Adapting to Changing Climate: Understanding Coastal Rural Residents’ Relocation Intention in Response to Sea Level Rise
Abstract
:1. Introduction
2. Conceptual Framework
Factors Influencing Household-Level Adaptation Action to Climate Change
3. Materials and Methods
3.1. Study Area
3.2. Questionnaire Design and Data Collection
3.3. Data Processing and Analysis
4. Results
4.1. Descriptive Statistics
4.1.1. Socio-Demographic Characteristics of Respondents
4.1.2. Risk Perception, Threat, and Coping Appraisal
4.1.3. Hazard Experience
4.1.4. Proximity to Shoreline
4.2. Measures of Association
4.3. Factors Affecting Relocation Intention
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; White, N.J. Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Church, J.A.; Watson, C.S.; King, M.A.; Monselesan, D.; Legresy, B.; Harig, C. The increasing rate of global mean sea-level rise during 1993–2014. Nat. Clim. Chang. 2017, 7, 492–495. [Google Scholar] [CrossRef]
- Dieng, H.B.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise from a sea level budget approach. Geophys. Res. Lett. 2017, 44, 3744–3751. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Edited by Jennifer Sills Sea-Level Rise by 2100. Science 2013, 342, 1445–1447. [Google Scholar] [CrossRef]
- Stocker, T.F. (Ed.) Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; Volume 9781107057. [Google Scholar] [CrossRef]
- Addo, K.A. Monitoring sea level rise-induced hazards along the coast of Accra in Ghana. Nat. Hazards 2015, 78, 1293–1307. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Abel, N.; Gorddard, R.; Harman, B.; Leitch, A.; Langridge, J.; Ryan, A.; Heyenga, S. Sea level rise, coastal development and planned retreat: Analytical framework, governance principles and an Australian case study. Environ. Sci. Policy 2011, 14, 279–288. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Designing Coastal Adaptation Strategies to Tackle Sea Level Rise. Front. Mar. Sci 2021, 8, 1640. [Google Scholar] [CrossRef]
- Hino, M.; Field, C.B.; Mach, K.J. Managed retreat as a response to natural hazard risk. Nat. Clim. Chang. 2017, 7, 364–370. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C.D.; Abuodha, P.A.; Arblaster, J.; et al. Coastal Systems and Low-Lying Areas Coordinating. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 361–409. [Google Scholar]
- Mcadam, J.; Ferris, E. Planned Relocations in the Context of Climate Change: Unpacking the Legal and Conceptual Issues. Camb. J. Int. Comp. Law 2015, 4, 137–166. [Google Scholar] [CrossRef]
- Warner, K.; Kälin, W.; Martin, S.F.; Nassef, Y.; Lee, S.; Melde, S.; Chapuisa, H.E.; Franck, M.; Afifi, T. Integrating Human Mobility Issues within National Adaptation Plans; UNU-EHS Publication Series: Bonn, Germany, 2014. [Google Scholar]
- Addo, K.A.; Jayson-Quashigah, P.N.; Codjoe, S.N.A.; Martey, F. Drone as a tool for coastal flood monitoring in the Volta Delta, Ghana. Geoenviron. Disasters 2018, 5, 1–13. [Google Scholar] [CrossRef]
- Amos, E.; Akpan, U.; Ogunjobi, K. Households’ perception and livelihood vulnerability to climate change in a coastal area of Akwa Ibom State, Nigeria. Environ. Dev. Sustain. 2015, 17, 887–908. [Google Scholar] [CrossRef]
