Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change
Abstract
:1. Introduction
2. Overview of Climate Change Models for Wine-Producing Regions
3. Impact of Climate Change on Grapevines, Berries, and Wine
3.1. Grapevine Phenology
3.2. Pest and Disease Pressure
3.3. Grapevine Yield
3.4. Berry and Wine Composition
3.4.1. Sugar, Acid, and Alcohol
3.4.2. Anthocyanins
3.4.3. Aroma
4. Strategies for Climate Change Adaptation
4.1. Vineyard Location and Vine Row Orientation
4.2. Plant Material
4.2.1. Rootstocks
4.2.2. Varieties
4.2.3. Clones
4.3. Training Systems and Canopy Management
4.4. Water Management
4.5. Soil Management
4.6. Other Adaptation Strategies
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pachauri, R.K.; Meyer, L.A. Climate Change 2014: Synthesis Report. Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (accessed on 15 June 2022).
- NASA. GISS Surface Temperature Analysis (v4). Available online: https://data.giss.nasa.gov/gistemp/graphs_v4/ (accessed on 15 June 2022).
- National Centers for Environmental Information. Decadal Update from NCEI Gives Forecasters and Public Latest Averages for 1991–2020. Available online: https://www.ncei.noaa.gov/news/noaa-delivers-new-us-climate-normals (accessed on 15 June 2022).
- Granier, C.; Bessagnet, B.; Bond, T.; D’Angiola, A.; van der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.; Kinne, S.; Klimont, Z.; et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Chang. 2011, 109, 163–190. [Google Scholar] [CrossRef]
- Schultz, H. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Aust. J. Grape Wine Res. 2000, 6, 2–12. [Google Scholar] [CrossRef]
- Riganti, C.; Sanchez-Lugo, A.U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/ (accessed on 20 January 2020).
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis; Solomon, S.D., Qin, M., Manning, Z., Chen, M., Eds.; Cambridge University Press: New York, NY, USA, 2007; pp. 847–940. [Google Scholar]
- Olesen, J.E.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Darma, S.; Lestari, D.; Darma, D.C. The Productivity of Wineries—An Empirical in Moldova. J. Agric. Crop. 2021, 8, 50–58. [Google Scholar] [CrossRef]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultze, S.R.; Sabbatini, P.; Luo, L. Effects of a warming trend on cool climate viticulture in Michigan, USA. Springerplus 2016, 5, 1119. [Google Scholar] [CrossRef] [Green Version]
- Wanyama, D.; Bunting, E.L.; Goodwin, R.; Weil, N.; Sabbatini, P.; Andresen, J.A. Modeling Land Suitability for Vitis vinifera in Michigan Using Advanced Geospatial Data and Methods. Atmosphere 2020, 11, 339. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.P.; Boggia, A.; Neteler, M. Analysis of Grape Production in the Face of Climate Change. Climate 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar] [CrossRef]
- Sadras, V.; Petrie, P. Climate shifts in south-eastern Australia: Early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Aust. J. Grape Wine Res. 2011, 17, 199–205. [Google Scholar] [CrossRef]
- Bedsworth, L.; Cayan, D.; Franco, G. California’s Forth Climate Change Assessment: Statewide Summary Report. Available online: https://www.energy.ca.gov/sites/default/files/2019-11/Statewide_Reports-SUM-CCCA4-2018-013_Statewide_Summary_Report_ADA.pdf (accessed on 10 July 2022).
