Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6
Abstract
:1. Introduction
- SSP1: Sustainable and equitable, where the common good is preserved and nature is respected, social inequalities are reduced, and consumption is oriented towards minimizing the use of energy and material resources.
- SSP2: The middle of the road, which extrapolates current and past developments into the future. The environmental system is degraded. Population growth is moderate. Cooperation between nations is limited, and there are significant differences in countries’ incomes.
- SSP3: Regional rivalry. National and regional conflicts. Investments in technological and educational development are decreasing. Inequality increases, and some regions suffer drastic environmental damage.
- SSP4: Inequality pathway. There is a gap between societies, and their cooperation, income, and education are low. Environmental problems are only resolved locally in some regions but not in others.
- SSP5: Fossil-fuel-based development pathway. The global market is integrated, and there is technological progress. However, social and economic development is based on the exploitation of oil. There is a high demand for energy.
2. Materials and Methods
2.1. Study Zone
2.2. Methods
2.3. Temperature Trends
3. Results
3.1. Bias Correction
3.2. Data Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meehl, G.A.; Zwiers, F.; Evans, J.; Knutson, T.; Mearns, L.; Whetton, P. Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. B. Am. Meteorol. Soc. 2000, 81, 427–436. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; 881p. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- DKRZ. The SSP Scenarios. Deutsches Klimarechenzentrum. 2023. Available online: https://www.dkrz.de/en/communication/climate-simulations/cmip6-en/the-ssp-scenarios (accessed on 15 March 2023).
- Fan, X.; Duan, Q.; Shen, C.; Wu, Y.; Xing, C. Global surface air temperatures in CMIP6: Historical performance and future changes. Environ. Res. Lett. 2020, 15, 104056. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.P.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.B.; Rauniyar, S.; Freund, M.B.; et al. Insights from CMIP6 for Australia’s future climate. Earth’s Future 2019, 8, e2019EF001469. [Google Scholar] [CrossRef]
- You, Q.; Cai, Z.; Wu, F.; Jiang, Z.; Pepin, N.; Shen, S.S. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty. Clim. Dynam. 2021, 57, 17–35. [Google Scholar] [CrossRef]
- Montero-Martínez, M.J.; Ojeda-Bustamante, W.; Santana-Sepúlveda, J.S.; Prieto-González, R.; Lobato-Sánchez, R. Sistema de consulta de proyecciones regionalizadas de cambio climático para México. Tecnología y Ciencias del Agua 2013, 4, 113–128. Available online: https://www.scielo.org.mx/pdf/tca/v4n2/v4n2a7.pdf (accessed on 15 March 2023).
- Cavazos, T.; Salinas, J.A.; Martínez, B.; Colorado, G.; De Grau, P.; Prieto, R.; Conde, C.; Quintanar, A.; Santana, J.S.; Romero-Centeno, R.; et al. Actualización de Escenarios de Cambio Climático para México como Parte de los Productos de la Quinta Comunicación Nacional; Informe Final del Proyecto al INECC: Ciudad de México, México, 2013; 150p, Available online: https://www.researchgate.net/publication/321274898 (accessed on 15 March 2023).
- Fernández-Eguiarte, A.; Zavala-Hidalgo, J.; Romero-Centeno, R.; Conde-Álvarez, A.C.; Trejo-Vázquez, R.I. Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México. Instituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales. 2015. Available online: https://atlasclimatico.unam.mx/cmip5/visualizador (accessed on 15 March 2023).
- Giorgi, F.; Mearns, L.O. Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R.; Montero-Martínez, M.J.; Alcudia-Aguilar, A. Regional Climate Change in Southeast Mexico-Yucatan Peninsula, Central America and the Caribbean. Appl. Sci. 2021, 11, 8284. [Google Scholar] [CrossRef]
- Gupta, R.; Bhattarai, R.; Mishra, A. Development of Climate Data Bias Corrector (CDBC) Tool and Its Application over the Agro-Ecological Zones of India. Water 2019, 11, 1102. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Selection of Bias Correction Methods to Assess the Impact of Climate Change on Flood Frequency Curves. Water 2019, 11, 2266. [Google Scholar] [CrossRef]
- Iturbide, M.; Casanueva, A.; Bedia, J.; Herrera, S.; Milovac, J.; Gutiérrez, J.M. On the need of bias adjustment for more plausible climate change projections of extreme heat. Atmos. Sci. Lett. 2022, 23, e1072. [Google Scholar] [CrossRef]
- NASA. Regional Climate Model Evaluation System. Jet Propulsion Laboratory. 2021. Available online: https://rcmes.jpl.nasa.gov/content/statistical-downscaling (accessed on 15 March 2023).