- Boyer-Villemaire, U.; Bernatchez, P.; Benavente, J.; Cooper, J.A.G. Quantifying community’s functional awareness of coastal changes and hazards from citizen perception analysis in Canada, UK and Spain. Ocean. Coast. Manag. 2014, 93, 106–120. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Vlek, P.L.G.; MacCarthy, D.S. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Van Der Veen, A. Farm level adaptation to climate change: The case of farmer’s in the ethiopian highlands. Environ. Manag. 2013, 52, 29–44. [Google Scholar] [CrossRef]
- Bubeck, P.; Botzen, W.J.W.; Kreibich, H.; Aerts, J.C.J.H. Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Glob. Environ. Chang. 2013, 23, 1327–1338. [Google Scholar] [CrossRef]
- Feng, X.; Liu, M.; Huo, X.; Ma, W. What motivates farmers’ adaptation to climate change? The case of apple farmers of Shaanxi in China. Sustainability 2017, 9, 4. [Google Scholar] [CrossRef]
- Keshavarz, M.; Karami, E. Farmers’ pro-environmental behavior under drought: Application of protection motivation theory. J. Arid Environ. 2016, 127, 128–136. [Google Scholar] [CrossRef]
- Reynaud, A.; Aubert, C.; Nguyen, M.H. Living with floods: Protective behaviours and risk perception of vietnamese households. Geneva Pap. Risk Insur. Issues Pract. 2013, 38, 547–579. [Google Scholar] [CrossRef]
- Rogers, W.R. Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation. In Social Psychophysiology: A Sourcebook. 1983, pp. 153–177. Available online: https://ci.nii.ac.jp/naid/10004535663/ (accessed on 6 December 2021).
- Lazarus, R.; Folkman, S. Stress, Appraisal, and Coping. 1984. Available online: https://books.google.com/books?hl=en&lr=&id=i-ySQQuUpr8C&oi=fnd&pg=PR5&dq=Lazarus+R+and+Folkman+S+(1984)+Stress,+Appraisal+and+Coping.+Springer,+New+York.&ots=DgFUpwilTg&sig=TFJRk0I6MeH55Hm8CTKJr0V67FU (accessed on 6 December 2021).
- Floyd, D.L.; Prentice-Dunn, S.; Rogers, R.W. A meta-analysis of research on protection motivation theory. J. Appl. Soc. Psychol. 2000, 30, 407–429. [Google Scholar] [CrossRef]
- Koerth, J.; Vafeidis, A.T.; Hinkel, J.; Sterr, H. What motivates coastal households to adapt pro-actively to sea-level rise and increasing flood risk? Reg. Environ. Chang. 2013, 13, 897–909. [Google Scholar] [CrossRef]
- Collins, J.; Ward, B.M.; Snow, P.; Kippen, S.; Judd, F. Compositional, Contextual, and Collective Community Factors in Mental Health and Well-Being in Australian Rural Communities. Qual. Health Res. 2017, 27, 677–687. [Google Scholar] [CrossRef]
- Armah, F.A.; Ekumah, B.; Yawson, D.O.; Odoi, J.O.; Afitiri, A.R.; Nyieku, F.E. Predictive Probabilities of Access to Clean Cooking: Evidence from the Demographic and Health Surveys in 31 Countries in Sub-Saharan Africa. Environmental 2019, 12, 118–131. [Google Scholar] [CrossRef]
- Zaalberg, R.; Midden, C.; Meijnders, A.; McCalley, T. Prevention, adaptation, and threat denial: Flooding experiences in the Netherlands. Risk Anal. Int. J. 2009, 29, 1759–1778. [Google Scholar] [CrossRef]
- Poussin, J.K.; Botzen, W.J.W.; Aerts, J.C.J.H. Factors of influence on flood damage mitigation behaviour by households. Environ. Sci. Policy 2014, 40, 69–77. [Google Scholar] [CrossRef]