- Gambetta, G.A.; Kurtural, S.K. Global warming and wine quality: Are we close to the tipping point? OENO One 2021, 55, 353–361. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kelley, M.; Schmidt, G.A.; Nazarenko, L.S.; Bauer, S.E.; Ruedy, R.; Russell, G.L.; Ackerman, A.S.; Aleinov, I.; Bauer, M.; Bleck, R.; et al. GISS-E2.1: Configurations and Climatology. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002025. [Google Scholar] [CrossRef] [PubMed]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Reineke, A.; Selim, M. Elevated atmospheric CO2 concentrations alter grapevine (Vitis vinifera) systemic transcriptional response to European grapevine moth (Lobesia botrana) herbivory. Sci. Rep. 2019, 9, 2995. [Google Scholar] [CrossRef] [Green Version]
- Yau, I.-H.; Davenport, J.R.; Moyer, M.M. Developing a Wine Grape Site Evaluation Decision Support System for the Inland Pacific Northwestern United States. Horttechnology 2014, 24, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Sugaya, S.; Gemma, H. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci. Hortic. 2005, 105, 319–330. [Google Scholar] [CrossRef]
- Mullins, M.G.; Bouquet, A.; Williams, L.E. Biology of the Grapevine; Cambridge University Press: Cambridge, UK, 1992; pp. 120–135. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Caprio, J.M.; Quamme, H.A. Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can. J. Plant Sci. 2002, 82, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.R.; White, M.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric warming over coastal California and its impact on the premium wine industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Petrie, P.; Sadras, V. Advancement of grapevine maturity in Australia between 1993 and 2006: Putative causes, magnitude of trends and viticultural consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Baeza, P.; Junquera, P.; Peiro, E.; Lissarrague, J.R.; Uriarte, D.; Vilanova, M. Effects of Vine Water Status on Yield Components, Vegetative Response and Must and Wine Composition. In Advances in Grape and Wine Biotechnology; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Soil water balance in rainfed vineyards of the Penedès region (Northeastern Spain) affected by rainfall characteristics and land levelling: Influence on grape yield. Plant Soil 2010, 333, 375–389. [Google Scholar] [CrossRef]
- Ramos, M.C.; Pérez-Álvarez, E.P.; Peregrina, F.; de Toda, F.M. Relationships between grape composition of Tempranillo variety and available soil water and water stress under different weather conditions. Sci. Hortic. 2019, 262, 109063. [Google Scholar] [CrossRef]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate Change Trends and Impacts on California Agriculture: A Detailed Review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Nazir, N.; Bilal, S.; Bhat, K.A.; Shah, T.; Badri, Z.; Bhat, F.; Wani, T.; Mugal, M.; Parveen, S.; Dorjey, S. Effect of Climate Change on Plant Diseases. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 250–256. [Google Scholar] [CrossRef]
- Zayan, S.A. Impact of climate change on plant diseases and IPM strategies. In Plant Diseases—Current Threats and Management Trends; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Steel, C.; Greer, D. Effect of climate on vine and bunch characteristics: Bunch rot disease susceptibility. Acta Hortic. 2008, 785, 253–262. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X. Why are Nitrogen Concentrations in Plant Tissues Lower under Elevated CO2? A Critical Examination of the Hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef]
- Zavala, J.; Gog, L.; Giacometti, R. Anthropogenic increase in carbon dioxide modifies plant-insect interactions. Ann. Appl. Biol. 2016, 170, 68–77. [Google Scholar] [CrossRef]
- Fajer, E.D.; Bowers, M.D.; Bazzaz, F.A. The Effects of Enriched Carbon Dioxide Atmospheres on Plant—Insect Herbivore Interactions. Science 1989, 243, 1198–1200. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.P.; Daane, K.M.; Ponti, L.; Walton, V.M.; Ellis, C.K. Prospective evaluation of the biological control of vine mealybug: Refuge effects and climate. J. Appl. Ecol. 2007, 45, 524–536. [Google Scholar] [CrossRef]
- Daane, K.M.; Bentley, W.J.; Smith, R.J.; Haviland, D.R.; Weber, E.A.; Battany, M.; Gospert, C.; Millar, J.G. Planococcus Mealybugs (Vine Mealybugs). In Grape Pest Management, 3rd ed.; Bettiga, L.J., Ed.; University of California Agricultural and Natural Resources: Davis, CA, USA, 2013; pp. 246–260. [Google Scholar]
