A.T.; Dossou-Yovo, E.R.; Groen, T.A.; Zwart, S.J. Mapping Suitability for Rice Production in Inland Valley Landscapes in Benin and Togo Using Environmental Niche Modeling. Sci. Total Environ. 2020, 709, 136165. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef] [Green Version]
- Abatan, A.A.; Abiodun, B.J.; Lawalc, K.A.; Gutowski, W.J. Trends in Extreme Temperature over Nigeria from Percentile-Based Threshold Indices. Int. J. Climatol. 2016, 36, 2527–2540. [Google Scholar] [CrossRef]
- Barry, A.A.; Caesar, J.; Klein Tank, A.M.G.; Aguilar, E.; McSweeney, C.; Cyrille, A.M.; Nikiema, M.P.; Narcisse, K.B.; Sima, F.; Stafford, G.; et al. West Africa Climate Extremes and Climate Change Indices. Int. J. Climatol. 2018, 38, e921–e938. [Google Scholar] [CrossRef]
- Kpanou, M.; Laux, P.; Brou, T.; Vissin, E.; Camberlin, P.; Roucou, P. Spatial Patterns and Trends of Extreme Rainfall over the Southern Coastal Belt of West Africa. Theor. Appl. Climatol. 2021, 143, 473–487. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., V. Barros, T.F., Stocker, D., Qin, D.J., Dokken, K.L., Ebi, M.D., Eds.; IPCC: Geneva, Switzerland, 2012; ISBN 9781139177245. [Google Scholar]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The Impact of Future Climate Change on West African Crop Yields: What Does the Recent Literature Say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521880107. [Google Scholar]
- Aguilar, E.; Barry, A.A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; do Nascimento, D.J.; Peterson, T.C.; et al. Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. Atmos. 2009, 114, 1–11. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of Trends in Daily Climate Extremes over Southern and West Africa. J. Geophys. Res. Atmos. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Karimou, B.M.; Ambouta, K.; Sarr, B.; Tychon, B. Analyse Des Phénomènes Climtiques Extrêmes Dans Le Sud-Est Du Niger; Publications de l’Association Internationale de Climatologie: Liège, Belgique, 2015. [Google Scholar]
- Cameron, C.; Norrington-Davies, G.; De Agulhas, V.t.V.; Mitchell, T. Climate and Development Knowledge Network Managing Climate Extremes and Disasters in Africa: Lessons from the SREX Report; 2012. Available online: www.Cdkn.Org/Srex (accessed on 12 June 2021).
- Schlenker, W.; Lobell, D.B. Robust Negative Impacts of Climate Change on African Agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Sultan, B.; Guan, K.; Kouressy, M.; Biasutti, M.; Piani, C.; Hammer, G.L.; McLean, G.; Lobell, D.B. Robust Features of Future Climate Change Impacts on Sorghum Yields in West Africa. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Increase Water Harvesting in Africa: Meeting Global Food Needs Requires Strategies for Storing Rainwater and Retaining Soil Moisture to Bridge Dry Spells. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef]
- Wilkinson, E.; Peters, K. Extrêmes Climatiques et Réduction de La Pauvreté Par La Résilience: Le Développement Conçu Dans l’incertitude; Overseas Development Institute: Londres, UK, 2016; Volume 2015. [Google Scholar]
- FAO. Climate-Smart Agriculture in Côte d ’ Ivoire. Climate-Smart Agriculture in Côte d’Ivoire; FAO: Rome, Italy, 2018. [Google Scholar]