- Gutiérrez, J.M.; San-Martín, D.; Brands, S.; Manzanas, R.; Herrera, S. Reassessing statistical downscaling techniques for their robust application under climate change conditions. J. Clim. 2013, 26, 171–188. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Historical precipitation patterns in the South-Southeast region of Mexico and future projections. Earth Sci. Res. J. 2021, 25, 69–84. [Google Scholar] [CrossRef]
- Tren Maya. Secretaria de Turismo y Fonatur. Gobierno de México. 2023. Available online: https://www.gob.mx/trenmaya (accessed on 15 March 2023).
- DTM. Seguimiento de Flujos de Población Migrante, Tenosique. Displacement Tracking Matrix. Organización Internacional para las Migraciones. ONU. 2022. Available online: https://displacement.iom.int/sites/g/files/tmzbdl1461/files/reports/DTM-Tenosique.pdf (accessed on 15 March 2023).
- Andrade-Velázquez, M. Visión climática de la precipitación en la cuenca del Río Usumacinta. In La Cuenca del Río Usumacinta desde la Perspectiva del Cambio Climático; Soares, D., García, G.A., Eds.; Instituto Mexicano de Tecnología del Agua: Jiutepec, México, 2017; pp. 1–417. [Google Scholar]
- Andrade-Velázquez, M.; Medrano-Pérez, O.R. Precipitation patterns in Usumacinta and Grijalva basins (southern Mexico) under a changing climate. Rev. Bio Cienc. 2020, 7, 1–22. [Google Scholar] [CrossRef]
- UNEP. Climate Action, What We Do, Climate Adaptation. United Nations Environment Programme. 2023. Available online: https://www.unep.org/explore-topics/climate-action/what-we-do/climate-adaptation/ecosystem-based-adaptation (accessed on 15 March 2023).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2023. Available online: https://doi.org/10.24381/cds.bd0915c6 (accessed on 15 March 2023).
- Salinas, J.A.; Maya, M.E.; Hernández, C.; Montero-Martínez, M.J. Informe Final del Proyecto de Investigación Interno “Evaluación de Modelos Atmosféricos Globales del Experimento CMIP6 para México. Cuantificación de Impactos de Eventos Extremos y Cambio Climático”; Instituto Mexicano de Tecnología del Agua: Jiutepec, México, 2020.
- Rivera, P. Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. Earth Syst. Environ. 2023, 7, 43–65. [Google Scholar] [CrossRef]
- Seferian, R. CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 CMIP Historical. Earth System Grid Federation. 2018. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.CNRM-CERFACS.CNRM-ESM2-1.historical (accessed on 15 March 2023).
- Voldoire, A. CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 ScenarioMIP SSP245. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-ESM2-1.ssp245 (accessed on 15 March 2023).
- Voldoire, A. CNRM-CERFACS CNRM-ESM2-1 Model Output Prepared for CMIP6 ScenarioMIP SSP460. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-ESM2-1.ssp460 (accessed on 15 March 2023).
- VOLDOIRE, A. CNRM-CERFACS CNRM-ESM2-1 MODEL output prepared for CMIP6 ScenarioMIP SSP585. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-ESM2-1.ssp585 (accessed on 15 March 2023).
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.-A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Ghattas, J.; et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Historical. Earth System Grid Federation. 2018. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.IPSL.IPSL-CM6A-LR.historical (accessed on 15 March 2023).
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.-A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Dupont, E.; et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP SSP245. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp245 (accessed on 15 March 2023).
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.-A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Dupont, E.; et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP SSP460. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp460 (accessed on 15 March 2023).
- Boucher, O.; Denvil, S.; Levavasseur, G.; Cozic, A.; Caubel, A.; Foujols, M.-A.; Meurdesoif, Y.; Cadule, P.; Devilliers, M.; Dupont, E.; et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 ScenarioMIP SSP585. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.IPSL.IPSL-CM6A-LR.ssp585 (accessed on 15 March 2023).