- Tian, D.; Zhang, M.; Wei, X.; Wang, J.; Mu, W.; Feng, J. GIS-Based Energy Consumption and Spatial Variation of Protected Grape Cultivation in China. Sustainability 2018, 10, 3248. [Google Scholar] [CrossRef] [Green Version]
- Steenwerth, K.L.; Strong, E.B.; Greenhut, R.F.; Williams, L.; Kendall, A. Life cycle greenhouse gas, energy, and water assessment of wine grape production in California. Int. J. Life Cycle Assess. 2015, 20, 1243–1253. [Google Scholar] [CrossRef]
- Fraga, H.; Molitor, D.; Leolini, L.; Santos, J.A. What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci. 2020, 10, 3030. [Google Scholar] [CrossRef]
- Gambetta, G.A.; Herrera, J.C.; Dayer, S.; Feng, Q.; Hochberg, U.; Castellarin, S.D. The physiology of drought stress in grapevine: Towards an integrative definition of drought tolerance. J. Exp. Bot. 2020, 71, 4658–4676. [Google Scholar] [CrossRef]
- Junquera, P.; Lissarrague, J.R.; Jiménez, L.; Linares, R.; Baeza, P. Long-term effects of different irrigation strategies on yield components, vine vigour, and grape composition in cv. Cabernet-Sauvignon (Vitis vinifera L.). Irrig. Sci. 2012, 30, 351–361. [Google Scholar] [CrossRef]
- Myburgh, P.A. Response of Vitis vinifera L. cv. Merlot to Low Frequency Irrigation and Partial Root Zone Drying in the Western Cape Coastal Region—Part II. Vegetative Growth, Yield and Quality. S. Afr. J. Enol. Vitic. 2016, 32, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Mccarthy, M.G. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Aust. J. Grape Wine Res. 1997, 3, 2–8. [Google Scholar] [CrossRef]
- Bindi, M.; Fibbi, L.; Gozzini, B.; Orlandini, S.; Miglietta, F. Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim. Res. 1996, 7, 213–224. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry, 1st ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Dokoozlian, N.K.; Kliewer, W.M. Influence of Light on Grape Berry Growth and Composition Varies during Fruit Development. J. Am. Soc. Hortic. Sci. 1996, 121, 869–874. [Google Scholar] [CrossRef]
- de Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of Sunlight and Temperature Effects on the Composition of Vitis vinífera cv. Merlot Berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef]
- Lecourieux, F.; Kappel, C.; Pieri, P.; Charon, J.; Pillet, J.; Hilbert, G.; Renaud, C.; Gomès, E.; Delrot, S.; Lecourieux, D. Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing cabernet sauvignon grape berries. Front. Plant Sci. 2017, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- Yamane, T.; Shibayama, K. Effects of Trunk Girdling and Crop Load Levels on Fruit Quality and Root Elongation in ‘Aki Queen’ Grapevines. J. Jpn. Soc. Hortic. Sci. 2006, 75, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar] [CrossRef]
- ori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of anthocyanins in red-wine grape under high temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef]
- Kliewer, W.M.; Antcliff, A.J. Influence of defoliation, lea darkening, and cluster shading on the growth and composition of ‘Sultana’ grapes. Am. J. Enol. Vitic. 1970, 21, 26–36. [Google Scholar]
- Blancquaert, E.H.; Oberholster, A.; Da-Silva, J.M.R.; Deloire, A.J. Effects of abiotic factors on phenolic compounds in the grape berry—A review. S. Afr. J. Enol. Vitic. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Belancic, A.; Agosin, E.; Ibacache, A.; Bordeu, E.; Baumes, R.; Razungles, A.; Bayonove, C. Influence of Sun Exposure on the Aromatic Composition of Chilean Muscat Grape Cultivars Moscatel de Alejandría and Moscatel rosada. Am. J. Enol. Vitic. 1997, 48, 181–186. [Google Scholar] [CrossRef]
- Marais, J.; Versini, G.; Van Wyk, C.; Rapp, A. Effect of Region on Free and Bound Monoterpene and C13-N orisoprenoid Concentrations in Weisser Riesling Wines. S. Afr. J. Enol. Vitic. 1992, 13, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Guillaumie, S.; Ilg, A.; Rety, S.; Brette, M.; Trossat-Magnin, C.; Decroocq, S.; Léon, C.; Keime, C.; Ye, T.; Baltenweck-Guyot, R.; et al. Genetic Analysis of the Biosynthesis of 2-Methoxy-3-Isobutylpyrazine, a Major Grape-Derived Aroma Compound Impacting Wine Quality. Plant Physiol. 2013, 162, 604–615. [Google Scholar] [CrossRef] [Green Version]
- Falcão, L.D.; Brighenti, E.; Rosier, J.-P.; Bordignon-Luiz, M.T.; Burin, V.M.; Chaves, E.S.; Vieira, H.J. Vineyard altitude and mesoclimate influences on the phenology and maturation of Cabernet-Sauvignon grapes from Santa Catarina State. OENO One 2010, 44, 135. [Google Scholar] [CrossRef]