- Diomande, M.; Dongo, K.; Koné, B.; Cissé, G.; Biémi, J.; Bonfoh, B. Vulnérabilité de l’agriculture Pluviale Au Changement de Régime Pluviométrique et Adaptation Des Communautés Rurales Du «V-Baoulé» En Côte d’Ivoire. 14e Colloq. Int. en Éval. Environ. 2009, 11, 8–16. [Google Scholar]
- DJE KOUAKOU BERNARD. Document de Stratégie Du Programme National Changement Climatique (2015–2020). In 84 Pages + Annexes; Ministère de l’Enivironndment, de la Salubrité Urbaine et du Développement Durable (MESUDD): Abidjan, Côte d’Ivoire, 2014. [Google Scholar]
- Kassin, K.E.; Doffangui, K.; Kouamé, B.; Yoro, R.G.; Assa, A. Variabilité Pluviométrique et Perspectives Pour La Replantation Cacaoyère Dans Le Centre Ouest de La Côte d’Ivoire. J. Appl. Biosci. 2008, 12, 633–641. [Google Scholar]
- Guessan, K.; Kouassi, A.; Gnaboa, R.; Traoré, K.; Houenou, P. Analyse de phenomènes hydrologiques dans un bassin versant urbanisé: Cas de la ville de yamoussoukro (centre de la cote d ’ ivoire). Larhyss J. 2014, 17, 135–154. [Google Scholar]
- Ernest, A.K.; Blaise, K.Y.; Michel, K.A.; Gbombélé, S.; Nagnin, S.; Jean, B. Étude de La Variabilité Hydroclimatique et de Ses Conséquences Sur Les Ressources En Eau Du Sud Forestier et Agricole de La Côte d ’ Ivoire: Cas de La Région d ’ Abidjan-Agboville. Int. J. Pure Appl. Biosci. 2013, 1, 30–50. [Google Scholar]
- Dekoula, C.; Brou, K.; N’goran, k.E.; Yao, F.; Ehounou, J.; Soro, N. Impact De La Variabilité Pluviométrique Sur La Saison Culturale Dans La Zone De Production Cotonnière En Côte D’. Eur. Sci. J. 2018, 14, 143–156. [Google Scholar] [CrossRef]
- MINAGRI (Ministère de l’Agriculture). Rapport Sur La Dynamique de La Consommation Alimentaire En Côte d’Ivoire. In 98 Pages + Annexes; MINAGRI: Abidjan, Côte d’Ivoire, 2011. [Google Scholar]
- WFP (World Food Programme). WFP Côte d’Ivoire Country Brief August 2019; WFP: Rome, Italy, 2019. [Google Scholar]
- CI-Energies Plan Cadre de Gestion Environnementale et Sociale (PCGES) Du Projet Electrification de 1088 Localités de La Côte d’Ivoire; Rapport Final: Abidjan, Côte d’Ivoire, 2019; pp. 1–169.
- Dabissi, N. Changements Hydroclimatiques et Transformations de l’agriculture: L’exemple Des Paysanneries de l’Est de La Côte d’Ivoire; Universite Paris 1 Pantheon-Sorbonne: Paris, France, 2011. [Google Scholar]
- Dje, K.B.; Ochou, A.D.; Kouadio, Z.A.; Alama, K. Impacts of El Nino on Rainfall and Its AgrocltmaticIncidences in the Zanzan Region: North-East of Côte d’Ivoire. Geosci. Res. 2018, 3, 9–20. [Google Scholar] [CrossRef]
- WMO. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; WMO-TD No. 1500: Geneva, Switzerland, 2009; pp. 361–375. [Google Scholar]
- WMO. Inter-Regional Workshop on Indices and Early Warning Systems for Drought; World Meteorological Organization: Lincoln, NE, USA, 2009. [Google Scholar]
- Brou, Y.T. La Variabilité Climatique En Côte d’Ivoire: Entre Perceptions Sociales et Réponses Agricoles. Cah. Agric. 2005, 14, 533–540. [Google Scholar]
- INS Recensement Général de La Population et de l’habitat (RGPH) 2014; Répertoire Des Localités: Abidjan, Côte d’Ivoire, 2015.