- Tatebe, H.; Watanabe, M. MIROC MIROC6 Model Output Prepared for CMIP6 CMIP Historical. Earth System Grid Federation. 2018. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.MIROC.MIROC6.historical (accessed on 15 March 2023).
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 Model Output Prepared for CMIP6 ScenarioMIP SSP245. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MIROC.MIROC6.ssp245 (accessed on 15 March 2023).
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 Model Output Prepared for CMIP6 ScenarioMIP SSP460. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MIROC.MIROC6.ssp460 (accessed on 15 March 2023).
- Shiogama, H.; Abe, M.; Tatebe, H. MIROC MIROC6 Model Output Prepared for CMIP6 ScenarioMIP SSP585. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MIROC.MIROC6.ssp585 (accessed on 15 March 2023).
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 CMIP Historical. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.CMIP.MRI.MRI-ESM2-0.historical (accessed on 15 March 2023).
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 ScenarioMIP SSP245. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MRI.MRI-ESM2-0.ssp245 (accessed on 15 March 2023).
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 ScenarioMIP SSP460. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MRI.MRI-ESM2-0.ssp460 (accessed on 15 March 2023).
- Yukimoto, S.; Koshiro, T.; Kawai, H.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. MRI MRI-ESM2.0 Model Output Prepared for CMIP6 ScenarioMIP SSP585. Earth System Grid Federation. 2019. Available online: https://www.wdc-climate.de/ui/cmip6?input=CMIP6.ScenarioMIP.MRI.MRI-ESM2-0.ssp585 (accessed on 15 March 2023).
- FIDESUR. Fideicomiso para el Desarrollo Regional del Sur Sureste. 2023. Available online: https://sursureste.org.mx/ (accessed on 15 March 2023).
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Lehmann, E.L.; D’Abrera, H.J. Nonparametrics Statistical Methods Based on Ranks; Holden-Day: San Francisco, CA, USA, 1975. [Google Scholar]
- Clogg, C.C.; Petkova, E.; Haritou, A. Statistical methods for comparing regression coefficients between models. Am. J. Sociol. 1995, 100, 1261–1293. Available online: http://www.jstor.org/stable/2782277 (accessed on 15 March 2023). [CrossRef]
- Paternoster, R.; Brame, R.; Mazerolle, P.; Piquero, A. Using the correct statistical test for the equality of regression coefficients. Criminology 1998, 36, 859–866. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Diallo, I.; O’Brien, E.; Ashfaq, M.; Martínez-Castro, D.; et al. Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst. Environ. 2021, 5, 1–24. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climat. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Peralta-Hernandez, A.R.; Balling, R.C., Jr.; Barba-Martinez, L.R. Analysis of near-surface diurnal temperature variations and trends in southern Mexico. Int. J. Clim. 2009, 29, 205–209. [Google Scholar] [CrossRef]
- Cavazos, T.; Luna-Niño, R.; Cerezo-Mota, R.; Fuentes-Franco, R.; Méndez, M.; Pineda Martínez, L.F.; Valenzuela, E. Climatic trends and regional climate models intercomparison over the CORDEX-CAM (Central America, Caribbean, and Mexico) domain. Int. J. Clim. 2020, 40, 1396–1420. [Google Scholar] [CrossRef]
- Murray-Tortarolo, G.N. Seven decades of climate change across Mexico. Atmósfera 2021, 34, 217–226. [Google Scholar] [CrossRef]
- INEGI. Cuentame, Información por Entidad. Instituto Nacional de Estadística y Geografía. 2023. Available online: https://cuentame.inegi.org.mx/monografias/default.aspx?tema=me (accessed on 15 March 2023).
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Monroy-Martínez, J.M. Plan Puebla-Panamá como Estrategia ante la Problemática de Atraso en el Sur-Sureste Mexicano. Tesis. Relaciones Internacionales; Escuela de Ciencias Sociales, Universidad de las Américas Puebla: Cholula, México, 2003; Available online: http://catarina.udlap.mx/u_dl_a/tales/documentos/lri/monroy_m_jm/ (accessed on 15 March 2023).