- Intrieri, C.; Silvestroni, O.; Rebucci, B.; Poni, S.; Filippetti, I. The effects of row orientation on growth, yield, quality and dry matter partitioning in chardonnay vines trained to simple curtain and spur-pruned cordon. In Proceedings of the 11th Meeting of the Study Group for Vine Training Systems, Sicily, Italy, 6–12 June 1999; pp. 254–262. [Google Scholar]
- Hunter, J.J.; Volschenk, C.G.; Zorer, R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: Climatic profiles and vine physiological status. Agric. For. Meteorol. 2016, 228–229, 104–119. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G.; Booyse, M. Vineyard row orientation and grape ripeness level effects on vegetative and reproductive growth characteristics of Vitis vinifera L. cv. Shiraz/101-14 Mgt. Eur. J. Agron. 2017, 84, 47–57. [Google Scholar] [CrossRef]
- Hunter, J.J.; Volschenk, C.G. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level. J. Sci. Food Agric. 2017, 98, 2689–2704. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P. Rootstock selection. In Wine Grape Varieties in California; Bettiga, L.J., Golino, D.A., McGourty, G., Smith, R.J., Verdegaal, P.S., Weber, E., Eds.; University of California Agriculture and Natural Resources: Davis, CA, USA, 2003; pp. 12–15. [Google Scholar]
- Zasada, I.A.; Howland, A.D.; Peetz, A.B.; East, K.; Moyer, M. Vitis spp. Rootstocks Are Poor Hosts for Meloidogyne hapla, a Nematode Commonly Found in Washington Winegrape Vineyards. Am. J. Enol. Vitic. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Zhou-Tsang, A.; Wu, Y.; Henderson, S.W.; Walker, A.R.; Borneman, A.R.; Walker, R.R.; Gilliham, M. Grapevine Salt Tolerance. Aust. J. Grape Wine Res. 2021, 27, 149–168. [Google Scholar] [CrossRef]
- Corso, M.; Bonghi, C. Grapevine rootstock effects on abiotic stress tolerance. Plant Sci. Today 2014, 1, 108–113. [Google Scholar] [CrossRef]
- Monteverde, C.; De Sales, F. Impacts of global warming on southern California’s winegrape climate suitability. Adv. Clim. Chang. Res. 2020, 11, 279–293. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Litskas, V.; Mandoulaki, A.; Antoniou, D.; Boyias, T.; Stavrinides, M.; Tzortzakis, N. Drought stress and soil management practices in grapevines in Cyprus under the threat of climate change. J. Water Clim. Chang. 2018, 9, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-L.; Xue, T.-T.; Gao, F.-F.; Zhang, L.; Han, X.; Wang, Y.; Hui, M.; Wu, D.; Li, H.; Wang, H. Intraspecific recurrent selection in V. vinifera: An effective method for breeding of high quality, disease-, cold-, and drought-resistant grapes. Euphytica 2021, 217, 1–15. [Google Scholar] [CrossRef]
- Martínez de Toda, F.; García, J.; Balda, P. Adaptación al calentamiento climático de veinte variedades de vid, minoritarias de la DOCa Rioja, por su potencial de acidez. Zubía 2017, 29, 83–94. [Google Scholar]
- Van Leeuwen, C.; Roby, J.P.; Alonso-Villaverde, V.; Gindro, K. Impact of clonal variability in Vitis vinifera Cabernet Franc on grape composition, wine quality, leaf blade stilbene content and downy mildew resistance. J. Agric. Food Chem. 2013, 61, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Leeuwen, C.; Destrac, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Gladstone, E.A.; Dokoozlian, N.K. Influence of leaf area density and trellis/training systems on the microclimate within grapevine canopies. Vitis 2003, 32, 123–131. [Google Scholar] [CrossRef]
- Cartechini, A.; Palliotti, A.; Lungarotti, C. Influence of timing of summer hedging on yield and grape quality in some red and white grapevine cultivars. Acta Hortic. 1998, 512, 101–110. [Google Scholar] [CrossRef]
- Stoll, M.; Scheidweiler, M.; Lafontaine, M.; Schultz, H.R. Possibilities to reduce the velocity of berry maturation through various leaf area to fruit ratio modifications in Vitis vinifera L. Riesling. Progrès Agric. Vitic. 2009, 127, 68–71. [Google Scholar]
- Filippetti, I.; Allegro, G.; Mohaved, N.; Pastore, C.; Valentini, G.; Intrieri, C. Effects of late-season source limitations induced by trimming and antitranspi-rants canopy spray on grape composition during ripening in Vitis vinifera cv. Sangiovese. In Proceedings of the 17th International GiESCO Symposium, Asti-Alba, Italy, 29 August–2 September 2011; pp. 259–262. [Google Scholar]
