Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa
Abstract
:1. Introduction
1.1. Temperature Trends
1.2. Impact of Day and Night Time Temperatures
1.3. Purpose of Study
2. Materials and Methods
2.1. Description of Study Sites
2.2. Data Source and Quality
2.3. Analyses of Minimum and Maximum Temperatures
2.3.1. Homogeneity Test
2.3.2. Modified Mann–Kendall (MMK) Test
2.3.3. Theil–Sen Slope Estimator
3. Results
3.1. Descriptive Statistics of Minimum and Maximum Temperatures
3.2. Trends in Maximum and Minimum Temperatures
4. Discussion
4.1. Temperature Variations and Trends
4.2. Implications for Agriculture and Water Resource Management
4.2.1. Crop Production and Grain Storage
4.2.2. Livestock Production
4.2.3. Aquatic Animal and Plant Production
4.2.4. Agricultural Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haile, M. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2169–2182. [Google Scholar] [CrossRef] [Green Version]
- Masunungure, C.; Shackleton, S.E. Exploring long-term livelihood and landscape change in two semi-arid sites in Southern Africa: Drivers and consequences for social–ecological vulnerability. Land 2018, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Osbahr, H.; Twyman, C.; Adger, W.N.; Thomas, D. Evaluating Successful Livelihood Adaptation to Climate Variability and Change in Southern Africa. Ecol. Soc. 2010, 15, 27. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation and Vulnerability—Contributions of the Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1199–1266. [Google Scholar]
- Collins, J.M. Temperature variability over Africa. J. Clim. 2011, 24, 3649–3666. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960-2003. Int. J. Clim. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Sibanda, S.; Grab, S.W.; Ahmed, F. Spatio-temporal temperature trends and extreme hydro-climatic events in southern Zimbabwe. S. Afr. Geogr. J. 2017, 100, 210–232. [Google Scholar] [CrossRef]
- Tshiala, F.M.; Olwoch, J.M.; Engelbrecht, F.A. Analysis of temperature trends over Limpopo Province, South Africa. J. Geogr. Geol. 2011, 3, 13–21. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global Surface Temperature Change. Rev. Geophys. 2021, 48, RG4004. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Working Group 1, Sixth Assessment Report. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 20 August 2022).
- Kruger, A.C.; Sekele, S.S. Trends in extreme temperature indices in South Africa: 1962–2009. Int. J. Clim. 2013, 33, 661–676. [Google Scholar] [CrossRef]
- Daron, J. Regional climate messages for Southern Africa, Scientific report from the CARIAA Adaptation at Scale in Semi-Arid Regions (ASSAR) Project. 2014. Available online: https://idl-bnc-idrc.dspacedirect.org (accessed on 20 August 2022).
- Davis-Reddy, C.L.; Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa, 2nd ed.; CSIR: Pretoria, South Africa, 2017; 44p, Available online: http://opus.sanbi.org (accessed on 20 August 2022).
- Zaidi, P.H.; Zaman-Allah, M.; Trachsel, S.; Seetharam, K.; Cairns, J.E.; Vinayan, M.T. Phenotyping for Abiotic Stress Tolerance in MaizeF. J. Integr. Plant Biol. 2012, 54, 238–249. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Walthall, C.L. Meeting global food needs: Realizing the potential via genetics × Environment × management interactions. Agron. J. 2015, 107, 1215–1226. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Cherkauer, K.A. Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteorol. 2010, 150, 1030–1045. [Google Scholar] [CrossRef]
- Schoper, J.B.; Lambert, R.J.; Vasilas, B.L. Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop. Sci. 1987, 27, 27–31. [Google Scholar] [CrossRef]
- Gross, Y.; Kigel, J. Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crop. Res. 1994, 36, 201–212. [Google Scholar] [CrossRef]
- Siambi, M. An Assessment of Diagnostic Tools for Improved Soil and Crop Management. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1997; 141p. Available online: https://dr.lib.iastate.edu/server/api/core/bitstreams/fa476fdc-354e-480f-9f0e-94c5eb08c9ed/content (accessed on 20 August 2022).