- García, A.G.; Kauffer, E.F.M. Las cuencas compartidas entre México, Guatemala y Belice: Un acercamiento a su delimitación y problemática general. Front. Norte 2011, 23, 131–161. Available online: http://www.redalyc.org/articulo.oa?id=13618448005> (accessed on 15 March 2023).
- INEGI. Climatología. Geografía y Medioambiente. Mapas. Instituto Nacional de Estadística y Geografía. 2023. Available online: https://www.inegi.org.mx/temas/climatologia/ (accessed on 15 March 2023).
- Corredor Interoceánico. Gobierno de México. 2023. Available online: https://www.gob.mx/ciit (accessed on 15 March 2023).
Number | Data | Resolution | Variable | Time | Scenario |
---|---|---|---|---|---|
1 | ERA5 | 25 km × 25 km | tas | 1980–2014 | |
2 | CNRM-ESM2-1 | 250 km × 250 km | tas | 1980–2014 2021–2040 2041–2060 2081–2100 | SSP2-4.5, SSP4-6.0, SSP5-8.5 |
3 | IPSL-CM6A-LR | 250 km × 250 km | tas | 1980–2014 2021–2040 2041–2060 2081–2100 | SSP2-4.5, SSP4-6.0, SSP5-8.5 |
4 | MIROC6 | 250 km × 250 km | tas | 1980–2014 2021–2040 2041–2060 2081–2100 | SSP2-4.5, SSP4-6.0, SSP5-8.5 |
5 | MRI-ESM2-0 | 100 km × 100 km | tas | 1980–2014 2021–2040 2041–2060 2081–2100 | SSP2-4.5, SSP4-6.0, SSP5-8.5 |
Model | Scenario | Period | z-eq ERA5 (South) | z-eq ERA5 (Southeast) | z-eq Models (South) | z-eq Models (Southeast) |
---|---|---|---|---|---|---|
CNRM-ESM2-1 | SSP2-4.5 | 2021–2040 | 0.68 | −2.03 | −1.02 | −1.05 |
CNRM-ESM2-1 | SSP4-6.0 | 2021–2040 | 2.79 | 1.66 | 1.32 | 2.01 |
CNRM-ESM2-1 | SSP5-8.5 | 2021–2040 | 1.92 | −0.62 | 0.55 | −0.13 |
IPSL-CM6A-LR | SSP2-4.5 | 2021–2040 | 1.67 | −0.93 | 0.36 | 2.15 |
IPSL-CM6A-LR | SSP4-6.0 | 2021–2040 | 2.60 | 0.87 | 1.61 | 1.08 |
IPSL-CM6A-LR | SSP5-8.5 | 2021–2040 | 1.67 | −0.84 | 0.36 | 1.25 |
MIROC6 | SSP2-4.5 | 2021–2040 | 1.52 | 1.72 | 0.41 | 2.07 |
MIROC6 | SSP4-6.0 | 2021–2040 | 1.09 | −0.51 | −0.11 | −0.10 |
MIROC6 | SSP5-8.5 | 2021–2040 | 2.17 | 2.11 | 0.98 | 2.37 |
MRI_ESM2_0 | SSP2-4.5 | 2021–2040 | 1.80 | 0.73 | 1.35 | 2.28 |
MRI_ESM2_0 | SSP4-6.0 | 2021–2040 | 1.15 | 0.08 | 0.71 | 1.79 |
MRI_ESM2_0 | SSP5-8.5 | 2021–2040 | 4.45 | 0.08 | 3.80 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Velázquez, M.; Montero-Martínez, M.J. Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. Climate 2023, 11, 111. https://doi.org/10.3390/cli11050111
Andrade-Velázquez M, Montero-Martínez MJ. Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. Climate. 2023; 11(5):111. https://doi.org/10.3390/cli11050111
Chicago/Turabian StyleAndrade-Velázquez, Mercedes, and Martín José Montero-Martínez. 2023. "Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6" Climate 11, no. 5: 111. https://doi.org/10.3390/cli11050111
APA StyleAndrade-Velázquez, M., & Montero-Martínez, M. J. (2023). Historical and Projected Trends of the Mean Surface Temperature in South-Southeast Mexico Using ERA5 and CMIP6. Climate, 11(5), 111. https://doi.org/10.3390/cli11050111