- Palliotti, A.; Panara, F.; Silvestroni, O.; Lanari, V.; Sabbatini, P.; Howell, G.; Gatti, M.; Poni, S. Influence of mechanical postveraison leaf removal apical to the cluster zone on delay of fruit ripening in Sangiovese (Vitis vinifera L.) grapevines. Aust. J. Grape Wine Res. 2013, 19, 369–377. [Google Scholar] [CrossRef]
- Williams, L.E. Determination of evapotranspiration and crop coefficients for a chardonnay vineyard located in a cool climate. Am. J. Enol. Vitic. 2014, 65, 159–169. [Google Scholar] [CrossRef]
- Williams, L.E.; Baeza, P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am. J. Enol. Vitic. 2007, 58, 173–181. [Google Scholar] [CrossRef]
- Reddy, R.N. Irrigation Engineering; Gene-Tech: San Francisca, CA, USA, 2010; p. 69. [Google Scholar]
- Biswas, R.K. Drip and Sprinkler Irrigation; NIPA: Pitam Pura, New Delhi, India, 2015; pp. 8, 142. [Google Scholar]
- Dry, P.R.; Loveys, B.R.; McCarthy, M.G.; Stoll, M. Strategic irrigation management in Australian vineyards. J. Int. Sci. Vigne Vin 2001, 35, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Bellvert, J.; Mata, M.; Vallverdú, X.C.; Paris, C.; Marsal, J. Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precis. Agric. 2021, 22, 319–341. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor approach to assess vineyard thermal dynamics combining high-resolution unmanned aerial vehicle (UAV) remote sensing and wireless sensor network (WSN) proximal sensing. Sci. Hortic. 2017, 221, 83–87. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Alsina, M.M.; Sanchez, L.; Sams, B.; McKee, L.; Dulaney, W.; White, W.A.; et al. Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens. 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Pinamonti, F. Compost mulch effects on soil fertility, nutritional status and performance of grapevine. Nutr. Cycl. Agroecosyst. 1998, 51, 239–248. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Ingels, C.A.; Scow, K.M.; Whisson, D.A.; Drenovsky, R.E. Effects of cover crops on grapevines, yield, juice. Composition, soil microbial ecology, and gopher activity. Am. J. Enol. Vitic. 2005, 56, 19–29. [Google Scholar] [CrossRef]
- Pou, A.; Gulías, J.; Moreno, M.M.; Tomás, M.; Medrano, H.; Cifre, J. Cover cropping in “Vitis vinifera” L. cv. Manto negro vineyards under Mediterranean conditions: Effects on plant vigour, yield and grape quality. J. Int. Sci. Vigne Du Vin 2011, 45, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Baronti, S.; Vaccari, F.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandin, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
- Genesio, L.; Miglietta, F.; Baronti, S.; Vaccari, F.P. Biochar increases vineyard productivity without affecting grape quality: Results from a four years field experiment in Tuscany. Agric. Ecosyst. Environ. 2015, 201, 20–25. [Google Scholar] [CrossRef]
- Moral, F.J.; Rebollo, F.J.; Paniagua, L.L.; Garcia-Martin, A. A GIS-based multivariate clustering for characterization and ecoregion mapping from a viticultural perspective. Span. J. Agric. Res. 2016, 14, e0206. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G.V. Spatial analysis of climate in winegrape-growing regions in Australia. Aust. J. Grape Wine Res. 2010, 16, 389–404. [Google Scholar] [CrossRef]
- Dilrukshi, E.A.A.; Nagahage, I.S.P.; Fujino, T. Calibration and validation of a low-cost capacitive moisture sensor to integrate the automated soil moisture monitoring system. Agriculture 2019, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Stevanato, L.; Baroni, G.; Cohen, Y.; Fontana, C.L.; Gatto, S.; Lunardon, M.; Marinello, F.; Moretto, S.; Morselli, L. A novel cosmic-ray neutron sensor for soil moisture estimation over large areas. Agriculture 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Perez, J.R.; Plant, R.E.; Lambert, J.; Smart, D.R. Using apparent soil electrical conductivity (ECa) to characterize vineyard soils of high clay content. Precis. Agric. 2011, 12, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A.; Sabir, F.; Jawshle, A.I.M. Quality changes in grape berry as affected by the use of different colored shade nets proposed to alleviate the adverse effects of climate change. Asian J. Agric. Food Sci. 2020, 8. [Google Scholar] [CrossRef]