- Araujo, J.A.; Abiodun, B.J.; Crespo, O. Impacts of drought on grape yields in Western Cape, South Africa. Theor. Appl. Climatol. 2016, 123, 117–130. [Google Scholar] [CrossRef]
- Blight, G. Measuring evaporation from soil surfaces for environmental and geotechnical purposes. Water SA 2002, 28, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Sylvain, Z.A.; Wall, D.H. Linking soil biodiversity and vegetation: Implications for a changing planet. Am. J. Bot. 2011, 98, 517–527. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. Nutr. Cycl. Agroecosyst. 2011, 89, 15–23. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Irshad, M.; Inoue, M.; Ashraf, M.; Al-Busaidi, A. The management options of water for the development of agriculture in dry areas. J. Appl. Sci. 2007, 7, 1551–1557. [Google Scholar] [CrossRef] [Green Version]
- Craig, I.P. Loss of Storage Water Due to Evaporation—A Literature Review; NCEA Publication: Queensland, Australia, 2005; 75p. [Google Scholar]
- Maestre-Valero, J.F.; Martínez-Granados, D.; Martínez-Alvarez, V.; Calatrava, J. Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin. Water Resour. Manag. 2013, 27, 1411–1426. [Google Scholar] [CrossRef]
- Lafitte, H.R. Identifying Production Problems in Tropical Maize: A Field Guide; Cimmyt: Mexico City, Mexico, 1994; Available online: https://repository.cimmyt.org/handle/10883/726 (accessed on 20 June 2021).
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in snowfall versus rainfall in the Western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef] [Green Version]
- Maure, G.A.; Pinto, I.; Ndebele-Murisa, M.R.; Muthige, M.; Lennard, C.; Nikulin, G.; Dosio, A.; Meque, A.O. The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models. Environ. Res. Lett. 2018, 13, 065002. [Google Scholar] [CrossRef]
- Shah, F.; Huang, J.; Cui, K.; Nie, L.; Shah, T.; Chen, C.; Wang, K. Impact of high-temperature stress on rice plant and its traits related to tolerance. J. Agric. Sci. 2011, 149, 545–556. [Google Scholar] [CrossRef]
- Luedeling, E.; Zhang, M.; Girvetz, E.H. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS ONE 2009, 4, e6166. [Google Scholar] [CrossRef]
- Fadón, E.; Fernandez, E.; Behn, H.; Luedeling, E. A conceptual framework for winter dormancy in deciduous trees. Agronomy 2020, 10, 241. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.; Kumar, N.; Singh, G. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2015, 216, 356–373. [Google Scholar] [CrossRef]
- Paper, I. Climate Change and Wetlands: Impacts, Adaptation and Mitigation. Environ. Manage. 2002, 16, 18–26. [Google Scholar]
- Shikuku, K.M.; Valdivia, R.O.; Paul, B.K.; Mwongera, C.; Winowiecki, L.; Läderach, P.; Herrero, M.; Silvestri, S. Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach. Agric. Syst. 2017, 151, 204–216. [Google Scholar] [CrossRef]
- Mupangwa, W.; Thierfelder, C. Intensification of conservation agriculture systems for increased livestock feed and maize production in Zimbabwe. Int. J. Agric. Sustain. 2013, 12, 425–439. [Google Scholar] [CrossRef]
- Prasanna Huesing, E.J.; Eddy, R. Fall Armyworm in Africa: A Guide for Integrated Pest Management, 1st ed.; CIMMYT: Mexico City, Mexico, 2018; Available online: https://repository.cimmyt.org/handle/10883/19204 (accessed on 13 April 2021).