- Botzen, W.J.W.; Van Den Bergh, J.C.J.M. Monetary valuation of insurance against flood risk under climate change. Int. Econ. Rev. 2012, 53, 1005–1026. [Google Scholar] [CrossRef]
- Song, J.; Peng, B. Should we leave? Attitudes towards relocation in response to sea level rise. Water 2017, 9, 941. [Google Scholar] [CrossRef]
- Zheng, Y.; Dallimer, M. What motivates rural households to adapt to climate change? Clim. Dev. 2016, 8, 110–121. [Google Scholar] [CrossRef]
- Bryan, E.; Deressa, T.T.; Gbetibouo, G.A.; Ringler, C. Adaptation to climate change in Ethiopia and South Africa: Options and constraints. Environ. Sci. Policy 2009, 12, 413–426. [Google Scholar] [CrossRef]
- De Silva, D.G.; Pownall, R.A. Going green: Does it depend on education, gender or income? Taylor Fr. 2013, 46, 573–586. [Google Scholar] [CrossRef]
- Mwinkom, F.X.K.; Damnyag, L.; Abugre, S.; Alhassan, S.I. Factors influencing climate change adaptation strategies in North-Western Ghana: Evidence of farmers in the Black Volta Basin in Upper West region. SN Appl. Sci. 2021, 3, 1–20. [Google Scholar] [CrossRef]
- Weinstein, N.D. Effects of Personal Experience on Self-Protective Behavior. Psychol. Bull. 1989, 105, 31–50. [Google Scholar] [CrossRef]
- Soetanto, R.; Mullins, A.; Achour, N.; RSoetanto, R.S. The Perceptions of Social Responsibility for Community Resilience to Flooding: The Impact of Past Experience, Age, Gender and Ethnicity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 86, pp. 1105–1126. [Google Scholar] [CrossRef]
- Ling, F.H.; Tamura, M.; Yasuhara, K.; Ajima, K.; Van Trinh, C. Reducing flood risks in rural households: Survey of perception and adaptation in the Mekong delta. Clim. Chang. 2015, 132, 209–222. [Google Scholar] [CrossRef]
- Frondel, M.; Simora, M.; Sommer, S. Risk Perception of Climate Change: Empirical Evidence for Germany. Ecol. Econ. 2017, 137, 173–183. [Google Scholar] [CrossRef]
- Lawrence, J.; Quade, D.; Becker, J. Integrating the effects of flood experience on risk perception with responses to changing climate risk. Nat. Hazards 2014, 74, 1773–1794. [Google Scholar] [CrossRef]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate change vulnerability of forest biodiversity: Climate and competition tracking of demographic rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Arias, J.P.; Bronfman, N.C.; Cisternas, P.C.; Repetto, P.B. Hazard proximity and risk perception of tsunamis in coastal cities: Are people able to identify their risk? PLoS ONE 2017, 12, e0186455. [Google Scholar] [CrossRef]
- Zhang, Y.; Hwang, S.N.; Lindell, M.K. Hazard Proximity or Risk Perception? Evaluating Effects of Natural and Technological Hazards on Housing Values. Environ. Behav. 2010, 42, 597–624. [Google Scholar] [CrossRef]
- Kellens, W.; Zaalberg, R.; Neutens, T.; Vanneuville, W.; De Maeyer, P. An Analysis of the Public Perception of Flood Risk on the Belgian Coast. Risk Anal. 2011, 31, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Dusick, D.M. Sample Size Calculator. 2014. Available online: https://www.calculator.net/sample-size-calculator.html?type=1&cl=95&ci=5&pp=50&ps=55&x=119&y=16%0Ahttp://www.raosoft.com/samplesize.html (accessed on 3 October 2021).