- Sinan, A.; Abou, N.K. Impacts Socio-Economiques De La Culture De L’anacarde Dans La Sous-Prefecture D’odienne (Côte d’Ivoire). Eur. Sci. J. ESJ 2016, 12, 369. [Google Scholar] [CrossRef] [Green Version]
- Westberg, D.J.; Stackhouse, P.W.; Crawley, D.B.; Hoell, J.M.; Chandler, W.S.; Zhang, T. An Analysis of NASA’s Merra Meteorological Data to Supplement Observational Data for Calculation of Climatic Design Conditions. ASHRAE Trans. 2013, 119, 210–221. [Google Scholar]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Chandler, W.S.; Hoell, J.M.; Westberg, D.; Whitlock, C.H.; Zhang, T., Jr.; Stackhouse, P.W. NASA’s Prediction of Worldwide Energy Resource (POWER) Web Services; American Meteorological Society 91st Annual Meeting: Seattle, WA, USA, 2011. [Google Scholar]
- Bai, J.; Chen, X.; Dobermann, A.; Yang, H.; Cassman, K.G.; Zhang, F. Evaluation of Nasa Satellite-and Model-Derived Weather Data for Simulation of Maize Yield Potential in China. Agron. J. 2010, 102, 9–16. [Google Scholar] [CrossRef]
- Bender, F.D.; Sentelhas, P.C. Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate Change in Brazil. Adv. Meteorol. 2018, 2018, 6204382. [Google Scholar] [CrossRef] [Green Version]
- Aboelkhair, H.; Morsy, M.; El Afandi, G. Assessment of Agroclimatology NASA POWER Reanalysis Datasets for Temperature Types and Relative Humidity at 2 m against Ground Observations over Egypt. Adv. Space Res. 2019, 64, 129–142. [Google Scholar] [CrossRef]
- Berhane, A.; Hadgu, G.; Worku, W.; Abrha, B. Trends in Extreme Temperature and Rainfall Indices in the Semi-Arid Areas of Western Tigray, Ethiopia. Environ. Syst. Res. 2020, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Akpoti, K.; Antwi, E.; Kabo-bah, A. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in Precipitation and Temperature Extremes in Central America and Northern South America, 1961–2003. J. Geophys. Res. Atmos. 2005, 110, 1–15. [Google Scholar] [CrossRef]
- Wang, X.L. Comments on “Detection of Undocumented Change Points: A Revision of the Two Phase Regression Model”. J. Clim. 2003, 16, 3383–3385. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0)—User Manual, Climate Research Branch Environment Canada Downsview; Climate Research Branch Environment Canada: Toronto, ON, Canada, 2004. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Bedoum, A.; Bouka Biona, C.; Jean Pierre, B.; Adoum, I.; Mbiake, R.; Baohoutou, L. Évolution Des Indices Des Extrêmes Climatiques En République Du Tchad de 1960 à 2008. Atmos.-Ocean 2017, 55, 42–56. [Google Scholar] [CrossRef]
- Atcheremi, N.D.; Jourda, J.P.; Saley, M.B.; Kouame, K.J.; Balliet, R. Study of the evolution of the rainfall extremes and temperature extremes in davo river basin (south- western of cote d’ivoire) from some indices of the software rclimdex. Larhyss J. 2018, 36, 99–117. [Google Scholar]
- Hountondji, Y.C.; De Longueville, F.; Ozer, P. Trends in Extreme Rainfall Events in Benin (West Africa), 1960–2000. In Proceedings of the 1st International Conference on Energy, Environment and Climate Change, Ho Chi Minh City, Vietnam, 26–27 August 2011. [Google Scholar]
- Panthou, G.; Vischel, T.; Lebel, T. Recent Trends in the Regime of Extreme Rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Vondou, D.A.; Guenang, G.M.; Kamsu-Tamo, P.H. Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon. Sustainability 2021, 13, 6803. [Google Scholar] [CrossRef]