- O’Hara, J.E.; UsUpensky, I.; Bostanian, N.J.; Capinera, J.L.; Chapman, R.; Barfield, C.S.; Swisher, M.E.; Heppner, J.; Fitzgerald, T.D.; Scheffrahn, R.H.; et al. Tick Paralysis. In Encyclopedia of Entomology; Capinera, J.L., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 3773–3775. [Google Scholar] [CrossRef]
- Baoua, I.B.; Bakoye, O.; Amadou, L.; Murdock, L.L.; Baributsa, D. Performance of PICS bags under extreme conditions in the sahel zone of Niger. J. Stored Prod. Res. 2018, 76, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Odjo, S.; Burgueño, J.; Rivers, A.; Verhulst, N. Hermetic storage technologies reduce maize pest damage in smallholder farming systems in Mexico. J. Stored Prod. Res. 2020, 88, 101664. [Google Scholar] [CrossRef]
- Mamombe, V.; Kim, W.; Choi, Y.-S. Rainfall variability over Zimbabwe and its relation to large-scale atmosphere-ocean processes. Int. J. Clim. 2017, 37, 963–971. [Google Scholar] [CrossRef]
- Mkuhlani, S.; Mupangwa, W.; Nyagumbo, I. Maize yields in varying rainfall regimes and cropping systems across Southern Africa: A modelling assessment. In University Initiatives in Climate Change Mitigation and Adaptation; Leal Filho, W., Leal-Arcas, R., Eds.; Springer: Cham, Switzerland, 2019; pp. 203–228. [Google Scholar]
- Nicholson, S.E.; Klotter, D.; Chavula, G. A detailed rainfall climatology for Malawi, Southern Africa. Int. J. Clim. 2014, 34, 315–325. [Google Scholar] [CrossRef]
- Vincent, K.; Dougill, A.J.; Mkwambisi, D.D.; Cull, T.; Stringer, L.C. Analysis of Existing Weather and Climate Information for Malawi; University of Leeds: Leeds, UK, 2014. [Google Scholar]
- Talacuece, M.A.D.; Justino, F.B.; Rodrigues, R.D.; Flores, M.E.P.; Nascimento, J.G.; Santos, E.A. Modeling of Soybean under Present and Future Climates in Mozambique. Climate 2016, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Uamusse, M.M.; Tussupova, K.; Persson, K.M. Climate change effects on hydropower in Mozambique. Appl. Sci. 2020, 10, 4842. [Google Scholar] [CrossRef]
- Kruger, A.; Nxumalo, M. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285. [Google Scholar] [CrossRef] [Green Version]
- Nyagumbo, I.; Mkuhlani, S.; Mupangwa, W.; Rodriguez, D. Planting date and yield benefits from conservation agriculture practices across Southern Africa. Agric. Syst. 2017, 150, 21–33. [Google Scholar] [CrossRef]
- Wang, X.L.; Chen, H.; Wu, Y.; Feng, Y.; Pu, Q. New Techniques for the Detection and Adjustment of Shifts in Daily Precipitation Data Series. J. Appl. Meteorol. Clim. 2010, 49, 2416–2436. [Google Scholar] [CrossRef]
- Ayadi, S.; Ghorbel, S.Z. Relevance of the Mann Whitney Wilcoxon test in the survival analysis of newly established companies in Tunisia (Case of the sfax region). J. Glob. Entrep. Res. 2018, 8, 12. [Google Scholar] [CrossRef]
- Pohlert, T. Trend: Non-Parametric Trend Tests and Change-Point Detection, R Package Version 0.0.1. 2015. Available online: https://www.researchgate.net/publication/274014742_trend_Non-Parametric_Trend_Tests_and_Change-Point_Detection_R_package_version_001 (accessed on 21 October 2021).