- Hair, J.F.; Anderson, R.E.; Babin, B.J.; Black, W.C. Multivariate Data Analaysis: A Global Perspective; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- González-Hernández, D.L.; Meijles, E.W.; Vanclay, F. Factors that influence climate change mitigation and adaptation action: A household study in the Nuevo Leon Region, Mexico. Climate 2019, 7, 74. [Google Scholar] [CrossRef]
- Coastal Resources Center. Shama District Integrated Coastal Management Toolkit. In Integrated Coastal and Fisheries Governance Initiative (Hen Mpoano); Narragansett, R.I., Ed.; Coastal Resources Center at the Graduate School of Oceanography, University of Rhode Island: Kingston, RI, USA, 2013; p. 62. [Google Scholar]
Factors | Item | Measurements | Coding Scheme |
---|---|---|---|
Relocation Intention | RI | Relocation decision | Binary scale (1- Will relocate, 0- Will not relocate) |
Risk perception | RP1 | Sea-level rise is taking place | Likert scale: 1–5 (strongly agree to strongly disagree) |
RP2 | Sea level rise poses a danger to the natural environment | ||
RP3 | Sea-level rise poses a danger to the built environment | ||
Threat appraisal | TA1 | Sea-level rise impacts become too frequent and destructive | 5-point scale: 1 (not important at all) to 5 (very important) |
TA2 | Safety of myself and/or my family | ||
TA3 | Neighborhood, friends, and/or family decide to leave the area | ||
TA4 | Property is severely damaged | ||
TA5 | No provision of adaptation measures | ||
Coping Appraisal | CA1 | Relocation cost | 5-point scale: 1 (not important at all) to 5 (very important) |
CA2 | Distance to current workplace | ||
CA3 | Job opportunities at the new location | ||
CA4 | Social and family ties | ||
Biosocial factors | BF1 | Sex of respondent | 1 = Female, 2 = Male |
BF2 | Age of respondent | 1 = <35, 2 = 35–55, 3 = >55 | |
BF3 | Experienced damage as a result of sea-level rise | Binary scale (1–yes, 0–no) | |
Socio-cultural factors | SF1 | Educational level of respondent | 1 = No formal education, 2 = Primary, 3 = JHS/Middle 4 = SHS/Voc/Tech and above |
SF2 | Income level of respondent | 1 = >GHC 100, 2 = GHC 101-500, 3 = GHC 501-999, 4 = GHC 100 and above | |
Contextual factors | Elevation | 1 = <4 m 2 = 4.01–7 m, 3 = 7.01 m and above | |
Location of house from shoreline | 1 < 100 m, 2 = 101–400 m, 3 = 401–700 m, 4 = Above 700 m |
Constructs | Items | Main factors | Cronbach Alpha | ||
---|---|---|---|---|---|
1 | 2 | 3 | |||
Risk perception | RP1 | 0.907 | 0.901 | ||
RP2 | 0.906 | ||||
RP3 | 0.915 | ||||
Threat appraisal | TA1 | 0.893 | 0.861 | ||
TA2 | 0.922 | ||||
TA4 | 0.847 | ||||
Coping appraisal | CA2 | 0.835 | 0.801 | ||
CA3 | 0.817 | ||||
CA4 | 0.765 |
Background Characteristics | Community | |||||||
---|---|---|---|---|---|---|---|---|
Sanwoma | Anlo Beach | Glefe-Wiaboman | Total | |||||
N | % | N | % | N | % | N | % | |
Community | 64 | 17.8 | 193 | 53.8 | 102 | 28.4 | 359 | 100 |
Sex | ||||||||