- Balliet, R.; Saley, M.B.; Anowa Eba, E.L.; Sorokoby, M.V.; N’Guessan Bi, H.V.; N’Dri, A.O.; Djè, B.K.; Biémi, J. Évolution Des Extrêmes Pluviométriques Dans La Région Du Gôh (Centre-Ouest De La Côte d’Ivoire). Eur. Sci. J. ESJ 2016, 12, 74. [Google Scholar] [CrossRef] [Green Version]
- Allechy, F.B.; Youan Ta, M.; N’Guessan Bi, V.H.; Yapi, F.A.; Koné, A.B.; Kouadio, A. Trend of Extreme Precipitations Indices in West-Central Côte d’Ivoire: Case of the Lobo Watershed. Eur. J. Eng. Res. Sci. 2020, 5, 1281–1287. [Google Scholar] [CrossRef]
- Kruger, A.C.; Shongwe, S. Temperature Trends in South Africa: 1960–2003. Int. J. Climatol. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Kruger, A.C.; Rautenbach, H.; Mbatha, S.; Ngwenya, S.; Makgole, T.E. Historical and Projected Trends in near Surface Temperature Indices for 22 Locations in South Africa. S. Afr. J. Sci. 2019, 115, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.E.; Chiotoroiu, B.C.; Ivanova Todorova, V.; Toricǎ, V. Changes in Precipitation Extremes on the Black Sea Western Coast. Glob. Planet. Chang. 2013, 102, 10–19. [Google Scholar] [CrossRef]
- Kabo-Bah, A.T.; Diji, C.J.; Nokoe, K.; Mulugetta, Y.; Obeng-Ofori, D.; Akpoti, K. Multiyear Rainfall and Temperature Trends in the Volta River Basin and Their Potential Impact on Hydropower Generation in Ghana. Climate 2016, 4, 49. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Changes in Temperature and Precipitation Extremes in Ethiopia, Kenya, and Tanzania. Int. J. Climatol. 2019, 39, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L.; Hoffan, M.T.; Roberts, W. Recent Trends in Climate of Namaqualand, a Megadiverse Arid Region of South Africa. S. Afr. J. Sci. 2015, 112, 3/4. [Google Scholar]
- Sen, P.K. Journal of the American Statistical Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Sterling, D.L. A Comparison of Spatial Interpolation Techniques for Determining Shoaling Rates of the Atlantic Ocean Channe. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2003. [Google Scholar]
- Kyriakidis, P.C.; Goodchild, M.F. On the Prediction Error Variance of Three Common Spatial Interpolation Schemes. Int. J. Geogr. Inf. Sci. 2006, 20, 823–855. [Google Scholar] [CrossRef]
- Delbari, M.; Afrasiab, P.; Jahani, S. Spatial Interpolation of Monthly and Annual Rainfall in Northeast of Iran. Meteorol. Atmos. Phys. J. 2013, 122, 103–113. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall. J. Hydrol. 2000, 228, 113–129. [Google Scholar] [CrossRef]
- Tsintikidis, D.; Georgakakos, K.P.; Sperfslage, J.A.; Smith, D.E.; Carpenter, T.M. Precipitation Uncertainty, Raingauge Network Design within Folsom Lake Watershed. ASCE J. Hydrol. Eng. 2002, 7, 175–184. [Google Scholar] [CrossRef]
- Afanasev, I.; Volkova, T.; Elizaryev, A.; Longobardi, A. Analysis of Interpolation Methods to Map the Long-Term Annual Precipitation Spatial Variability for the Republic of Bashkortostan, Russian Federation. WSEAS Trans. Environ. Dev. 2014, 10, 405–416. [Google Scholar]
- N’guessan, H.B.V.; Arona, D.; Adjakpa, T.; Kouadio, B.H.; Kone, B.; Kouame, K.; Yapi, A.; Koaudio, A. Apport de la télédétection à l ’ analyse spatio-temporelle de l’ évolution des extrêmes pluviométriques dans le district d’ abidjan au sud de la cote d ’ ivoire. Mélanges en hommages aux Professeurs Houssou C. S., Houndagba C. J. Thomas 2015, 3, 364–378. [Google Scholar]