- Klutse, N.A.B.; Sylla, M.B.; Diallo, I.; Sarr, A.; Dosio, A.; Diedhiou, A.; Kamga, A.; Lamptey, B.; Ali, A.; Gbobaniyi, E.O.; et al. Daily characteristics of West African monsoon rainfall in CORDEX regional climate models. Theor. Appl. Climatol. 2016, 123, 369–386. [Google Scholar] [CrossRef]
- Daron, J.; Burgin, L.; Janes, T.; Jones, R.G.; Jack, C.; Jack, C. Climate process chains: Examples from southern Africa. Int. J. Clim. 2019, 39, 4784–4797. [Google Scholar] [CrossRef] [Green Version]
- Davy, R.; Esau, I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat. Commun. 2016, 7, 11690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Abera, W.; Tamene, L.; Tibebe, D.; Adimassu, Z.; Kassa, H.; Hailu, H.; Mekonnen, K.; Desta, G.; Sommer, R.; Verchot, L. Characterizing and evaluating the impacts of national land restoration initiatives on ecosystem services in Ethiopia. Land Degrad. Dev. 2020, 31, 37–52. [Google Scholar] [CrossRef]
- Hughes, W.S.; Balling, R.C. Urban influences on south african temperature trends. Int. J. Clim. 1996, 16, 935–940. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R. Climate trends across South Africa since 1980. Water SA 2018, 44, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Jury, M.R. Ethiopian Highlands Crop-Climate Prediction: 1979–2009. J. Appl. Meteorol. Clim. 2013, 52, 1116–1126. [Google Scholar] [CrossRef]
- Klopper, E.; Landman, W.A.; Van Heerden, J. The predictability of seasonal maximum temperature in South Africa. Int. J. Clim. 1998, 18, 741–758. [Google Scholar] [CrossRef]
- Van der Walt, A.J.; Fitchett, J.M. Exploring extreme warm temperature trends in South Africa: 1960–2016. Theor. Appl. Clim. 2021, 143, 1341–1360. [Google Scholar] [CrossRef]
- Bigg, G.R.; Jickells, T.D.; Liss, P.S.; Osborn, T. The role of the oceans in climate. Int. J. Clim. 2003, 23, 1127–1159. [Google Scholar] [CrossRef]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; et al. Chapter 3: Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C—An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Preindustrial Levels and Related Global Greenhouse Gas Emission Pathways; IPCC Secretariat: Geneva, Switzerland, 2018; pp. 175–311. Available online: https://www.ipcc.ch›site (accessed on 20 October 2022).
- Vervoort, J.M.; Thornton, P.K.; Kristjanson, P.; Förch, W.; Ericksen, P.J.; Kok, K.; Ingram, J.S.; Herrero, M.; Palazzo, A.; Helfgott, A.E.; et al. Challenges to scenario-guided adaptive action on food security under climate change. Glob. Environ. Chang. 2014, 28, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Rust, J.M.; Rust, T. Climate change and livestock production: A review with emphasis on Africa. South Afr. J. Anim. Sci. 2013, 43, 255. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L. Beat the Heat! How to Care for Livestock in Extreme Weather. 2020. Available online: https://www.farmersweekly.co.za (accessed on 30 October 2021).
- Herrero, M.; Addison, J.; Bedelian, C.; Carabine, E.; Havlik, P.; Henderson, B.; Van De Steeg, S.J.; Thornton, P. Climate change and pastoralism: Impacts, consequences and adaptation. Rev. Sci. Tech. L’oie 2016, 35, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Somero, G.N.; Beers, J.M.; Chan, F.; Hill, T.M.; Klinger, T.; Litvin, S.Y. What Changes in the Carbonate System, Oxygen, and Temperature Portend for the Northeastern Pacific Ocean: A Physiological Perspective. Bioscience 2016, 66, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Dallas, H. The Effect of Water Temperature on Aquatic Organisms: A Review of Knowledge and Methods for Assessing Biotic Responses to Temperature. Report to the Water Research Commission. WRC Report No. KV 213/09. 2009, p. 120. Available online: https://www.wrc.org.za (accessed on 20 October 2022).