- Caravia, L.; Collins, C.; Petrie, P.R.; Tyerman, S.D. Application of shade treatments during Shiraz berry ripening to reduce the impact of high temperature. Aust. J. Grape Wine Res. 2016, 22, 422–437. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Garrido, A.; Serôdio, J.; Vos, R.D.; Conde, A.; Cunha, A. Influence of foliar kaolin application and irrigation on photosynthetic activity of grape berries. Agronomy 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Dinis, L.T.; Ferreia, H.; Pinto, G.; Bernardo, S.; Correia, C.M.; Moutinho-Pereira, J. Kaolin-based, foliar reflective film protects photosystem II structure and function in grapevine leaves exposed to heat and high solar radiation. Photosynthetica 2016, 54, 47–55. [Google Scholar] [CrossRef]
- Gatti, M.; Galbignani, G.; Garavani, A.; Bernizzoni, F.; Tombesi, S.; Palliotti, A.; Poni, S. Manipulation of ripening via antitranspirants in cv. Barbera (Vitis vinifera L.). Aust. J. Grape Wine Res. 2016, 22, 245–255. [Google Scholar] [CrossRef]
- Brillante, L.; Belfiore, N.; Gaiotti, F.; Lovat, L.; Sansone, L.; Poni, S.; Tomasi, D. Comparing kaolin and pinolene to improve sustainable grapevine production during drought. PLoS ONE 2016, 11, e0156631. [Google Scholar] [CrossRef]
- Górnik, K.; Grzesik, M.; Romanowska-Duda, B. The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and temperature stress. J. Fruit Ornamental. Plant Res. 2008, 16, 333–343. [Google Scholar]
- Singh, R.K.; Martins, V.; Soares, B.; Castro, I.; Falco, V. Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cão) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. Int. J. Mol. Sci. 2020, 21, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.; Singh, R.K.; Gomes, N.; Soares, B.G.; Silva, A.; Falco, V.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Amaral, J.S.; et al. Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants 2020, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Gatti, M.; Pirez, F.J.; Frioni, T.; Squeri, C.; Poni, S. Calibrated, delayed-cane winter pruning controls yield and significantly postpones berry ripening parameters in Vitis vinifera L. cv. Pinot Noir. Aust. J. Grape Wine Res. 2018, 24, 305–316. [Google Scholar] [CrossRef]
- Buesa, I.; Yeves, A.; Sanz, F.; Chirivella, C.; Intrigliolo, D.S. Effect of delaying winter pruning of Bobal and Tempranillo grapevines on vine performance, grape and wine composition. Aust. J. Grape Wine Res. 2021, 27, 94–105. [Google Scholar] [CrossRef]
- Moran, M.A.; Bastian, S.E.; Petrie, P.R.; Sadras, V.O. Late pruning impacts on chemical and sensory attributes of Shiraz wine. Aust. J. Grape Wine Res. 2018, 24, 469–477. [Google Scholar] [CrossRef]
- Pomarici, E.; Vecchio, R.; Mariani, A. Wineries’ perception of sustainability costs and benefits: An exploratory study in California. Sustainability 2015, 7, 16164–16174. [Google Scholar] [CrossRef] [Green Version]
- Hillis, V.; Lubell, M.; Hoffman, M. Sustainability partnerships and viticulture management in California. J. Environ. Manag. 2018, 217, 214–225. [Google Scholar] [CrossRef] [Green Version]
Category | Effects of Climate Change | References |
---|---|---|
Grapevine phenology | Shortens the growing period and fastens berry ripening Causes high rates of evapotranspiration and increases vine water requirements | [31,33,34] |
Pest and disease pressure | Promotes pathogen development and pest increased survival rate Changes the susceptibility of vines Reduces beneficial insects | [35,36,37,40] |
Grapevine yield | Improves yields in cool wine regions due to less frost occurring and longer growing season Limits vine photosynthesis and decreases significant yields due to excessive heat stress Causes higher yield variability | [29,47,48,52] |
Berry and wine composition | Accelerates grape metabolism Increases sugar accumulation and reduces organic acid, resulting in an unbalanced sugar–acid ratio Increases alcohol content Decreases anthocyanin accumulation Has an impact on flavor development | [57,58,59,66,67] |
Adaptation Strategies | Opportunities | Weaknesses | Application Suggestions |
---|---|---|---|
Vineyard location and vine row orientation | Cost-effective ways to allow the winegrower to adapt locally to climate change | Initial cost of conducting research on a new location Require collection of information of altitude, climate, soil, etc. | Workshop and field demonstrations are necessary to help growers understand research and persuade them to explore a new location |
Rootstock selection | Enables growers to select for grapevines that are more resistant to drought or disease, thus making it possible to maintain or increase vine productivity Helps to overcome soil problems, such as texture, pH, and density | Selection of a rootstock can be quite complex Selection becomes even more challenging with the changing climate | Consider how closely existing rootstock choices interact with other management strategies (e.g., irrigation and cover cropping) Consider rootstock’s ability to survive in specific conditions, such as with different soil, pests, and viruses |