- Paturel, J.E.; Servat, E.; Dela, M.O. Analyse de Séries Pluviométriques de Longue Durée En Afrique de l’Ouest et Centrale Non Sahélienne Dans Un Contexte de Variabilité Climatique. Hydrol. Sci. Sci. Hydrol. 1998, 43, 937–946. [Google Scholar] [CrossRef]
- Lacroix, E.J. Les Anacardiers, Les Noix de Cajou et La Filière Anacarde à Bassila et Au Bénin. Projet Restauration Des Ressources Forestières de Bassila; GFA Terra Systems: Hamburg, Allemagne, 2003. [Google Scholar]
- Larbi, I.; Hountondji, F.C.C.; Annor, T.; Agyare, W.A.; Gathenya, J.M.; Amuzu, J. Spatio-Temporal Trend Analysis of Rainfall and Temperature Extremes in the Vea Catchment, Ghana. Climate 2018, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Ozer, P.; Manzo, O.L.; Tidjani, A.D.; Djaby, B.; Longueville, F.D.E. Evolution Récente Des Extrêmes Pluviométriques Au Niger (1950–2014). Geo-Eco-Trop. 2017, 41, 375–383. [Google Scholar]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Mouhamed, L.; Traore, S.B.; Alhassane, A.; Sarr, B. Evolution of Some Observed Climate Extremes in the West African Sahel. Weather Clim. Extremes 2013, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Vaz Milheiro, A.; Neves, E. Manual Do Cajueiro. Cultivar–Associação de Técnicos de Culturas Tropicais; Cultivar-Associação de Técnicos de Culturas Tropicais: Porto, Portugal, 1994; p. 204. [Google Scholar]
- Ambouta, K.; Sarr, B.; Tychon, B. Analyse Des Phénomènes Climatiques Extrêmes Dans Le Sud-Est Du Niger; XXVIIIe Colloque de l’Association Internationale de Climatologie: Liège, Belgium, 2015; pp. 537–542. [Google Scholar]
- Chaney, N.W.; Sheffield, J.; Villarini, G.; Wood, E.F. Development of a High-Resolution Gridded Daily Meteorological Dataset over Sub-Saharan Africa: Spatial Analysis of Trends in Climate Extremes. J. Clim. 2014, 27, 5815–5835. [Google Scholar] [CrossRef]
- Omondi, P.A.o.; Awange, J.L.; Forootan, E.; Ogallo, L.A.; Barakiza, R.; Girmaw, G.B.; Fesseha, I.; Kululetera, V.; Kilembe, C.; Mbati, M.M.; et al. Changes in Temperature and Precipitation Extremes over the Greater Horn of Africa Region from 1961 to 2010. Int. J. Climatol. 2014, 34, 1262–1277. [Google Scholar] [CrossRef]
- van der Walt, A.J.; Fitchett, J.M. Exploring Extreme Warm Temperature Trends in South Africa: 1960–2016. Theor. Appl. Climatol. 2021, 143, 1341–1360. [Google Scholar] [CrossRef]
- Filahi, S.; Tanarhte, M.; Mouhir, L.; El Morhit, M.; Tramblay, Y. Trends in Indices of Daily Temperature and Precipitations Extremes in Morocco. Theor. Appl. Climatol. 2016, 124, 959–972. [Google Scholar] [CrossRef]
- Aoubouazza, M.; Rajel, R.; Essafi, R. Impact Des Phénomènes Climatiques Extrêmes Sur Les Ressources En Eau et l ’ Agriculture Au Maroc. Rev. Mar. Sci. Agron. Vét. 2019, 7, 223–232. [Google Scholar]
- Popov, T.; Gnjato, S.; Trbić, G.; Ivanišević, M. Recent Trends in Extreme Temperature Indices in Bosnia and Herzegovina. Carpathian J. Earth Environ. Sci. 2018, 13, 211–224. [Google Scholar] [CrossRef]
- Salameh, A.A.M.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Abu Hammad, A.; Esteban-Parra, M.J. Spatio-Temporal Analysis for Extreme Temperature Indices over the Levant Region. Int. J. Climatol. 2019, 39, 5556–5582. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, J.; Zhao, X.; Lei, L.; Shi, W.; Wang, L.; Wei, W.; Liu, C.; Zhu, G.; Yang, X. Changes of Extreme Temperature and Its Influencing Factors in Shiyang River Basin, Northwest China. Atmosphere 2020, 11, 1171. [Google Scholar] [CrossRef]