Male | 23 | 13.9 | 96 | 58.2 | 48 | 27.9 | 165 | 46.0 |
Female | 41 | 21.1 | 97 | 50.0 | 58 | 28.9 | 194 | 54.0 |
Age (years) | ||||||||
<35 | 22 | 17.2 | 55 | 43.0 | 51 | 39.8 | 128 | 35.7 |
35–55 | 33 | 18.8 | 98 | 55.7 | 45 | 25.6 | 176 | 49.0 |
>55 | 9 | 16.4 | 40 | 72.7 | 6 | 10.9 | 55 | 15.3 |
Educational level | ||||||||
No formal education | 13 | 20.0 | 46 | 70.8 | 6 | 9.2 | 65 | 18.1 |
Primary | 19 | 19.4 | 67 | 68.4 | 12 | 12.2 | 98 | 27.3 |
JHS/Middle | 25 | 16.2 | 66 | 42.9 | 63 | 40.9 | 154 | 42.9 |
SHS/Voc/Tech | 7 | 16.7 | 14 | 33.3 | 21 | 50.0 | 42 | 11.7 |
Average monthly income | ||||||||
>GHC 100 | 8 | 22.2 | 17 | 47.2 | 11 | 30.6 | 36 | 10 |
GHC101–500 | 44 | 23.0 | 104 | 54.5 | 43 | 22.5 | 191 | 53.2 |
GHC 501–999 | 8 | 10.3 | 48 | 61.5 | 22 | 28.2 | 78 | 21.7 |
<GHC 1000 | 4 | 7.4 ss | 24 | 44.4 | 26 | 48.1 | 54 | 15.0 |
Variable | p-Value |
---|---|
Risk perception | 0.000 |
Threat appraisal | 0.084 |
Coping appraisal | 0.040 |
Variable | Relocation Intention | ||
---|---|---|---|
Will Relocate | Will Not Relocate | Inferential Statistics | |
Sex of respondent | χ2 = 0.79, p-value = 0.456; Cramér’s V = 0.15 | ||
Male | 147 | 18 | |
Female | 171 | 23 | |
Age of respondent | χ2 = 1.879, p-value = 0.391; Cramér’s V = 0.72 | ||
Young adult | 117 | 11 | |
Middle-aged adult | 152 | 24 | |
Older adult | 49 | 6 | |
Educational level | χ2 = 2.700, p-value = 0.440; Cramér’s V = 0.087 | ||
No formal education | 55 | 10 | |
Primary | 85 | 13 | |
JHS/Middle | 141 | 13 | |
SHS/Voc/Tech and above | 37 | 5 | |
Average monthly income | χ2 = 2.700, p-value = 0.440; Cramér’s V = 0.087 | ||
>GHC 100 | 33 | 3 | |
GHC 101–500 | 170 | 21 | |
GHC 501–999 | 71 | 7 | |
<GHC 1000 | 44 | 10 | |
Elevation | χ2 = 1.780, p-value = 0.411; Cramér’s V = 0.070 | ||
>4 m | 233 | 30 | |
4–9 m | 73 | 11 | |
<9 m | 12 | 0 | |
Distance to shoreline | χ2 = 3.671, p-value = 0.160; Cramér’s V = 0.101 | ||
>100 m | 134 | 12 | |
100–400 m | 159 | 27 | |
<400 | 25 | 2 | |
Hazard experience | χ2 = 3.654, p-value = 0.440; Cramér’s V = 0.101 | ||
Yes | 264 | 29 | |
No | 54 | 12 |
Variables | Odds Ratio | Robust SE | p-Value | Conf. Interval | |
---|---|---|---|---|---|
Model 1: Cognitive Factors | |||||
Risk perception | 1.495 | 0.179 | 0.001 | 1.182 | 1.890 |
Threat Appraisal | 1.334 | 0.160 | 0.017 | 1.054 | 1.688 |
Coping Appraisal | 1.304 | 0.190 | 0.068 | 0.980 | 1.734 |
Model 2: Model 1 + Biosocial factors | |||||
Risk perception | 1.572 | 0.200 | 0.000 | 1.225 | 2.018 |
Threat Appraisal | 1.327 | 0.165 | 0.023 | 1.040 | 1.692 |
Coping Appraisal | 1.290 | 0.182 | 0.071 | 0.979 | 1.700 |
Sex (ref: Female) | |||||
Male | 1.202 | 0.350 | 0.527 | 0.679 | 2.128 |
Age (ref: Young adult) | |||||
Middle-aged adult | 0.440 | 0.155 | 0.020 | 0.221 | 0.876 |
Older adult | 0.919 | 0.490 | 0.875 | 0.323 | 2.614 |
Model 3: Model 2 + Socio-cultural factors | |||||
Risk perception | 1.633 | 0.215 | 0.000 | 1.261 | 2.115 |
Threat Appraisal | 1.359 | 0.177 | 0.019 | 1.052 | 1.754 |