New variety selection | A natural solution to delay berry ripening | Might be difficult to perform in some wine regions with traditional appellations | Continue monitoring and evaluating the new varieties over time Workshop and field demonstrations are necessary to help growers choose the right variety for their vineyards |
Clone selection | A long-term solution involving changing the berry growing cycle to delay maturity and reduce sugar accumulation | Clonal selection is time-consuming it is necessary to follow a long, rigorous procedure Requires a variety of skills and techniques and specific equipment | Continue monitoring and evaluating the new clones over time to guarantee the reliability and quality of the selections |
Training systems | An efficient solution to delay berry ripening | Initial investment required to investigate a new training system | Workshop and field demonstrations are necessary to help growers choose the right training system for their vineyards |
Canopy management | An efficient solution to delay berry ripening | Need to train winegrowers | Timing and intervention intensity of canopy management are critical |
Water management | Optimizes water use efficiency Reduces fertilizer waste Sustainable vineyard management | Initial and maintenance costs for precision irrigation and new technology are high High labor skills are required | More seasons are needed to achieve the desirable effect |
Soil management | Prevents water loss Improves soil properties, vine performance, and berry quality over the long term | A long time is required to attain healthy soil Initial costs for soil sensors and soil mapping equipment | Soil amendment should be used for several seasons to achieve the desirable effect |
Colored shade nets | Protect vines from excessive solar radiation Delay berry ripening | High labor cost | Need to consider different factors, such as fabric material, density percentage, size/shape of holes, and color |
Kaolin | Cost-efficient Forms a physical barrier against various pests Reduces moisture to prevent diseases Acts against solar radiation to prevent berry sunburn Natural and safe agent for the winegrowers and can be used for organic vineyards | It is easily washed off by rain and kaolin spray is not suitable for overhead irrigation Requires constant application, especially for new leaves Requires strict attention to detail Missed leaves open window for pests and disease | It must be mixed thoroughly and applied via a sprayer with continuous agitation Be careful not to overspray Although it is generally regarded as safe for humans, it is still important to protect workers while spraying (long sleeves, long pants, closed-toed shoes, a mask or respirator) |
Other antitranspirants | Reduce water loss through leaves by reducing transpiration Simple and viable technique to control berry sugar accumulation and obtain less alcoholic wines | Might increase fruit surface temperature and sunburn due to lack of transpiration Might decrease fruit quality and consumer preference for the wines | Application timing is critical Make sure lower leaf epidermis is fully wetted by the antitranspirant chemical Spray cautions same as for kaolin application |
Late pruning | Simple and inexpensive Suitable for light-bodied wines, such as white, rosé, and sparkling | Might reduce yield for some varieties | More seasons are needed to achieve the desirable effect |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Granco, G.; Groves, L.; Voong, J.; Van Zyl, S. Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change. Climate 2023, 11, 83. https://doi.org/10.3390/cli11040083
Sun Q, Granco G, Groves L, Voong J, Van Zyl S. Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change. Climate. 2023; 11(4):83. https://doi.org/10.3390/cli11040083
Chicago/Turabian StyleSun, Qun, Gabriel Granco, Leah Groves, Jully Voong, and Sonet Van Zyl. 2023. "Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change" Climate 11, no. 4: 83. https://doi.org/10.3390/cli11040083
APA StyleSun, Q., Granco, G., Groves, L., Voong, J., & Van Zyl, S. (2023). Viticultural Manipulation and New Technologies to Address Environmental Challenges Caused by Climate Change. Climate, 11(4), 83. https://doi.org/10.3390/cli11040083