- Zhang, P.; Grutters, B.M.C.; Van Leeuwen, C.; Xu, J.; Petruzzella, A.; Berg, R.V.D.; Bakker, E. Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants. Front. Plant Sci. 2019, 9, 1947. [Google Scholar] [CrossRef] [PubMed]
- Biello, D. How Will Warmer Oceans Affect Sea Life? Scientific American, 25 August 2009. Available online: https://www.scientificamerican.com/article/how-will-warmer-oceans-affect-sea-life/ (accessed on 13 November 2022).
- Mupangwa, W.; Makanza, R.; Chipindu, L.; Moeletsi, M.; Mkuhlani, S.; Liben, F.; Nyagumbo, I.; Mutenje, M. Temporal rainfall trend analysis in different agro-ecological regions of southern Africa. Water SA 2021, 47, 466–479. [Google Scholar] [CrossRef]
- Conway, D.; van Garderen, E.A.; Deryng, D.; Dorling, S.; Krueger, T.; Landman, W.; Lankford, B.; Lebek, K.; Osborn, T.; Ringler, C.; et al. Climate and southern Africa’s water–energy–food nexus. Nat. Clim. Chang. 2015, 5, 837–846. [Google Scholar] [CrossRef] [Green Version]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate Change Impacts on Water and Agriculture Sectors in Southern Africa: Threats and Opportunities for Sustainable Development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; van Garderen, E.A.; Jewitt, G.P.W. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth 2014, 67–69, 47–54. [Google Scholar] [CrossRef]
- Twomlow, S.J.; Steyn, J.T.; Du Preez, C.C.; Peterson, G.A.; Unger, P.W.; Payne, W.A. Dryland Farming in Southern Africa. In Dry Land Agriculture; American Society of Agronomy; Crop Science Society of America; Soil Science Society of America: Madison, WI, USA, 2006; pp. 93–135. [Google Scholar] [CrossRef]
Country | Location | District | Latitude (o) | Longitude (o) | Altitude (m) | Agro-Ecology | Period | Years |
---|---|---|---|---|---|---|---|---|
Malawi | Chitala | Salima | −13.68 | 34.25 | 606 | Semi-arid | 1947–1999 | 52 |
Chitedze | Lilongwe | −13.98 | 33.64 | 1100 | Dry sub-humid | 1980–2013 | 33 | |
Dedza | Dedza | −14.32 | 34.25 | 1632 | Dry sub-humid | 1958–1999 | 41 | |
Golomoti | Dedza | −14.44 | 34.60 | 578 | Dry sub-humid | 1985–2019 | 34 | |
Kandeu | Ntcheu | −14.44 | 34.59 | 916 | Dry sub-humid | 1979–2019 | 40 | |
Mozambique | Chimoio | Chimoio | −19.25 | 33.43 | 693 | Sub-humid | 1951–2015 | 64 |
Pemba | Pemba | −12.59 | 40.52 | 70 | Coastal, dry sub-humid | 1951–2005 | 54 | |
Quelimane | Quelimane | −17.86 | 36.87 | 5 | Coastal, dry sub-humid | 1951–2008 | 57 | |