Coping Appraisal | 1.208 | 0.178 | 0.198 | 0.906 | 1.611 |
Sex (ref: Female) | |||||
Male | 1.141 | 0.346 | 0.664 | 0.629 | 2.068 |
Age (ref: Young adult) | |||||
Middle-aged adult | 0.397 | 0.154 | 0.017 | 0.185 | 0.850 |
Older adult | 0.725 | 0.402 | 0.562 | 0.245 | 2.148 |
Education (ref: No formal education) | |||||
Primary | 1.370 | 0.608 | 0.478 | 0.574 | 3.270 |
Middle School/JHS | 1.383 | 0.615 | 0.467 | 0.578 | 3.308 |
Secondary School and above | 1.290 | 0.717 | 0.646 | 0.434 | 3.832 |
Household monthly income (GHC) (ref: below 100) | |||||
101–500 | 0.394 | 0.218 | 0.093 | 0.133 | 1.167 |
501–999 | 1.014 | 0.692 | 0.984 | 0.266 | 3.862 |
1000 and above | 0.303 | 0.189 | 0.056 | 0.089 | 1.030 |
Model 4: Model 3+ Contextual factors | |||||
Risk perception | 1.421 | 0.223 | 0.025 | 1.045 | 1.933 |
Threat Appraisal | 1.316 | 0.175 | 0.039 | 1.014 | 1.707 |
Coping Appraisal | 1.178 | 0.171 | 0.260 | 0.886 | 1.565 |
Sex (ref: Female) | |||||
Male | 1.141 | 0.352 | 0.668 | 0.623 | 2.090 |
Age (ref: Young adult) | |||||
Middle-aged adult | 0.403 | 0.155 | 0.018 | 0.190 | 0.857 |
Older adult | 0.693 | 0.380 | 0.504 | 0.237 | 2.030 |
Education (ref: No formal education) | |||||
Primary | 1.473 | 0.676 | 0.398 | 0.599 | 3.620 |
Middle School/JHS | 1.547 | 0.702 | 0.336 | 0.636 | 3.765 |
Secondary School and above | 1.519 | 0.908 | 0.485 | 0.471 | 4.900 |
Household monthly income (GHC) (ref: below 100) | |||||
101–500 | 0.375 | 0.200 | 0.067 | 0.132 | 1.069 |
501–999 | 0.995 | 0.661 | 0.994 | 0.271 | 3.657 |
1000 and above | 0.302 | 0.184 | 0.049 | 0.092 | 0.995 |
Hazard Experience (ref: No) | |||||
Yes | 1.704 | 0.683 | 0.184 | 0.777 | 3.739 |
Elevation | 1.010 | 0.100 | 0.918 | 0.832 | 1.226 |
Distance of house from Shoreline (ref: below 100 m) | |||||
100–300 m | 0.655 | 0.238 | 0.244 | 0.321 | 1.335 |
Above 300 m | 0.862 | 0.469 | 0.785 | 0.297 | 2.502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adade, R.; Jaiye, D.; Klutse, N.A.B.; Okhimamhe, A.A. Adapting to Changing Climate: Understanding Coastal Rural Residents’ Relocation Intention in Response to Sea Level Rise. Climate 2023, 11, 110. https://doi.org/10.3390/cli11050110
Adade R, Jaiye D, Klutse NAB, Okhimamhe AA. Adapting to Changing Climate: Understanding Coastal Rural Residents’ Relocation Intention in Response to Sea Level Rise. Climate. 2023; 11(5):110. https://doi.org/10.3390/cli11050110
Chicago/Turabian StyleAdade, Richard, Dukiya Jaiye, Nana Ama Browne Klutse, and Appollonia Aimiosino Okhimamhe. 2023. "Adapting to Changing Climate: Understanding Coastal Rural Residents’ Relocation Intention in Response to Sea Level Rise" Climate 11, no. 5: 110. https://doi.org/10.3390/cli11050110
APA StyleAdade, R., Jaiye, D., Klutse, N. A. B., & Okhimamhe, A. A. (2023). Adapting to Changing Climate: Understanding Coastal Rural Residents’ Relocation Intention in Response to Sea Level Rise. Climate, 11(5), 110. https://doi.org/10.3390/cli11050110