- WMO. The Global Climate 2001–2010: A Decade of Climtate Extreme; World Meteorological Organisation WMO-No. 1103: Geneva, Switzerland, 2010. [Google Scholar]
- Coumou, D.; Rahmstorf, S. A Decade of Weather Extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- YAO, K.T. Hydrodynamisme Dans Les Aquifères de Socle Cristallin et Cristallophyllien Du Sud-Ouest de La Côte d’Ivoire: Cas Du Département de Soubré. Apport de La Télédétection, de La Géomorphologie et de l’hydrogéochimie. Thèse Unique. UFR STRM; Université de Coco: Abidjan, Côte d’Ivoire, 2009. [Google Scholar]
Station Name | Elevation (m) | Longitude (⁰W) | Latitude (⁰N) | Percentage (%) of Missing Data | ||
---|---|---|---|---|---|---|
Tmin | Tmax | Precip. | ||||
Bondoukou | 286.62 | −2.79 | 8.04 | 0.3 | 0.6 | 2 |
Sapli | 283.55 | −2.89 | 8.59 | 4.5 | 4.4 | 6 |
Bouna | 288.64 | −2.99 | 9.27 | 3 | 0 | 3.4 |
Doropo | 315.91 | −3.34 | 9.81 | 4 | 5 | 7 |
Kouassi-datékro | 211.45 | −3.56 | 7.73 | 0.6 | 2.3 | 4.1 |
Koun Fao | 224.41 | −3.25 | 7.48 | 0 | 0 | 0.3 |
Nassian | 241.9 | −3.64 | 8.43 | 6 | 7 | 11 |
PN Comoé S1 | 311.65 | −3.49 | 9.15 | 0 | 0 | 0 |
PN Comoé S2 | 284.6 | −4.04 | 9.38 | 0 | 0 | 0 |
Sandegué | 242.1 | −3.77 | 8.01 | 3.1 | 4.6 | 8 |
Tanda | 263.51 | −3.16 | 7.80 | 2 | 2.2 | 4 |
Téhini | 324.98 | −3.83 | 9.72 | 0 | 0 | 0.2 |
Coefficient, r | |||
---|---|---|---|
Station Name | Tmin | Tmax | Precip. |
Bondoukou | 0.98 | 0.97 | 0.86 |
Sapli | 0.96 | 0.96 | 0.95 |
Bouna | 0.97 | 0.97 | 0.96 |
Doropo | 0.98 | 0.99 | 0.98 |
Kouassi-datékro | 0.99 | 0.98 | 0.88 |
Koun Fao | 0.94 | 0.93 | 0.87 |
Nassian | 0.96 | 0.96 | 0.95 |
PN Comoé S1 | 0.95 | 0.96 | 0.97 |
PN Comoé S2 | 0.91 | 0.95 | 0.99 |
Sandegué | 0.97 | 0.97 | 0.88 |
Tanda | 0.98 | 0.96 | 0.94 |
Téhini | 0.96 | 0.97 | 0.96 |
Indices | Names | Definitions | Units |
---|---|---|---|
Precipitations | |||
PRCPTOT | Annual total precipitations PR | Sum of daily PR ≥ 1.0 mm | mm |
SDII | Daily precipitations (PR) intensity | Annual total PR divided by the number of wet days (when total PR ≥ 1.0 mm) | mm/d |
CDD | Consecutive dry days | Maximum number of consecutive dry days (when PR < 1.0 mm) | day |
CWD | Consecutive wet days | Maximum annual number of consecutive wet days (when PR ≥ 1.0 mm) | day |
R99p | Total annual PR from very heavy rain days | Annual sum of daily PR > 99th percentile | mm |
R99pTOT | Contribution from extremely wet days | % | |
Temperatures | |||
TX10p | Number of cool days | Percentage of days when TX < 10th percentile | % |
TN10P | Number of cold nights | Percentage of days when TN < 10th percentile | % |
TX90p | Number of hot days | Percentage of days when TX > 90th percentile | % |
TN90p | Number of warm nights | Percentage of days when TN > 90th percentile | % |
WSDI | Warm spell duration indicator | Annual number of days contributing to events where 6 or more consecutive days experience TX > 90th percentile | day |
CSDI | Cold spell duration indicator | Annual number of days contributing to events where 6 or more consecutive days experience TN < 10th percentile | day |
Station Name | PRCPTOT | SDII | CWD | CDD | R99p | R99pTOT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | S | Z | S | Z | S | Z | S | Z | S | Z | S | |
Bondoukou | −1.11 | −3.82 | −0.66 | −0.01 | −3.00 * | −0.77 | 0.83 | 0.27 | 1.12 | 0.26 | 1.31 | 0.05 |