Rotanda | Sussundenga | −19.50 | 32.92 | 1020 | Moist sub-humid | 1991–2013 | 22 | |
Sussundenga | Sussundenga | −19.33 | 33.24 | 550 | Sub-humid | 1969–2005 | 36 | |
South Africa | Bethlehem | Thabo Mofutsanyane | −28.16 | 28.29 | 1631 | Humid Sub-tropical | 1940–2019 | 79 |
Kimberley | Frances Baard | −28.77 | 24.76 | 1198 | Semi-arid | 1980–2018 | 38 | |
Levubu | Vhembe | −23.08 | 30.28 | 706 | Humid Sub-tropical | 1980–2004 | 24 | |
Nelspruit | Ehlanzeni | −25.45 | 30.96 | 660 | Humid Sub-tropical | 1980–2018 | 38 | |
Pietermaritzburg | uMgungundlovu | −29.67 | 30.40 | 775 | Humid Sub-tropical | 1980–2018 | 38 | |
Polokwane | Capricorn | −23.82 | 30.17 | 749 | Semi-arid | 1980–2018 | 38 | |
Stellenbosch | Cape Winelands | −33.93 | 18.85 | 116 | Humid Sub-tropical | 1980–2018 | 38 | |
Upington | ZF Mgcawu | −28.40 | 21.27 | 836 | Arid | 1980–2018 | 38 | |
Vryburg | Dr Ruth Segomotsi Mompati | −26.47 | 20.62 | 879 | Semi-arid | 1980–2018 | 38 | |
Zimbabwe | Harare | Harare | −17.72 | 31.02 | 1475 | Sub-humid | 1961–2001 | 40 |
Marondera | Marondera | −18.93 | 31.54 | 1658 | Sub-humid | 1951–2000 | 49 | |
Masvingo | Masvingo | −19.83 | 30.77 | 1064 | Dry sub-humid | 1951–2001 | 50 | |
West Nicholson | Gwanda | −21.06 | 29.36 | 864 | Semi-arid | 1961–2001 | 40 |
Location | N | Mean | SD | Min | Max | Range | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Chitala | 19,150 | 31.01 | 2.96 | 22.0 | 43.0 | 21.0 | 0.44 | 0.29 |
Chitedze | 12,228 | 27.15 | 3.00 | 15.7 | 41.4 | 25.7 | 0.32 | 0.79 |
Dedza | 15,113 | 22.99 | 2.78 | 11.9 | 30.3 | 18.4 | −0.40 | 0.07 |
Golomoti | 12,569 | 27.65 | 3.16 | 18.4 | 38.1 | 19.7 | 0.46 | −0.27 |
Kandeu | 14,761 | 27.58 | 3.20 | 15.5 | 38.1 | 22.5 | 0.35 | −0.23 |
Chimoio | 23,495 | 26.81 | 4.02 | 2.1 | 40.6 | 38.5 | −0.48 | 2.08 |
Pemba | 20,089 | 29.77 | 1.69 | 18.7 | 37.5 | 18.8 | −0.14 | −0.02 |
Quelimane | 21,185 | 30.2 | 3.06 | 19.7 | 43.9 | 24.2 | 0.16 | 0.00 |
Rotanda | 8187 | 27.45 | 3.95 | 2.8 | 42.1 | 39.3 | 0.03 | 0.57 |
Sussundenga | 13,149 | 27.72 | 3.59 | 14.2 | 41.0 | 26.8 | −0.03 | 0.02 |
Bethlehem | 14,245 | 22.56 | 5.12 | −0.1 | 36.3 | 36.4 | −0.31 | −0.29 |
Kimberley | 14,245 | 26.85 | 6.26 | 6.7 | 43.1 | 36.4 | −0.29 | −0.58 |
Levubu | 8887 | 26.36 | 4.48 | 8.4 | 41.9 | 33.5 | −0.15 | 0.09 |
Nelspruit | 14,245 | 27.3 | 4.57 | 9.5 | 42.6 | 33.1 | −0.14 | −0.21 |
Pietermaritzburg | 14,245 | 24.34 | 5.31 | 7.0 | 41.9 | 34.9 | 0.02 | −0.24 |
Polokwane | 14,245 | 27.16 | 4.85 | 11.3 | 43.3 | 32.0 | −0.09 | −0.32 |
Stellenbosch | 14,245 | 23.74 | 5.83 | 9.5 | 43.1 | 33.6 | 0.18 | −0.67 |
Upington | 14,245 | 29.23 | 6.65 | 7.5 | 45.2 | 37.7 | −0.35 | −0.59 |
Vryburg | 14,245 | 30.53 | 6.55 | 6.8 | 47.8 | 41.0 | −0.37 | −0.48 |
Harare | 14,334 | 25.24 | 3.33 | 2.6 | 35.4 | 32.8 | −0.33 | 0.18 |
Marondera | 17,960 | 25.6 | 3.55 | 9.4 | 39.1 | 29.7 | −0.17 | 0.28 |
Masvingo | 18,447 | 26.33 | 4.63 | 9.2 | 39.1 | 29.9 | −0.31 | −0.16 |
West Nicholson | 14,429 | 28.63 | 5.2 | 3.4 | 42.4 | 39.0 | −0.26 | −0.28 |
Location | N | Mean | SD | Min | Max | Range | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Chitala | 19,150 | 15.03 | 3.82 | 4.0 | 29.0 | 25.0 | 0.37 | −0.19 |
Chitedze | 12,228 | 14.56 | 3.73 | 0.9 | 28.7 | 27.8 | −0.45 | −0.88 |
Dedza | 15,113 | 13.33 | 2.97 | 0.9 | 22.1 | 21.2 | −0.64 | −0.19 |
Golomoti | 12,569 | 18.06 | 3.39 | 7.97 | 26.7 | 18.7 | −0.38 | −0.95 |
Kandeu | 14,761 | 17.34 | 3.80 | 2.89 | 26.7 | 23.8 | −0.47 | −0.44 |
Chimoio | 23,495 | 16.24 | 3.42 | 2.1 | 25.9 | 23.8 | −0.36 | −0.69 |
Pemba | 20,089 | 21.6 | 2.34 | 12 | 28.7 | 16.7 | −0.49 | −0.43 |
Quelimane | 21,185 | 20.15 | 3.46 | 8.3 | 29.6 | 21.3 | −0.4 | −0.86 |
Rotanda | 8187 | 15.35 | 3.69 | 2.3 | 24.8 | 22.5 | −0.44 | −0.61 |
Sussundenga | 13,149 | 15.5 | 4.17 | 1.5 | 25.0 | 23.5 | −0.48 | −0.62 |
Bethlehem | 14,245 | 6.81 | 6.33 | −13 | 20.2 | 33.2 | −0.37 | −1.03 |
Kimberley | 14,245 | 9.87 | 6.63 | −7.9 | 26.4 | 34.3 | −0.27 | −0.99 |
Levubu | 8887 | 15.32 | 3.71 | 0.0 | 25.8 | 25.8 | −0.28 | −0.41 |
Nelspruit | 14,245 | 13.71 | 5.07 | −10.8 | 24.9 | 35.7 | −0.43 | −0.86 |
Pietermaritzburg | 14,245 | 13.06 | 3.93 | −2.6 | 25.4 | 28.0 | −0.27 | −0.49 |
Polokwane | 14,245 | 14.46 | 4.38 | 0.6 | 23.9 | 23.3 | −0.36 | −0.76 |
Stellenbosch | 14,245 | 11.36 | 3.87 | 1.0 | 23.6 | 22.6 | 0.02 | −0.50 |
Upington | 14,245 | 11.48 | 7.03 | −6.5 | 29.6 | 36.1 | −0.17 | −0.94 |
Vryburg | 14,245 | 11.77 | 7.65 | −9.0 | 30.7 | 39.7 | −0.25 | −1.02 |
Harare | 14,336 | 11.72 | 4.42 | −2.1 | 21.4 | 23.5 | −0.5 | −0.85 |
Marondera | 17,960 | 12.22 | 4.23 | −4.6 | 23.7 | 28.3 | −0.47 | −0.75 |
Masvingo | 18,447 | 12.4 | 5.12 | −4.6 | 23.7 | 28.3 | −0.47 | −0.82 |
West Nicholson | 14,429 | 13.23 | 5.8 | −2.9 | 26.3 | 29.2 | −0.43 | −0.89 |
Country | Location | Minimum | Maximum | Period | ||
---|---|---|---|---|---|---|
Sen’s Slope | p-Value | Sen’s Slope | p-Value | |||
Malawi | Chitala | 0.07 | 0.55 | 0.00 | 0.50 | 1947–1999 |