Sapli | −1.20 | −3.28 | −0.41 | −0.01 | −2.87 * | −0.68 | 1.29 | 0.41 | 0.88 | 0.17 | 1.14 | 0.04 |
Bouna | −0.78 | −1.88 | −0.20 | −0.00 | −1.85 | −0.44 | 0.90 | 0.35 | 0.77 | 0.00 | 1.06 | 0.01 |
Doropo | 0.64 | 1.23 | 1.08 | 0.01 | −1.39 | −0.33 | 2.18 * | 0.89 | 0.85 | 0.09 | 1.11 | 0.03 |
Kouassi-datékro | −1.27 | −4.51 | −0.94 | −0.03 | −2.74 * | −0.58 | 0.00 | 0.00 | 0.52 | 0.01 | 0.68 | 0.01 |
Koun Fao | −0.38 | −1.22 | −0.36 | −0.01 | −1.89 | −0.52 | −0.11 | 0.00 | 0.85 | 0.05 | 0.94 | 0.02 |
Nassian | −1.36 | −3.75 | −1.08 | −0.01 | −1.80 | −0.29 | 1.29 | 0.40 | 0.56 | 0.00 | 0.56 | 0.00 |
PN Comoé S1 | −0.62 | −1.34 | −0.36 | −0.01 | −1.29 | −0.22 | 1.33 | 0.44 | 0.31 | 0.00 | 0.54 | 0.00 |
PN Comoé S2 | −0.78 | −2.26 | −0.64 | −0.01 | −1.12 | −0.22 | 1.78 | 0.65 | 0.21 | 0.00 | 0.42 | 0.00 |
Sandegué | −1.57 | −4.15 | −0.90 | −0.02 | −1.17 | −0.22 | 0.99 | 0.35 | 0.34 | 0.00 | 0.34 | 0.00 |
Tanda | −0.69 | −2.60 | −0.64 | −0.01 | −1.94 | −0.57 | −0.03 | 0.00 | 1.06 | 0.23 | 1.04 | 0.05 |
Téhini | 0.22 | 0.49 | 0.85 | 0.01 | −1.07 | −0.22 | 1.39 | 0.55 | 1.06 | 0.61 | 1.32 | 0.08 |
STATION NAME | TX10P | TN10P | TX90P | TN90P | WSDI | CSDI | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | S | Z | S | Z | S | Z | S | Z | S | Z | S | |
BONDOUKOU | −3.40 * | −0.26 | −4.84 * | −0.37 | 1.43 | 0.12 | 4.31 * | 0.38 | 0.82 | 0.17 | −4.45 * | −1.00 |
SAPLI | −4.54 * | −0.37 | −2.90 * | −0.20 | 3.72 * | 0.34 | 1.67 | 0.16 | 2.77 * | 0.62 | −2.39 * | −0.40 |
BOUNA | −1.99 * | −0.15 | −3.81 * | −0.29 | 1.55 | 0.15 | 3.23 * | 0.34 | 1.53 | 0.34 | −3.42 * | −0.62 |
DOROPO | −0.17 | −0.02 | −2.67 * | −0.22 | 0.79 | 0.07 | 2.33 * | 0.19 | 0.77 | 0.17 | −2.57 * | −0.55 |
KOUASSI-DATéKRO | −2.50 * | −0.15 | −4.03 * | −0.31 | 1.15 | 0.11 | 3.95 * | 0.35 | 0.83 | 0.21 | −3.59 * | −0.78 |
KOUN FAO | −1.39 | −0.11 | −3.62 * | −0.31 | 0.23 | 0.03 | 3.55 * | 0.30 | 0.13 | 0.00 | −3.72 * | −0.67 |
NASSIAN | −3.25 * | −0.23 | −3.97 * | −0.32 | 1.90 | 0.17 | 4.23 * | 0.35 | 1.73 | 0.30 | −3.92 * | −0.77 |
PN COMOé S1 | −1.48 | −0.13 | −3.30 * | −0.26 | 1.46 | 0.12 | 2.90 * | 0.27 | 1.35 | 0.24 | −3.05 * | −0.56 |
PN COMOé S2 | −2.13 * | −0.16 | −3.50 * | −0.29 | 1.35 | 0.15 | 2.69 * | 0.25 | 1.34 | 0.29 | −3.21 * | −0.67 |
SANDEGUé | −3.32 * | −0.23 | −3.93 * | −0.32 | 2.13 * | 0.19 | 4.23 * | 0.37 | 2.08 * | 0.37 | −3.82 * | −0.77 |
TANDA | −2.50 * | −0.15 | −3.86 * | −0.32 | 0.86 | 0.08 | 3.97 * | 0.36 | 0.44 | 0.11 | −3.33 * | −0.76 |
TéHINI | −0.90 | −0.07 | −2.95 * | −0.44 | 0.79 | 0.08 | 2.60 * | 0.23 | 0.72 | 0.17 | −2.82 * | −0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouman, K.D.; Kabo-bah, A.T.; Kouadio, B.H.; Akpoti, K. Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020. Climate 2022, 10, 74. https://doi.org/10.3390/cli10050074
Kouman KD, Kabo-bah AT, Kouadio BH, Akpoti K. Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020. Climate. 2022; 10(5):74. https://doi.org/10.3390/cli10050074
Chicago/Turabian StyleKouman, Kouamé Donald, Amos T. Kabo-bah, Boyossoro Hélène Kouadio, and Komlavi Akpoti. 2022. "Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020" Climate 10, no. 5: 74. https://doi.org/10.3390/cli10050074
APA StyleKouman, K. D., Kabo-bah, A. T., Kouadio, B. H., & Akpoti, K. (2022). Spatio-Temporal Trends of Precipitation and Temperature Extremes across the North-East Region of Côte d’Ivoire over the Period 1981–2020. Climate, 10(5), 74. https://doi.org/10.3390/cli10050074