Chitedze | 0.83 | 0.00 *** | 0.02 | 0.08 | 1980–2013 | |
Dedza | −0.20 | 0.01 *** | 0.00 | 0.88 | 1958–1999 | |
Golomoti | 0.55 | 0.00 *** | 0.03 | 0.01 *** | 1985–2019 | |
Kandeu | 0.66 | 0.00 *** | 0.01 | 0.12 | 1979–2019 | |
Mozambique | Chimoio | 0.02 | 0.00 *** | 0.01 | 0.11 | 1951–2015 |
Pemba | −0.01 | 0.71 | −0.01 | 0.16 | 1951–2005 | |
Quelimane | 0.00 | 0.48 | 0.01 | 0.03 *** | 1951–2008 | |
Rotanda | 0.00 | 0.43 | 0.00 | 0.93 | 1991–2013 | |
Sussundenga | 0.01 | 0.00 *** | 0.00 | 0.51 | 1969–2005 | |
South Africa | Bethlehem | 0.02 | 0.00 *** | 0.04 | 0.04 *** | 1940–2019 |
Kimberley | −0.03 | 0.00 *** | 0.04 | 0.00 *** | 1980–2018 | |
Levubu | 0.00 | 0.64 | 0.00 | 0.11 | 1980–2004 | |
Nelspruit | 0.01 | 0.02 *** | 0.04 | 0.00 *** | 1980–2018 | |
Pietermaritzburg | 0.00 | 0.84 | 0.04 | 0.00 *** | 1980–2018 | |
Polokwane | 0.02 | 0.00 *** | 0.09 | 0.03 *** | 1980–2018 | |
Stellenbosch | 0.03 | 0.07 | 0.07 | 0.00 *** | 1980–2018 | |
Upington | −0.08 | 0.01 *** | 0.06 | 0.00 *** | 1980–2018 | |
Vryburg | 0.02 | 0.13 | 0.08 | 0.00 *** | 1980–2018 | |
Zimbabwe | Harare | 0.00 | 0.74 | 0.00 | 0.86 | 1961–2001 |
Marondera | 0.01 | 0.34 | 0.02 | 0.03 *** | 1951–2000 | |
Masvingo | 0.00 | 0.76 | 0.01 | 0.02 *** | 1951–2001 | |
West Nicholson | 0.02 | 0.03 *** | 0.03 | 0.00 *** | 1961–2001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mupangwa, W.; Chipindu, L.; Ncube, B.; Mkuhlani, S.; Nhantumbo, N.; Masvaya, E.; Ngwira, A.; Moeletsi, M.; Nyagumbo, I.; Liben, F. Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa. Climate 2023, 11, 84. https://doi.org/10.3390/cli11040084
Mupangwa W, Chipindu L, Ncube B, Mkuhlani S, Nhantumbo N, Masvaya E, Ngwira A, Moeletsi M, Nyagumbo I, Liben F. Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa. Climate. 2023; 11(4):84. https://doi.org/10.3390/cli11040084
Chicago/Turabian StyleMupangwa, Walter, Lovemore Chipindu, Bongani Ncube, Siyabusa Mkuhlani, Nascimento Nhantumbo, Esther Masvaya, Amos Ngwira, Mokhele Moeletsi, Isaiah Nyagumbo, and Feyera Liben. 2023. "Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa" Climate 11, no. 4: 84. https://doi.org/10.3390/cli11040084
APA StyleMupangwa, W., Chipindu, L., Ncube, B., Mkuhlani, S., Nhantumbo, N., Masvaya, E., Ngwira, A., Moeletsi, M., Nyagumbo, I., & Liben, F. (2023). Temporal Changes in Minimum and Maximum Temperatures at Selected Locations of Southern Africa. Climate, 11(4), 84. https://doi.org/10.3390/cli11040084